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Abstract— The aim of this paper is to report on some prelim-
inary results obtained in the context of the MASSIVE research
project (http://www.di.unito.it/massive/) relating the
formal specification and verification of protocols in some dif-
ferent application field. A protocol is a way to express the
right behavior of entities involved in a (possibly complex and
distributed) process. The formalism to be used for protocol
description should be as intuitive as possible, but it should be
also formally defined, in order to allow formal checks both on
the features of the protocol itself (e.g. termination), and also on
the execution of it. To this purpose, we will show some results
obtained by exploiting the SOCS − SI logic-based framework
for the specification and the verification of protocols in various
applicative fields such as electronic commerce, medicine and e-
learning. We will also present a new graphical notation to express
medical guidelines, which could be automatically translated into
the SOCS formalism.

I. INTRODUCTION AND OBJECTIVES

The advent of distributed systems has focused the attention
of the scientific community to interaction protocols between
multiple interacting entities. There are many application ar-
eas where the concept of protocol has already reached a
crucial importance; in some other field this concept has a
great potential for improving the design and the execution
of application specific processes. Protocols are the way to
express the right behavior of entities involved in a (possibly
complex and distributed) process; for instance, in a multi-agent
setting, an interaction protocol expresses the rules that agents
must follow in order to correctly perform the interaction.
Even in application areas traditionally far from the computer
science area, the protocol concept has been imported and used
with a more specialized meaning and a different name. For
instance, in the clinical field, protocols are named clinical
guidelines and express the correct ways for treating given
classes of clinical cases, possibly involving several actors,

each representing a specific medical operator (e.g., a physician,
a nurse, a laboratory technician, etc.).

Whatever the considered application field is, once a protocol
has been specified it could be very useful (in some cases it
is mandatory) to be able to verify that actors executing that
protocol are compliant with the behavior rules that the protocol
expresses.

To this purpose, the research on protocol verification has
greatly benefited from some important contributions achieved
in the distributed and concurrent systems research area [1],
[2], [3]. Among them, the SOCS european project [4] and
the MASSIVE italian project [5] have defined a logic based
framework for the specification and the verification of agent
interactions within an open and heterogeneous society. This
framework allows to specify the rules of each interaction
protocol by means of a logic-based formalism based on in-
tegrity constraints. This formal language is associated with an
operational counterpart implemented by means of an abductive
proof procedure, which is able to verify during the execution
(on the fly) agents compliance with given protocols, and
possibly to detect rule violations.

Although the SOCS-SI framework can be used for protocol
specification and verification in a wide range of applica-
tions, the language provided by SOCS-SI is logic-based and
therefore it is not particularly user-friendly: it is likely a
formalism not suitable to be used by protocol designers in
non technological application areas, such as the medicine
one. Therefore, in order to support protocol execution and
verification in a wider scenario, it is crucial to have a more
intuitive way to specify protocols, while the formal rigour in
their description.

In the past, the need of formal languages for the definition
of interaction protocols had not always been perceived as a
fundamental requirement. The case of the TCP protocol (the
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Transmission Control Protocol, [6]) is exemplary: the protocol
is described through an informal graphical notation, and the
semantic of messages is expressed in natural language; a wide
part of the protocol (e.g., the timing) is even not specified at
all.

The use of a graphical language for protocols definition
instead is universally considered a necessary step to the aim
of simplifying the job of protocols developers. In the multi-
agent system development area, several proposals of graphical
languages have been introduced, mostly based on finite state
automata. Only recently two languages that follow a different
approach (AUML [7], [8] and AML [9]) have been proposed,
both extending Interaction Diagrams of standard UML to
the aim of modeling agents interactions. However, although
these graphical formalism are easy and intuitive, a complete
formalization of them still lacks; consequently the support for
the formal verification property of the protocol lacks too.

The aim of this paper is to report some preliminary results
obtained in the context of the MASSIVE research project [5]
relating the formal specification and verification of protocols
in some different application field.

The paper is structured as follows. Section 2 briefly sketches
on the features of the SOCS framework, with a special focus
on verification and specification. Section 3 describes some
experiences in protocol specification in the SOCS frame-
work, regarding examples taken from different application
areas. Section 4 introduces graphical languages for protocol
specifications, and then presents GOSPEL, a new graphical
notation which is suitable for the specification of protocols,
with particular regard to medical guidelines, and which has
been designed to allow automatic translation of protocols into
the SOCS framework. Conclusions follow.

II. SOCS-SI: A FRAMEWORK FOR PROTOCOLS
FORMALIZATION AND VERIFICATION

In this section we give the necessary background on the
formal framework proposed by Alberti et al. [10], [11], [12]
for the specification of agent interaction in open 1 societies of
agents. The reader is referred to those papers for a complete
description. This system was initially aimed at agent interac-
tion protocols; however, in the following section we will show
how this framework could be successfully exploited also in
other different settings.

The framework assumes the existence of an entity (Social
Compliance Verifier or SCV, for short) which is external
to agents, and is devoted to check their compliance to the
specification of agent interaction.

The SCV is aware of the ongoing social agent social
behaviour: this is represented by a set of (ground) facts called
events, and indicated by functor H.

For example, H(request(ai, aj , give(10$), d1), 7) represents
the fact that agent ai requested agent aj to give 10$, in the

1We intend openness in societies of agents as Artikis et al. [13], where
agents can be heterogeneous and possibly non-cooperative.

context of interaction d1 (dialogue identifier) at time 7.2

In open agent societies, the agent behaviour is unpre-
dictable, because agents are autonomous; however, when inter-
action protocols are defined, we are able to determine what are
the possible expectations about future events. This represents
in some sense the “ideal” behaviour of a society. Expectations
can be positive (events expected to happen, indicated by the
functor E) or negative (events expected not to happen, functor
EN). Expectations have the same format as events, but they
will, typically, contain variables, to indicate that expected
events are not completely specified. CLP [14] constraints can
be imposed on variables to restrict their domain.

For instance,
E(accept(ak, aj , give(M), d2), Ta) ∧
M ≥ 10 ∧ Ta ≤ 15
represents the expectation for agent ak to accept giving agent
aj an amount M of money, in the context of interaction d2

(dialogue identifier) at time Ta; CLP constraints say that M
is expected to be greater or equal than 10, and Ta to be less
or equal than 15.

The way expectations are generated, given the happened
events and the current expectations, is specified by means of
Social Integrity Constraints (ICS).

Let us consider an example with two agents involved
(although ICS can be applied to any-party agent interaction):

H(request(A,B, P, D), T1)
→E(accept(B, A, P, D), T2) ∧ T2 ≤ T1 + τ

∨E(refuse(B, A, P, D), T2) ∧ T2 ≤ T1 + τ

(1)

states that, if agent A makes a request of P to agent B, in the
context of interaction D at time T1, then agent B is expected
to accept or refuse P by τ time units after the request.

The following ICS :

H(accept(A,B, P,D), T1)
→EN(refuse(A,B, P, D), T2) ∧ T2 ≥ T1

(2)

H(refuse(A,B, P, D), T1)
→EN(accept(A, B, P, D), T2) : T2 ≥ T1

(3)

express, instead, mutual exclusiveness between accept and
refuse: if an agent performs an accept, it is expected not to
perform a refuse with the same content after the accept, and
vice versa. In this way, we are able to define protocols as sets
of forward rules, relating events to expectations.

Abduction [15] is a reasoning paradigm which consists of
formulating hypotheses (called abducibles) to account for ob-
servations; in most abductive frameworks, integrity constraints
are imposed over possible hypotheses in order to prevent
inconsistent explanations. The idea behind our framework is
to formalize expectations about agent behaviour as abducibles,
and to use Social Integrity Constraints such as (1), (2) or (3)
to prevent such agent behaviour that is not compliant with
interaction protocols.

2We make the simplifying assumption about time of events, that the time of
sending a message is the same as receiving it, and that such time is assigned
by the social framework.

WOA 2005 185



Given the partial history of a society (i.e., the set of already
happened events), an abductive proof procedure (SCIFF, [16])
generates expectations about agent behaviour so as to comply
with Social Integrity Constraints. SCIFF is inspired by the
IFF proof procedure [17], augmented as needed to manage
CLP constraints and universal variables in abducibles. The
most distinctive feature of SCIFF, however, is its ability to
check that the generated expectations are fulfilled by the actual
agent behaviour (i.e., that events expected (not) to happen have
actually (not) happened), which cannot be assumed a priori
in an open society of autonomous agents.

The SCIFF proof procedure (implemented using SICStus
Prolog [18] and Constraint Handling Rules [19]) has been
integrated into the Java-based SOCS-SI tool.

III. POTENTIAL FOR REAL EXPLOITATION OF THE SOCS
FRAMEWORK

The previous section has shown the main features of the
SOCS framewok with a special focus on agents interaction
protocols. The SOCS proof procedure deals with events in
general, that in the case of agents interaction are mapped
into communicative acts. However the concept of event can
be abstracted from multi-agent systems and, dependently on
the particular setting, it may represent different actions. In the
following we will show how this can be applied to real-life
scenarios.

A. Medical guidelines

Medical guidelines [20] are clinical behaviour’s recommen-
dations that are used to support physicians in the definition of
the most appropriate diagnosis and/or therapy within determi-
nate clinical circumstances.

Unfortunately, guidelines are today described by using sev-
eral formats, such as flow charts and tables, so that physicians
are not properly supported in the detection of possible errors
and incompleteness: it is difficult to evaluate who made an
error within the protocol’s flow and when. As a consequence,
guideline’s application often loses its benefits.

In the following we show that the logic-based formalism
provided by the SOCS framework is general enough to allow
us to formally describe medical protocols. The main advantage
of using ICs in the context of medical guidelines is the
capability to discover some forms of inconsistency and to
perform an on-the-fly verification of the protocol’s application
on a specific patient.

In order to effectively test the potentialities of this approach,
we formalized a microbiological guideline [21] which de-
scribes how to manage an infectious patient from his arrival
at a hospital’s emergency room to his recovery and tested this
guideline on a set of clinical trials.

The guideline may be structured in seven phases: patient’s
arrival at the hospital’s emergency room; patient examination
at the emergency room; possible admission in a specific
hospital ward and first therapy prescription made by the ward
physician; request of a microbiological test (consisting of
many sub-phases, involving both human and artificial actors);

return of the microbiological test report to the ward physician,
who must decide the definitive therapy; management of drugs
by nurses; evaluation of patient’s health and, in case of
symptoms persistence, new prescription of microbiological
test. In order to formalize the guideline described before, we
detected, first of all, all the actors involved (e.g. the patient,
wards physicians, the microbiological laboratory, etc.) and
secondly pointed out all the actions which should be executed
(or not, i.e. expected or not expected) for an appropriate
patient’s disease treatment. Each actor has been then mapped
into an agent with a specific role, and actors actions (e.g,
examinations, analysis, etc) has been modeled as SOCS events.
For example, the following IC:

H (enter (Patient, emergency ward) , Tent)
→ E (examinate (Physician, Patient) , Texam)
∧Texam < Tent + 6 ∗ 60

(4)

expresses that when a patient arrives at the emergency room
(at time Tent), we expect that at least one physician would
visit him (at time Texam) within the deadline of 6 hours. This
deadline is expressed as a CLP constraint, which says that
Texam should be lower than Tent plus 6 hours. The complete
specification of this protocol consists of about 20 social ICs. It
has been tested via the SOCS-SI software, using different set
of events, compliant and not. For instance, a non compliant set
is the following: a patient (patientA) arrives at the hospital’s
emergency room at time 10, but no physician visits him within
6 hours. The event

enter (patientA, emergency ward) , 10

matches with the antecedent of (1), generating the expectation
in the consequent that a physician should visit patientA at time
Texam, such that Texam < 10+6*60. No event is afterward
registered until this deadline, therefore a violation is raised by
the proof procedure.

In this way a simple medical guideline may be mapped into
a set of social integrity constraints in the context of SOCS
infrastructure, thus enabling an on-the-fly verification about
the compliance of the hospital staff to it. We have successfully
tested this specification using the SOCS-SI tool with some
set of events, compliant and not. Of course, this is only the
first step towards an effective tool for defining and verifying
guidelines in a clinical environment.

In literature, several formalisms have been proposed for
representing medical protocols, like for example GLARE [22]
and PROforma [23]. These are complete tool capable to
manage both guidelines acquisition and execution, but, to the
best of our knowledge, their are not able to verify compliance
of actions and interactions of the kind here presented.

B. Electronic Auctions and E-commerce

Auctions have been practically used for centuries in human
commerce, and their properties have been studied in detail
from economic, social and computer science viewpoints. The
raising of electronic commerce has pushed auctions as one of
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the favorite dealing protocols in the Internet. Now, the software
agent technology seems an attractive paradigm to support
auctions [24]: agents acting on behalf of end-users could re-
duce the effort required to complete auction activities. Agents
are intrinsically autonomous and can be easily personalised
to embody end-user preferences. In addition, they could be
adaptive and capable of learning from both past experience and
their environment, in order to cope with changing operating
conditions and evolving user requirements [25]. In fact, while
in the past bidders were only humans, recent Internet auction
servers [26] allow software agents to participate in the auction
on behalf of end-users, and some of them even have a built-in
support for mobile agents [27].

A first, important issue in e-commerce and, in particular, in
electronic auctions, is trust [28]. Amongst the various aspects
of trust in MASs (often related to credibility levels between
agents), we find utterly important that human users trust their
representatives: in order for the system to be used at all, each
user must trust its representative agent in the auction.

A typical answer to such issues is to model-check the agents
with respect to both their specifications and requirements
coming from the society. However, this is not always possible
in open environments: agents could join the society at all times
and their specifications could be unavailable to the society.
Thus, the correct behavior of agents can be checked only
from the external in an open environment: by monitoring the
communicative actions of the agents.

A second, very important issue in e-commerce, is the deliv-
ery of the auctioned good: the auctioneer must be guaranteed
that he will receive the money, and the winner must be
guaranteed that he will get the good.

A possible answer to this problem consists of crafting an
interaction protocol for the delivery phase, such that both the
seller and the buyer are guaranteed of their rights. An example
of such a protocol has been shown in [29], where a third
trusted entity (a bank) act as guarantee for the seller and the
buyer.

Both the issues presented above show that the verification
of the correct behavior of participants to agents plays a
fundamental role, since the desired properties are guaranteed
only if the agents behave properly w. r. t. the protocols. The
SOCS framework provides an answer to this problem, since it
is able to determine if an interaction, observed from an external
viewpoint, respects a given protocol definition. Some of the
integrity constraints ruling a single-item auction protocol are
presented in the Specification III.1. In order to cope also
with the delivery problem, some rules have been added to
the auction protocol; these rules are mainly inspired by the
delivery phase presented in the Netbill protocol. The ICS 5,
for example, states that each time a bidding event happens,
the auctioneer should have sent an openauction event (to all
bidders); this is equivalent to assert that no one can place a
bid if an auction was not previously declared as “open”. The
ICS 6 implies instead that the auctioneer should answer to
each bid, and that the answer should be sent after the auction
is closed within the deadline Tdeadline. Finally, the ICS 7

imposes that if a bid has been declared a winning bid, then
the bidder should deliver items involved in the bid.

Specification III.1 The auction protocol expressed using the
ICS language.

H(tell(B, A, bid(ItemList, P ), Anumber), Tbid)

→ E(tell(A, B, openauction(Items, Tend, Tdeadline), Anumber), Topen),

Topen < Tbid ∧ Tbid ≤ Tend

(5)

H(tell(B, A, bid(ItemList, P ), Anumber), Tbid) ∧
H(tell(A, B, openauction(Items, Tend, Tdeadline), Anumber), Topen)

→ E(tell(A, B, answer(X, S, ItemList, P ), Anumber), Tanswer),

Tanswer ≥ Tend ∧ Tanswer ≤ Tdeadline, X :: [win, lose]

. . .
(6)

H(tell(B, A, bid(ItemList, P ), Anumber), Tbid) ∧
H(tell(A, B, answer(win, B, ItemList, P ), Anumber), T1) ∧
Tbid < T1

→ E(tell(B, A, deliver(ItemList, P ), Anumber), T3) ∧
T3 > T1

. . .
(7)

C. E-learning by doing
E-learning is a new paradigm for the learning process, based

on the growing availability of technology resources such as
personal computers and the Internet. The main idea of e-
learning consist of distributing the knowledge onto new media
support like cd, dvd, or directly through the internet. Around
this idea a set of support technologies have been developed,
such as content management systems and applications for real-
time streaming and interactions. Many advantages are offered
by this paradigm: just to mention the more evident, teacher
and student are not constrained anymore to be in the same
place. Moreover, teacher and student can be decoupled also
in the time dimension: it is no longer needed that teacher and
student attend the lesson at the same time instant. The learning
process can be adapted to each student’s needs, taking into
account previous knowledge, time availability, and learning
capabilities of the student himself.

Several e-learning paradigms have been developed, and
amongst them, e-learning “by doing” is one of the most
promising in terms of the learning quality. The “by doing”
paradigm consists of teaching a topic by letting the student
directly practice the argument onto a real system, or a model
that simulates the real system. This approach can be applied
also to the e-learning processes, and in particular to software
applications learning. Of course, the degree of interaction
between the student and the teacher, and the possibility to
receive help when needed, are of the utmost importance in
such process. The student in fact must not be left alone
during the learning process, but rather he should be followed
interactively, and he should receive help, hints and feedback
whenever it is opportune.
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To support the e-learning by doing process, it is necessary
to tackle several issues: firstly, a mechanism for evaluating
the acquired skills is needed, in order to be able to proceed
to advanced topics. The evaluation mechanism must provide
support for a-posteriori evaluation, as well as run-time eval-
uation to hint the student. Secondly, it is quite common that
the same learning goal can be achieved in more than one way:
the tutoring system must be able to evaluate all the options,
and should adapt in response to the student choices.

The SOCS framework, and in particular the SOCS-SI ap-
plication, are general enough to be used also in the context
of e-learning by doing. We have tried successfully to adopt
our protocol definition language for representing the action
expected by the user of a e-learning by doing system (a
sort of a protocol where only one peer participate). We have
focussed our experiments on the learning process of a writing
application within the offices program suites. We developed
our prototype on two applications, the MS Word program (part
of the Microsoft Office Suite), and the Writer application of
the OpenOffice suite. For both applications, a specific filter
has been developed, with the purpose of capturing the actions
performed by the student. Those actions, after a transformation
process, are communicated to the SOCS-SI application, that
provide to check the conformance to a special protocol defi-
nition. Such definition can be seen in the Specification III.2,
where it is defined how the student can achieve the goal of
closing the application after printing a file.

Specification III.2 An e-learning goal represented through the
ICS language.

H(tell(U, S, keyboard event(print), DialogId), TP rint)

→ E(tell(U, S, mouse event(menu File Close), DialogId), TClose)

∧ TClose > TP rint

∨ E(tell(U, S, mouse event(menu File Exit), DialogId), TExit)

∧ TExit > TP rint

∨ E(tell(U, S, keyboard event(quit), DialogId), TExit)

∧ TExit > TP rint

∨ E(tell(U, S, keyboard event(alt + f), DialogId), TF ile)

∧ E(tell(U, S, mouse event(menu File Close), DialogId), TClose)

∧ TP rint < TF ile ∧ TF ile < TClose

∨ E(tell(U, S, keyboard event(alt + f), DialogId), TF ile)

∧ E(tell(U, S, mouse event(menu File Exit), DialogId), TExit)

∧ TP rint < TF ile ∧ TF ile < TExit

∨ E(tell(U, S, close document, DialogId), TClose)

∧ TClose > TP rint

∨ E(tell(U, S, close office, DialogId), TClose)

∧ TClose > TP rint

(8)

The ICS 8 shows how it is possible to represent multiple
solutions for solving the learning goal. Seven different alter-
natives are considered, from using the “File” menu and the
corresponding voice, to closing directly all the application.

Once the learning goal has been defined through ICS , the
SOCS-SI application can use it in three different ways:

1) the tool can be used as evaluator of the actions of the

student: if at the end of the practicing session, at least
one expectation is not satisfied, then the goal has not
been achieved;

2) the tool can be used also as an on-the-fly checker: if
the student perform an action that will block him for
reaching the goal, then it is possible to advice him
immediately, rather than waiting for the end of the
exercise;

3) the tool can be finally used as a suggesting system: if
the student does not know how to achieve the goal, it is
possible to hint him the next action by communicating
the expectations about his future behavior.

Of course it is up to the teacher (or the e-learning content
manager) to decide which modality is more opportune.

IV. TOWARDS A HIGH-LEVEL LOGIC-BASED
SPECIFICATION USING GRAPHICAL LANGUAGES

The problem of the specification of protocols involving
several entities is becoming a topical subject in many different
contexts.

In the multi-agent system development area, several pro-
posals of graphical languages for protocol definition have
been introduced, mostly based on finite states automata [30],
[31]. Only recently two languages that follow a different
approach, AUML [7], [8] and AML [9] have been proposed.
AUML proposes an extension of the Interaction Diagram of
standard UML to the aim of modeling agents interactions.
AUML supports the heterogeneity of interacting entities, since
it abstracts from the inner architecture of the agents; it allows
to define in an intuitive way which are the actors participants
to the interaction, and the messages (specifying both the sender
and the addressee) allowed in the protocol. Although the
AUML graphical formalism is easy and intuitive, a complete
formalization of the language still lacks. The AML language
extends the AUML protocols graphical specification language;
however it still does not supply a complete language semantics
and therefore it does not support any formal verification of
properties too.

Although the formalism to be used for protocol description
should be as intuitive as possible, it should be also formally
defined, in order to allow the execution of automatic checks
both on the features of the protocol itself (e.g. termination,
etc.), and also on the execution of it. To this purpose, in the
following we will present GOSPEL, a new graphical notation
to express protocols, with particular regard to medical guide-
lines, which has been designed to be automatically translated
into the SOCS formal language. The automatic translation is
ongoing work, and the first experimental results suggest that
it feasible.

A. GOSPEL

In literature, several graphical notations have been proposed
proposed to represent medical protocols, like for example
GLARE [22] and PROforma [23]. These are complete tool
capable to manage both guidelines acquisition and execution,
but, as for as we are concerned, their are not able to verify
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compliance of actions and interactions as those presented in
Section III-A.

If we want to effectively bring these advantages in the
clinical environment we have to incorporate the SOCS ap-
proach in a tool that allows both guidelines acquisition and
execution. The first step toward this goal is represented by
the Guideline prOcess SPEcification Language (GOSPEL).
GOSPEL is a graphical language, inspired by flow charts, for
the specification and representation of all the activities that
belong to a process and their flow inside it.

The GOSPEL representation of a guideline consists of
two different parts: a flow chart, which models the process
evolution, and an ontology, which describes at a fixed level
of abstraction the application domain and gives a semantic to
the diagram. The GOSPEL flow chart language is described
in Section IV-A.1. The GOSPEL ontology management is
described in Section IV-A.2. Section IV-A.3 describes how
we plan to integrate GOSPEL with the SOCS approach in
real world applications.

1) GOSPEL flow chart language: The GOSPEL flow chart
language describes the process evolution using blocks, which
can represent distinct process activities, and connections be-
tween blocks.

About the blocks, the ones proposed by GOSPEL are shown
in Table I.

LEAF BLOCKS
action autom. ex-or parallel synch

decision

START BLOCKS MACROBLOCKS
start cyclic complex iteration while

start action

END BLOCKS
return end

TABLE I
GOSPEL BLOCKS

These blocks are grouped into four families:
• Leaf blocks, blocks which represent atomic process ac-

tivities at the desired abstraction level;
• Macroblocks, blocks that are threated at their level like

simple blocks but that encapsulate a sub-process (that is
represented as another GOSPEL guideline);

• Start blocks, start points of (sub)processes;
• End blocks, end points of (sub)processes.
Among leaf blocks, action blocks are used to represent

single atomic process activities. The other leaf blocks are

crucial for modeling complex guidelines as they are used to
express workflow’s branches and forks, the former related to
decision points, the latter to activities parallelization.

GOSPEL supports two different types of decision blocks:
the first one, called ex-or decision leaf block, is used sim-
ply for expressing mutual exclusion between successors; the
second one, called automatic decision leaf block, permits to
automatically decide which path should be followed. In the
second case, each outcoming relation is guarded. In order
to maintain mutually exclusion, the designer should give a
preference about guards evaluation: the i-th guard is evaluated
iff the i-1-th previous guards fail.

Concurrence of activities is expressed using parallel and
synch leaf blocks. When the process flow reaches the parallel
leaf block it is splitted in several subprocesses represented as
outcoming relations. When these subprocesses are executed,
they are regrouped by the synch leaf block in the main process
flow.

Thanks to macroblocks, GOSPEL allows guideline designer
to follow a top-down approach for guideline process descrip-
tion as it is possible to split recursively the process into sub-
processes, bringing down the level of abstraction. We said that
Macroblocks are special blocks threated like atomic actions at
their level, but that incapsulate a new subprocess. Therefore,
each macroblock is associated to one start block, representing
the initial point of the (sub)process, and one or more exit
blocks; when an exit point is encountered, the flow will return
to the parent level; entering in and exiting from a macroblock
follow the same approach of procedure calls. A macroblock
defines both its inner subprocess and how the flow will walk
through it.

GOSPEL proposes three macroblock types: Complex action
macroblock, Iteration macroblock and While macroblock. The
simplest one is the one of complex action macroblock, in
which we specify directly a new (sub)process. The entire
guideline may be viewed as a big complex action. Other
macroblocks show different behavior, because they express
workflow cycles. Cycles modeling in GOSPEL is similar
to structured programming: the Iteration macroblock models
a for structure, saying how many times the (sub)process
should be repeated and the While macroblock represents a
do...while structure, expressing the exit condition with
a logic guard. In the case of cyclic macroblocks, the modeled
(sub)process corresponds to one iteration step. In order to say
that the generic step is terminated and that the next should
begin (if the cycle condition agrees), we create a connection
that goes back into the start point, which is actually a cyclic
start. The presence of an exit block within a cyclic macroblock
means that the cycle should be prematurely terminated; the
same happens in structured programming when we write a
break command.

About block connections, GOSPEL defines three types of
binary relations (connections that involve two blocks): Order
relation, Conditional order relation and Time relation.

An order relation is an oriented connection used to specify
which activity follows a specific one in the process evolution.
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A conditional order relation may be associated to a logic
guard containing the knowledge necessary to automatically
choose if the process evolution will walk through this con-
nection. If this knowledge is not modeled, the choice is left
to participants.

The time relation is used to express a constraint between
the execution time of involved activities. As described in III-A,
Integrity Constraints can be used to model a protocol in term
of observable events. GOSPEL follows the same approach:
an action block models a relevant and observable activity in
the workflow. Since an activity is observable and has a well-
defined execution time it possible to made temporal constraints
related to the execution time of several of them.

An example of a GOSPEL guideline fragment is shown in
Figure 1.

Fig. 1. Example of GOSPEL language: a fragment of a hypothetical clinical
guideline

In the example, a ward physician (Phy) should mea-
sure (meas temp(Phy,Pat,Temp) the patient’s temperature .
If the measured value is greater or equal than 38 celsius
degrees then two nurses should register that value regis-
ter(Nur2,Pat,Temp) and administer paracetamol to the patient
administer(Nur1,Pat,’paracetamol’). In this case, the patient is
held in the emergency room hold(Phy,Pat) for further inves-
tigations. Otherwise, if the measured value is lower than 38
celsius degrees then the physician should decide if is necessary
to hold the patient or to let him go away release(Phy,Pat).

2) GOSPEL ontology: Another crucial component of
GOSPEL is the guideline ontology. Since GOSPEL is a
general-purpose language, potentially useful in any context
that requires to model a workflow, it avoids to fix an ontology
a priori.

The guideline ontology is used to specify the semantic
associated to an activity. It is mainly composed by two
hierarchies: a hierarchy of all the activities which belongs to
the process domain and a hierarchy of participants, entities
that play a role in one or more activities.

This ontology may be created and maintained by using Pro-
tege [stanford.protege.org], an open source tool, developed
by the Stanford University. The Protege JAVA libraries are
used in the graphical guideline editor of GOSPEL to specify

actions and guards. Figure 2 shows and example of action
specification in the GOSPEL editor.

Fig. 2. Action specification in the GOSPEL editor

The complete specification of an action consists of choosing
an ontological activity and associating one or more participants
to it. Participants are introduced within macroblocks giving
them a logical name; macroblocks realize also precise visibility
rules of participants. During an action specification, visible
participants can be associated to the selected ontological
activity.

3) Integrating GOSPEL with the SOCS approach:
GOSPEL is part of a complex system that aims to support
designers in both the modeling and the execution phases. With
respect to the modeling side, we have implemented a GOSPEL
editing tool that integrates ontologies developed in Protege.
We are working now on a visitor application (the Translator
shown in Figure 3) that is capable to walk through a GOSPEL
diagram and translate it into a set of social integrity constraints.

From this perspective, ontological activities become hap-
pened events and participants logical variables involved in the
events. The visitor makes possible to exploit the benefits of
SOCS computational model, providing a framework for the
verification of participant behavior compliance to GOSPEL
modeled processes. In order to better explain how the visitor
works, we take into account, for example, the GOSPEL
diagram shown in Figure 1. In this example, the temperature
measurement becomes an happened event. The presence of
an automatic decision with two outcoming relations splits the
diagram into two different ”worlds”, the former associated to
a temperature’s value greater or equal than 38, the latter to a
value lower than 38; therefore, the visitor generates ICS 9
and 10, mapping directly the parallel and the ex-or decision
blocks into logical AND and exclusive OR.
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Specification IV.1 first part of the diagram in Figure 1
translated into ICS

H(temp meas(Phy, Pat, Temp), Tm)
∧ Temp ≥ 38

→ E(register(Nur1, Pat, Temp), Tr)
∧ Tr > Tm

∧ E(administer(Nur2, Pat, paracetamol), Ta)
∧ Ta > Tm

(9)

H(temp meas(Phy, Pat, Temp), Tm)
∧ Temp < 38

→ E(hold(Phy, Pat), Th)
∧ Th > Tm

∧EN(release(Phy, Pat), Tr)
∧ Tr > Th

∨ E(release(Phy, Pat), Tr)
∧ Tr > Tm

∧EN(hold(Phy, Pat), Th)
∧ Th > Tr

(10)

Finally, the diagram shows that when the temperature is
≥ 38 and both nurses have finished their tasks, the physician
should hold the patient. This behavior translates into a third
integrity constraint (ICS 11).

Specification IV.2 third ICS generated visiting the diagram
example

H(register(Nur1, Pat, Temp), Tr)
∧H(administer(Nur2, Pat, paracetamol), Ta)

→ E(hold(Phy, Pat), Th)
∧ Th > Tr

∧ Th > Ta

(11)

In a real application, we cannot rely on a manual delivery
of relevant events to the proof. We have rather to identify
the different types of events sources and try to extract auto-
matically the happened events from them. Many events are
recorded in the business database management system, which
can be considered as a source of events.

Therefore, at the execution side we are developing an
infrastructure that is capable to map ontological activities into
a concrete data base management system and interact with it
in order to extract at run-time the corresponding events. Two
forms of interaction are considered: a polling mode and an
interrupt mode (implemented via triggers).

The complete architecture of the guideline tool integrating
both GOSPEL and SOCS is shown in Figure 3.

Fig. 3. Overview of the integration between GOSPEL and SOCS

V. CONCLUSIONS

In this paper we have reviewed some of the applications
of the logic-based SOCS social framework, and we have
introduced the GOSPEL graphical notation for expressing
protocols.

The research reported in this paper represents a first step
towards a methodology of protocol design meant to exploit the
best of two worlds: the ease of use and simplicity of graphical
formalisms, and the well-defined declarative and operational
semantics of logic-based formalisms.

The next (ongoing) step of our research is the automatic
translation of GOSPEL-based protocol specifications to the
SOCS framework.
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