
Personalization, verification and conformance for
logic-based communicating agents

Matteo Baldoni, Cristina Baroglio, Alberto Martelli,
Viviana Patti, Claudio Schifanella, Laura Torasso

Dipartimento di Informatica
Università degli Studi di Torino

C.so Svizzera, 185 — I-10149 Torino (Italy)
Email: {baldoni,baroglio,mrt,patti,schi,ltorasso}@di.unito.it

Viviana Mascardi
Dipartimento di Informatica e Scienze dell’Informazione

Università degli Studi di Genova
Via Dodecaneso, 35 — I-16146 Genova (Italy)

Email: mascardi@disi.unige.it

Abstract— This paper is an overview of the work that we have
carried on in the last two years in the context of the MASSiVE
project. The main research lines have concerned personalization
of the interaction with web services, personalization of course-
ware, web services interoperability, and integrated environments
for agent oriented software engineering. All of them can be seen
as applications of different reasoning techniques to a declarative
specification of interaction. A declarative specification makes
the study of properties easy and allows a fast prototyping of
applications. In particular, we applied reasoning about actions
and change to the personalized selection and composition of
web services and to the construction of courseware that satisfies
the user’s needs and goals. This kind of reasoning has also
been integrated in the DCaseLP MAS prototyping environment.
Declarative specifications have also been helpful to face the
problem of proving policy conformance in a way that guarantees
web service interoperability. Finally, the adoption of process
languages for web services for expressing the procedural behavior
of adaptive BDI-style agents have been explored.

I. INTRODUCTION

Computational logics and declarative languages are being
rediscovered as a tool for some of the most innovative applica-
tion areas: the Semantic Web and Web Services. By definition,
the Semantic Web comprises a machine-shareable representa-
tion of knowledge, and it both requires the development of
languages for expressing information in a machine-processable
form, and the use of inferencing mechanisms that allow a
content-aware navigation. The desired result is an overall
behavior that is closer to the user’s intuition and desire and the
possible applications are really various, depending on the kind
of resource that is described and on the tasks to be performed.
On the other hand, it is getting more and more common
describing and realizing applications as sets of cooperative
services. This is the case, for example, for manifacturing
processes, on-line markets, distributed network management.
The traditional approach is based on a functional view, in
which the different components require some specific input,
and produce some specific output. The system’s architecture
is based on the principle of static-functional decomposition,
where the interactions among the different components are
given by their dependencies. Other approaches are, however,
being studied which involve describing at a high-level the
behavior of the services. The aim is to enable the adoption

of automated reasoning mechanisms for retrieving, composing,
invoking services. One of these approaches is the Multi-Agent
paradigm, in which the different components dynamically
communicate and coordinate with each other, by means of
declarative languages, to reach some common (or their own)
goal. Among the social aspects, specifically relevant is the
ability of expressing behavioral rules, aiming at controlling
the organization of the system; communication protocols are
the most significant example of such rules. Protocols are used
to rule the agents’ interaction, therefore, they can be used to
check if a given agent can, or cannot, take part into the system,
or to check whether the system is behaving as expected.
In general, based on this abstraction, open systems can be
realized, in which new components can dynamically join the
system. The insertion of a new component in an execution
context is determined according to some form of reasoning
about its behaviour: it will be added provided that it satisfies
the body of the rules within the system, intended as a society.

The researches that we have carried on the last two years
tackle different aspects related to the Semantic Web and Web
Services, in the setting of Multi-Agent Systems. In particular,
we have extended the DyLOG language [13], which is the
common tool used in all the branches of the research that
we have carried on. The extension [9] mainly concerns the
introduction of a communication kit aimed at tackling commu-
nication in a way that is fully integrated with the representation
and reasoning mechanisms of the language. Each of the next
sections describes one of the lines of research that we have
been pursued and the work carried on in that context. Section
II reports about work in the context of personalization of
courseware; Section III discusses personalization in the service
selection and composition processes; Section IV reports results
concerning the proof of interoperability and conformance of
services to a global description of their interaction; Section V
describes the adoption of process languages for expressing the
procedural behavior of adaptive BDI-style agents; Section VI
describes an integrated environment for AOSE.

II. PERSONALIZATION OF COURSEWARE

Personalized information systems aim at giving the in-
dividual user optimal support in accessing, retrieving, and

WOA 2005 177



storing information. The individual requirements of the user
are to be taken into account in such different dimensions
like the current task, the goal of the user, the context in
which the user is requesting the information, the previous
information requests or interactions, the working process s/he
is involved in, the level of expertise, the device s/he is using
to display the information, the bandwidth and availability
of the communication channel, the abilities (disabilities or
handicaps) of the user, his/her time constraints, and many,
many more. Different research disciplines have contributed
to explore personalization techniques and to evaluate their
usefulness within various application areas: adaptive hypertext
systems, collaborative filtering, recommender systems, artifi-
cial intelligence, uncertainty management, and so forth. In this
section we will focus on an e-learning scenario and see how
reasoning can help personalization in this context, beginning
with the annotation of the learning resources. exploit a new
level of knowledge thus allowing a better personalization.

A learning object can profitably be used if the learner
has a given set of prerequisite competences; by using it, the
learner will acquire a new set of competences. It is, therefore,
appropriate to interpret learning objects as actions. The idea
that we have proposed is to introduce at the level of the
learning objects, some additional annotation for describing
both their pre-requisites and their effects and to do this by
exploiting standard representation languages, like LOM, and
ontologies, for using terms with a clear and sharable meaning.

The proposed annotation expresses a set of learning depen-
dencies between ontological terms, dependencies which can
be expressed in a declarative formalism, and can be used
by a reasoning system. So, given a set of learning objects,
each annotated in this way, it is possible to use the standard
planners, developed by the Artificial Intelligence community
(for instance, the well-known Graphplan [16]), for building
the reading sequences.

General-purpose planners search a sequence of interest in
the whole space of possible solutions and allow the construc-
tion of learning objects on the basis of any learning goal.
This is not always adequate in an educational application
framework, where the set of learning goals of interest is fairly
limited and the experience of the teachers in structuring the
courses and the learning materials is important. This kind of
constraint cannot be exploited by a general-purpose planner,
being related to the strategy adopted by the teacher. The ideal
solution is to express them as rules that specify an overall
structure in terms of ontological terms (competences). We will
call such rules learning strategies.

Given a set of learning strategies, it is possible to build a
learning object by refining a general rule according to specific
requirements and, in particular, by choosing those components
that best fit the user. An emblematic example is preparing
the material for a basic computer science course: the course
may, in fact, have different contents depending on the kind
of student to whom it will be offered (e.g. a Biology student,
rather than a Communication Sciences student, rather than a
Computer Science student). In particular, having a learning

strategy and a set of annotated learning objects, it is possible
to apply procedural planning for assembling a reading path
that is a sequence of learning resources that are annotated as
required by the strategy. Opposite to general-purpose planners,
procedural planning searches for a solution in the set of the
possible executions of a learning strategy.

Since the strategy is based on competences, rather than on
specific resources, the system might need to select between
different courses, annotated with the same desired competence,
which could equally be selected in building the actual learning
path. This choice can be done based on external information,
such as a user model, or it may be derive from a further
interaction with the user. Decoupling the strategies from the
learning objects results in a greater flexibility of the overall
system, and simplifies the reuse of the learning objects. As
well as learning objects, also learning strategies could be made
public and shared across different systems. Results of these
researches in the context of Massive are reported in [14], [6].

III. PERSONALIZATION OF THE INTERACTION WITH WEB

SERVICES

In the last years distributed applications over the World-
Wide Web have obtained wide popularity and uniform mech-
anisms have been developed for handling computing problems
which involve a large number of heterogeneous components,
that are physically distributed and that interoperate. These
developments have begun to coalesce around the web service
paradigm, where a service can be seen as a component
available over the web. Each service has an interface that is
accessible through standard protocols and that describes its
interaction capabilities, and it can be combined and integrated
with others to develop new applications over the web.

In this scenario, one of the needs that have inspired recent
research [15] is the study of declarative descriptions of web
services, aimed at allowing forms of automated interoperation
that include, on the one hand, the automation of tasks like
matchmaking and execution, on the other, the automation of
service selection and composition, in a way that is customized
w.r.t. the user’s goals and needs, a task that can be consid-
ered as a form of personalization [6]. Indeed, selection and
composition not always are to be performed on the sole basis
of general properties of the services themselves and of their
interactive behavior, such as their category or their functional
compositionality, but they should also take into account the
user’s intentions (and purposes) which both motivate and
constrain the search or the composition. As a quick example,
consider a service that allows buying products, alternatively
paying cash or by credit card: a user might have preferences
on the form of payment to enact. In order to decide whether
or not buying at this shop, it is necessary to single out the
specific course of interaction that allows buying cash. This
form of personalization can be obtained by applying reasoning
techniques on a description of the service process. Such a
description must have a well-defined meaning for all the
parties involved. In this issue it is possible to distinguish three
necessary components:

WOA 2005 178



• web services capabilities must be represented according
to some declarative formalism with a well-defined seman-
tics, as also recently observed by van der Aalst [43];

• automated tools for reasoning about such a description
and performing tasks of interest must be developed;

• in order to gain flexibility in fulfilling the user’s request,
reasoning tools should represent such requests as abstract
goals.

The approach that we propose in [8] inherits from the
experience of the research community that studies MAS and,
in particular, logic-based formalizations of interaction aspects.
Indeed, communication has intensively been studied in the
context of formal theories of agency [24], [23] and a great
deal of attention has been devoted to the definition of standard
agent communication languages (ACL), e.g. FIPA [29] and
KQML [28]. Recently, most of the efforts have been devoted
to the definition of formal models of interaction among agents,
that use conversation protocols. The interest for protocols is
due to the fact that they improve the interoperability of the
various components (often separately developed) and allow
the verification of compliance to the desired standards.

The basic idea is to consider a service as a software
agent and the problem of composing a set of web services
as the problem of making a set of software agents interact
and cooperate within a multiagent system (or MAS). This
interpretation is, actually, quite natural, and shared in proposals
that are closer to the agent research community and more
properly set in the Semantic Web research field [18], [41].
Among the other proposals, let us recall the OWL-S [37]
(formerly DAML-S) experience. In [18] the goal of providing
greater expressiveness to service description in a way that
can be reasoned about has been pursued by exploiting agent
technologies based on the action metaphor. In particular, at the
level of abstraction of the process model, a service is described
as atomic, simple or composite in a way inspired by the agent
language GOLOG and its extensions [35], [30], [36]; therefore
reasoning techniques supported by the language are used to
produce composite and customized services.

On this line, we have studied the possible benefits provided
by a declarative description of their communicative behavior,
in terms of personalization of the service selection and com-
position. Indeed we claim that a better personalization can
be achieved by focussing on the abstraction of web services
as entities, that communicate by following predefined, public
and sharable interaction protocols and by allowing agents
to reason about high level descriptions of the interaction
protocols followed by web services. We model the interaction
protocols provided by web services by a set of logic clauses,
thus at high (not at network) level. The language we have used
for describing conversation protocols, is based on an extension
of the agent programming language DyLOG [13], [7].

Having a logic specification of the protocol, it is possible
to reason about the effects of engaging specific conversations.
In particular, we propose to use techniques for reasoning
about actions for performing the automatic selection and
composition of web services, in a way that is customized w.r.t.

the users’s request. Communication can, in fact, be considered
as the behavior resulting from the application of a special
kind of actions: speech acts. The reasoning problem that this
proposal faces can intuitively be described as looking for a
an answer to the question “Is it possible to make a deal with
this service respecting the user’s goals?”. Given a logic-based
representation of the service policies and a representation of
the customer’s needs as abstract goals, expressed by a logic
formula, logic programming reasoning techniques are used for
understanding if the constraints of the customer fit in with the
policy of the service.

Our proposal can be considered as an approach based on
the process ontology, a white box approach in which part
of the behavior of the services is available for a rational
inspection. A description of the communicative behavior by
policies is definitely richer than the list of input and output,
precondition and effect properties usually taken into account
for the matchmaking. Actually, the approach can be considered
as a second step in the matchmaking process, which narrows a
set of already selected services and performs a customization
of the interaction with them.

Moreover the idea of focussing on abstract descriptions
of the communicative behavior is, actually, a novelty also
with respect to other proposals that are set in the Semantic
Web research field. The deductive process on communication
policies can exploit more semantic information: in fact, it does
not only take into account the pre- and post-conditions, as
in OWL-S proposal, it also takes into account the complex
communicative behavior of the service.

IV. WEB SERVICE INTEROPERABILITY

According to Agent-Oriented Software Engineering [33],
a distinction is made between the global and the individual
points of view of interaction. The global viewpoint is captured
by an abstract protocol, expressed by formalisms like AUML,
automata or Petri Nets. The local viewpoint, instead, regards
one of the agents and is captured by its policy; being part of the
agent’s implementation, the policy is usually written in some
executable language. Having these two levels of description it
is possible to decide whether an agent can take a role in an
interaction. In fact, this problem can be read as the problem of
proving if the agent’s policy conforms to the abstract protocol
specification.

A similar need of distinguishing a global and a local view of
the interaction is recently emerging also in the area of Service
Oriented Architectures. In this case a distinction is made
between the choreography of a set of services, i.e. a global
specification of the way in which they should interact, and
the concept of behavioral interface, seen as the specification
of the interaction from the point of view of the individ-
ual service. The recent W3C proposal of the choreography
language WS-CDL [45], well-characterized and distinguished
from languages for business process representation, like BPEL,
is emblematic.

Taking this perspective, choreographies and agent commu-
nication protocols undoubtedly share a common purpose. In

WOA 2005 179



fact, they both aim at expressing global interaction protocols,
i.e. rules that define the global behavior of a system of
cooperating parties. The respect of these rules guarantees the
interoperability of the parties (i.e. the capability of actually
producing an interaction), and that the interactions will satisfy
given requirements.

In this context, one problem that becomes crucial is the
development of formal methods for verifying if the behavior
of a service respects a choreography. The applications would
be various. A choreography could be used at design time
(a priori) for verifying if the internal processes of a service
enable it to participate appropriately in the interaction. At run-
time, choreographies could be used to verify if everything
is proceeding according to the agreements. A choreography
could also be used unilaterally to detect exceptions (e.g. a
message was expected but not received) or help a participant
in sending messages in the right order and at the right time.

In the last years the agent community already started to face
the two above mentioned kinds of conformance w.r.t. MASs
[31] (e.g. see [25], [26], [11], [10] for a priori conformance,
and [2] for run-time conformance). In the web service commu-
nity the problem of conformance is arising only recently [21]
because so far the focus has been posed on the specification of
single services and on standards for their remote invocation.
The new interest is emerging due to the growing need of
making services, that are heterogeneous (in kind of platform
or in language implementation), to interoperate. Therefore,
there is a need of giving more abstract representations of the
interactions that allow to perform reasoning in order to select
and compose services disregarding the specific implementation
details. Given our experience in the area of MASs, where the
heterogeneity of the components is a fundamental characteris-
tic, we agree with the observation by van der Aalst [43] that
there is a need for a more declarative representation of the
behaviour of services.

In this line, the work in [11], [10] about conformance of
agent implementations w.r.t. protocol specifications has been
adapted to the case of web services in [12]. In particular, in
[12] we focus on testing a priori conformance and develop
a framework based on the use of formal languages. In this
framework a global interaction protocol (a choreography), is
represented as a finite state automaton, whose alphabet is
the set of messages exchanged among services. It specifies
permitted conversations. Atomic services, that have to be
composed according to the choreography, are described as
finite state automata as well. Given such a representation we
capture a concept of conformance that answers positively to
all these questions: is it possible to verify that a service,
playing a role in a given global protocol, produces at least
those conversations which guarantee interoperability with
other conformant service? Will such a service always follow
one of these conversations when interacting with the other
parties in the context of the protocol? Will it always be able to
conclude the legal conversations it is involved in? Technically,
the conformance test is based on the acceptance of both the
service behavior and the global protocol by a special finite

state automaton. Briefly, at every point of a conversation, we
expect that a conformant policy never utters speech acts that
are not expected, according to the protocol, and we also expect
it to be able to handle any message that can possibly be
received, once again according to the protocol. However, the
policy is not obliged to foresee (at every point of conversation)
an outgoing message for every alternative included in the
protocol (but it must foresee at least one of them).

The interesting characteristic of this test is that it guarantees
the interoperability of services that are proved conformant
individually and independently from one another. By inter-
operability we mean the capability of an agent of actually
producing a conversation when interacting with another. The
conformance test has been proved decidable when the lan-
guages used to represent all the possible conversations w.r.t.
the policy and w.r.t. the protocol are regular.

The application of our approach is particularly easy in
case a logic-based declarative language is used to implement
the policies. In logic languages indeed policies are usually
expressed by Prolog-like rules, which can be easily converted
in a formal language representation. In [10] we show this by
means of a concrete example where the language DyLOG
[13], based on computational logic, is used for implementing
the agents’ policies. On the side of the protocol specification
languages, currently there is a great interest in using informal,
graphical languages (e.g. UML-based) for specifying protocols
and in the translation of such languages in formal languages
[22], [27]. By this translation it is, in fact, possible to prove
properties that the original representation does not allow. In
this context, in [11] we have shown an easy algorithm for
translating AUML sequence diagrams to finite state automata
thus enabling the verification of conformance. Of course,
having a declarative representation of the choreographies as
well, would help the proof of these properties in the context
of the web services.

V. WEB SERVICE PROCESS LANGUAGES FOR BDI-STYLE

AGENTS

The adoption of process languages for (semantic) WSs as
a means for specifying the behaviour of agents and MASs is
envisaged by a growing number of researchers working in the
MAS community. For example, in [20] P. Buhler and J. M.
Vidal discuss a technique for providing agent software with
dynamically configured capabilities described with DAML-S,
that can represent atomic or orchestrated WSs. In [19], the
same authors advance the idea that BPEL can be used as a
specification language for expressing the initial social order of
a MAS, which can then intelligently adapt to changing envi-
ronmental conditions. K. Sycara, M. Paolucci, J. Soudry, and
N. Srinivasan suggest to extend the OWL-S Model Processing
Language by adding to it a new statement called exec that
takes a process model as input and executes it in order to
support a broker agent in both discovery and mediation [42].
More recently, C. Walton [44] proposes to decompose agents
into a stub that executes Agent Interaction Protocols and is
responsible for communication between agents, and a body

WOA 2005 180



which encapsulates the reasoning processes, and is encoded
as a set of decision procedures. Both the stub and the body
are implemented as WSs.

Our approach to the specification of the agents’ behavioural
knowledge by means of process languages for WSs is driven
by our previuos research on cooperative BDI agents, and thus
differs from all the existing proposals discussed so far. In
[3], we discuss the idea that BDI-style agents [38] can be
extended with a built-in mechanism for retrieving plans from
cooperative agents (thus becoming “CooBDI” agents), for
example when no local plans suitable for achieving a certain
desire are available. This feature turns out to be useful in many
application fields such as: Personal Digital Assistants (PDAs),
whose limited physical resources make dynamic loading and
linking of code necessary; Self-repairing agents, namely agents
situated in a dynamically changing software environment and
able to identify the portions of their code that should be
updated to ensure their correct functioning in the evolving
environment; Digital butlers, i.e. agents that assist a human
user in some task such as managing her/his agenda, filtering
incoming e-mail, retrieving interesting information from the
web; digital butlers adapt their behaviour to the user’s needs
by cooperating both with more experienced digital butlers, and
with the assisted user.

We have implemented the ideas behind the CooBDI theory
by means of WS technologies, obtaining what we named
“CooWS” agents [17]. A CooWS agent adopts the following
metaphor inspired by CooBDI.

• Beliefs. The variables local to the BPEL processes that
constitute the body of the agent’s plans can be considered
as a metaphor for the agent’s beliefs local to that plan,
that are not explicitly represented.

• Desires. Desires may be either messages structured ac-
cording to the FIPA ACL standard (http://www.
fipa.org/), or unstructured Java strings.

• Actions. There are two kinds of actions: those that may
appear inside the BPEL specification of the agent’s plan
body (that, in turn, may be delivery of ordinary events;
achievement of new desires; and invocation of existing
WSs by means of the BPEL invoke statement), and
those that must be executed in case of success or failure
of the achievement of a desire. Cooperative requests for
plans are managed transparently to the agent, and do not
belong to the set of actions that can be programmed by
the user.

• Plans. Plans are defined by a unique plan identifier, a
trigger (the desire for which the plan has been defined);
a body (a BPEL process); and an access specifier (which
may assume one of the three values OnlyTrusted(Set) –
the plan may be shared only with the agents in the trusted
agents set –, Private – the plan is private to the agent –,
and Public – the plan may be shared with any agent).

• Intentions. An intention contains a stack of desires,
a boolean attribute defining the intention’s state (either
active or suspended), and the success and failure actions.
The set of plans currently available to the agent for man-

aging a given desire, is associated with the corresponding
desire on the stack. The set of these “relevant” plans
is generated by exploiting the cooperation mechanism
(transparent to the user), thus retrieving both local and
external plans useful for achieving the desire.

• Events. There are three kinds of events: cooperation, or-
dinary, and achieve events. A cooperation event is either a
request, characterised by the desire for which the request
has been issued, or a provide event, characterised by the
set of plans that are relevant for the desire appearing in
the corresponding request. Ordinary events consist of the
reception of messages from other agents, while achieve
events implement the plan nesting mechanism.

The implementation of the CooWS platform, downloadable
from the web site http://coows.altervista.org,
relies entirely on opensource tools that include ActiveBPEL,
Apache Tomcat and Axis, jUDDI, UDDI4J, and MySQL.
In order to validate the feasibility of our approach, we are
currently working on the implementation of digital butlers that
query Google (which can be accessed as a web service) to
arrange travels and to organise meetings for their principals.
The plans available to the digital butlers do not cover all
the requests that may arrive from their principals, and the
lack of plans for coping with an incoming request fires the
collaborative exchange of plans.

In the future, we are willing to explore: 1) the ability
to integrate an ontology into the system, so that matching
between desires and triggers of plans can become more
sophisticated than a simple comparison of strings; 2) the ability
to dynamically update the set of trusted partners following
reputation mechanisms such those described in [40].

VI. INTEGRATED ENVIRONMENTS FOR AGENT-ORIENTED

SOFTWARE ENGINEERING

The correct and efficient engineering of heterogeneous,
distributed, open, and dynamic applications is one of the
technological challenges faced by Agent-Oriented Software
Engineering (AOSE). The lack of mature methodologies, tools,
and environments for agent-based system development limits
the effectiveness and impact of AOSE [1].

MAS development requires engineering support for a di-
verse range of non-functional properties, such as understand-
ability of the MAS at various conceptual levels, integrability
of heterogeneous agent architectures, usability, re-usability,
and testability. Creating one monolithic AOSE approach to
support all these properties is not feasible. Rather, we expect
different approaches to be suitable for modelling, verifying,
or implementing various properties. By providing the MAS
developer with an integrated set of languages and tools, and
allowing for the choice of the most suitable language/tool to
model, verify, or implement each property, we could make a
step towards a modular approach to AOSE [34].

DCaseLP [4], [32] provides a prototyping environment
where agents specified and implemented in a given set of
languages can be seamlessly integrated. It also provides an
AOSE methodology to guide the developer during the analysis

WOA 2005 181



of the MAS requirements, its design, and the development of
a working MAS prototype.

DCaseLP supports UML and AUML (http://www.
auml.org/) for the specification of the general structure
of the MAS, and Jess (http://herzberg.ca.sandia.
gov/jess/), Java and tuProlog (http://lia.deis.
unibo.it/research/tuprolog/) for the implementa-
tion of the agents.

As discussed in [4], DCaseLP adopts an existing multi-view,
use-case driven and UML-based method in the phase of re-
quirements analysis. Once the requirements of the application
have been clearly identified, the developer can use UML and/or
AUML to describe the interaction protocols followed by the
agents, the general MAS architecture and the agent types and
instances. Moreover, the developer can automatically translate
the UML/AUML diagrams, describing the agents in the MAS,
into Jess rule-based code. The Jess code obtained from the
translation of AUML diagrams must be manually completed
by the developer with the behavioural knowledge which was
not explicitly provided at the specification level. The developer
does not need to have a deep insight into rule-based languages
in order to complete the Jess code, since he/she is guided by
comments included in the automatically generated code.

The agents obtained by means of the manual completion
of the Jess code are integrated into the JADE (Java Agent
Development Framework, (http://jade.tilab.com/))
middleware. By integrating Jess into JADE, we were able
to easily monitor and debug the execution of Jess agents
thanks to the monitoring facilities that JADE provides. A
recent extension of DCaseLP, discussed in [32], has been the
integration of a Prolog implementation: tuProlog. The choice
of tuProlog was due to two of its features:

1) it is implemented in Java, which makes its integration
into JADE easier, and

2) it is very light, which ensures a certain level of efficiency
to the prototype.

By extending DCaseLP with tuProlog we have obtained the
possibility to execute agents, whose behavior is completely
described by a Prolog-like theory, in the JADE platform.
For this purpose, we have developed a library of predicates
that allow agents specified in tuProlog to access the com-
munication primitives provided by JADE: asynchronous send,
asynchronous receive, and blocking receive (with and without
timeout). Finally, a methodological integration of DyLOG into
DCaseLP has been proposed in [5]. So far, the integration of
DyLOG into DCaseLP is only “methodological” in the sense
that it extends the set of languages supported by DCaseLP
during the MAS engineering process and augments the ver-
ification capabilities of DCaseLP, without requiring any real
integration of the DyLOG working interpreter into DCaseLP.
Nevertheless, DyLOG can also be used to directly specify
agents and execute them inside the DCaseLP environment, in
order to exploit the distribution, concurrency, monitoring and
debugging facilities that DCaseLP offers.

We have already tested – on a toy application – the ability
of Jade, Jess and tuProlog agents to be integrated into the

same MAS and to communicate with each other. Currently,
we are developing a much more sophisticated application in
the electronic auctions field, whose basic building block are
described in [39].

VII. CONCLUSIONS

Mainstream research in Web Services (WS) is looking
at two main aspects: first, formally describing interactions
among services (possibly over long periods of time and having
multiple real-world effects, including legally binding actions);
second, finding and combining services (e.g., by extending
the simple catalogue contained in UDDI repositories with
semantically rich descriptions and using the latter for auto-
mated composition via planning and for formal verification).
As observed in AgentLink III, 2004, and by M. N. Huhns,
2002, much work made in the intelligent agents area can be
applied to these issues.

One of the problems that we have studied is the verification
of the a priori conformance of the communication policy of
an agent (or web service) w.r.t. a general interaction protocol
specification, that rules a system of cooperating parties. The
interesting characteristic of the test that we have proposed
is that it guarantees the interoperability of services that are
proved conformant individually and independently from one
another. It emerged that the application of our approach is
particularly easy in case a logic-based declarative language is
used to implement the policies.

For what concerns the specification languages, the mod-
elling languages commonly used in the “requirements specifi-
cation” and “software design” phases proposed in the AOSE
community, like AUML, are not declarative and, as such,
they do not provide any automatic proof mechanism. In this
context it is interesting to study translations between modelling
languages and languages with a formalized semantics to enable
the use of the automatic proof mechanisms associated to them.
For instance in [10] we have proposed the use of finite state
automata as formal representation of protocols which supports
the proof of conformance and an algorithm for translating a
subset of AUML into finite state automata has been proposed
in [11]. However this is just a first step and more research
should be devoted to the issue of the transformation from
semi-formal to formal specification languages.

We have studied how the above approach applies to some
concrete domain such as web services and e-learning. In
particular web services are an example of a highly dynamic
application domain where a challenging problem that we have
studied is the development of formal methods for verifying if
the behavior of a single service respects a choreography. More
specifically the problem consists in deciding if the internal
processes of a service enable it to participate appropriately in
the interaction encoded by a choreography. Another related
problem that it would be interesting to address is the use
of choreographies at run-time to verify that everything is
proceeding according to the agreements. In this context a
choreography could also be used unilaterally to detect ex-
ceptions (e.g. a message was expected but not received) or

WOA 2005 182



help a participant in sending messages in the right order and
at the right time. Also in this case there are logic techniques
developed in the agent community that can be adapted to tackle
the problem in the web service domain [2].

REFERENCES

[1] AgentLink III, “Agent technology roadmap: Overview and consultation
report,” 2004.

[2] M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni, “Spec-
ification and verification of agent interactions using social integrity
constraints,” in Proc. of the Workshop on Logic and Communication
in Multi-Agent Systems, LCMAS 2003, ser. ENTCS, W. van der Hoek,
A. Lomuscio, E. de Vink, and M. Wooldridge, Eds., vol. 85(2). Eind-
hoven, the Netherlands: Elsevier, 2003.

[3] D. Ancona and V. Mascardi, “Coo-BDI: Extending the BDI model with
cooperativity,” in Post-proc. of DALT’03, 2004, pp. 109–134.

[4] E. Astesiano, M. Martelli, V. Mascardi, and G. Reggio, “From Re-
quirement Specification to Prototype Execution: a Combination of a
Multiview Use-Case Driven Method and Agent-Oriented Techniques,”
in Proc. of SEKE’03, 2003, pp. 578–585.

[5] M. Baldoni, C. Baroglio, I. Gungui, A. Martelli, M. Martelli, V. Mas-
cardi, V. Patti, and C. Schifanella, “Reasoning about agents’ interaction
protocols inside DCaseLP,” in Proc. of DALT 2004, 2004, pp. 112–131.

[6] M. Baldoni, C. Baroglio, and N. Henze, “Personalization for the Seman-
tic Web,” in Reasoning Web, ser. LNCS Tutorial, vol. 3564. Springer,
2005, pp. 173–212.

[7] M. Baldoni, C. Baroglio, A. Martelli, and V. Patti, “Reasoning about self
and others: communicating agents in a modal action logic,” in Proc. of
ICTCS’2003, ser. LNCS, vol. 2841. Springer, 2003, pp. 228–241.

[8] ——, “Reasoning about interaction protocols for web service compo-
sition,” M. Bravetti and G. Zavattaro, Eds. Elsevier Science Direct,
2004, pp. 21–36, vol. 105 of Electronic Notes in Theoretical Computer
Science.

[9] ——, “Reasoning about interaction protocols for customizing web
service selection and composition,” The Journal of Logic and Algebraic
Programming, 2005, accepted for publication after major revision.

[10] ——, “Verification of protocol conformance and agent interoperability,”
in Pre-proc. of Sixth International Workshop on Computational Logic
in Multi-Agent Systems, CLIMA VI, 2005, pp. 12–27.

[11] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Schifanella, “Ver-
ifying protocol conformance for logic-based communicating agents,”
in Proc. of 5th Int. Workshop on Computational Logic in Multi-Agent
Systems, CLIMA V, ser. LNCS, no. 3487, 2005, pp. 192–212.

[12] ——, “Verifying the conformance of web services to global interaction
protocols: a first step,” in Proc. of 2nd Int. Workshop on Web Services
and Formal Methods, WS-FM 2005, ser. LNCS, no. 3670, 2005, pp.
257–271.

[13] M. Baldoni, L. Giordano, A. Martelli, and V. Patti, “Programming
Rational Agents in a Modal Action Logic,” Annals of Mathematics and
Artificial Intelligence, Special issue on Logic-Based Agent Implementa-
tion, vol. 41, no. 2–4, pp. 207–257, 2004.

[14] M. Baldoni, C. Baroglio, V. Patti, and L. Torasso, “Reasoning about
learning object metadata for adapting SCORM courseware,” in Int.
Workshop on Engineering the Adaptive Web, EAW’04: Methods and
Technologies for Personalization and Adaptation in the Semantic Web,
Part I, L. Aroyo and C. Tasso, Eds., Eindhoven, The Netherlands, August
2004, pp. 4–13.

[15] A. Barros, M. Dumas, and P. Oaks, “A critical overview of the web
services choreography description language(ws-cdl),” Business Process
Trends, 2005, http://www.bptrends.com.

[16] A. Blum and M. Furst, “Fast planning through planning graph analysis,”
Artificial Intelligence, vol. 90, pp. 281–300, 1997.

[17] L. Bozzo, V. Mascardi, D. Ancona, and P. Busetta, “CooWS: Adaptive
BDI agents meet service-oriented computing,” in Proc. of the Int’l
Conference on WWW/Internet, 2005.

[18] J. Bryson, D. Martin, S. McIlraith, and L. A. Stein, “Agent-based
composite services in DAML-S: The behavior-oriented design of an
intelligent semantic web,” 2002. [Online]. Available: citeseer.nj.nec.
com/bryson02agentbased.html

[19] P. Buhler and J. M. Vidal, “Adaptive workflow = web services + agents,”
in Proc. of the Int’l Conference on Web Services, 2003, pp. 131–137.

[20] ——, “Semantic web services as agent behaviors,” in Proc. of Agentci-
ties: Challenges in Open Agent Environments, 2003.

[21] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro, “Chore-
ography and Orchestration: a synergic approach for system design,” in
Proc. the 3rd Int. Conf. on Service Oriented Computing, 2005.

[22] L. Cabac and D. Moldt, “Formal semantics for auml agent interaction
protocol diagrams,” in Proc. of AOSE 2004, 2004, pp. 47–61.

[23] F. Dignum, Ed., Advances in agent communication languages, ser.
LNAI, vol. 2922. Springer-Verlag, 2004.

[24] F. Dignum and M. Greaves, “Issues in agent communication,” in Issues
in Agent Communication, ser. LNCS, vol. 1916. Springer, 2000, pp.
1–16.

[25] U. Endriss, N. Maudet, F. Sadri, and F. Toni, “Protocol conformance for
logic-based agents,” in Proc. of the 18th International Joint Conference
on Artificial Intelligence (IJCAI-2003), G. Gottlob and T. Walsh, Eds.
Morgan Kaufmann Publishers, August 2003, pp. 679–684.

[26] ——, “Logic-based agent communication protocols,” in Advances in
agent communication languages, ser. LNAI, vol. 2922. Springer-Verlag,
2004, pp. 91–107, invited contribution.

[27] R. Eshuis and R. Wieringa, “Tool support for verifying UML activity
diagrams,” IEEE Trans. on Software Eng., vol. 7, no. 30, 2004.

[28] T. Finin, Y. Labrou, and J. Mayfield, “KQML as an Agent Communi-
cation Language,” in Software Agents, J. Bradshaw, Ed. MIT Press,
1995.

[29] FIPA, “Communicative act library specification,” FIPA (Foundation for
Intelligent Physical Agents), Tech. Rep., 2002.

[30] G. D. Giacomo, Y. Lesperance, and H. Levesque, “Congolog, a concur-
rent programming language based on the situation calculus,” Artificial
Intelligence, vol. 121, pp. 109–169, 2000.

[31] F. Guerin and J. Pitt, “Verification and Compliance Testing,” in Com-
munication in Multiagent Systems, ser. LNAI, M. Huget, Ed., vol. 2650.
Springer, 2003, pp. 98–112.

[32] I. Gungui and V. Mascardi, “Integrating tuProlog into DCaseLP to engi-
neer heterogeneous agent systems,” in Proc. of CILC 2004. Available at
http://www.disi.unige.it/person/MascardiV/Download/CILC04a.pdf.gz.

[33] M. P. Huget and J. Koning, “Interaction Protocol Engineering,” in
Communication in Multiagent Systems, ser. LNAI, H. Huget, Ed., vol.
2650. Springer, 2003, pp. 179–193.

[34] T. Juan, M. Martelli, V. Mascardi, and L. Sterling, “Customizing AOSE
methodologies by reusing AOSE features,” in Proc. of AAMAS’03, 2003,
pp. 113–120.

[35] H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B. Scherl,
“GOLOG: A Logic Programming Language for Dynamic Domains,” J.
of Logic Programming, vol. 31, pp. 59–83, 1997.

[36] S. McIlraith and T. Son, “Adapting Golog for Programmin the Semantic
Web,” in 5th Int. Symp. on Logical Formalization of Commonsense
Reasoning, 2001, pp. 195–202.

[37] OWL-S, “http://www.daml.org/services/owl-s/1.1/,” 2004.
[38] A. S. Rao and M. P. Georgeff, “Modeling rational agents within a BDI–

architecture,” in Proc. of KR’91, 1991, pp. 473–484.
[39] D. Roggero, F. Patrone, and V. Mascardi, “Designing and implementing

electronic auctions in a multiagent system environment,” 2005, dISI
Technical Report.

[40] J. Sabater, “Trust and reputation for agent societies,” IIIA Monographs,
vol. 20, 2003.

[41] K. Sycara, “Brokering and matchmaking for coordination of agent
societies: A survey,” in Coordination of Internet Agents, A. O. et al.,
Ed. Springer, 2001.

[42] K. Sycara, M. Paolucci, J. Soudry, and N. Srinivasan, “Dynamic dis-
covery and coordination of agent-based semantic web services agents,”
IEEE Internet Computing, vol. 8, no. 3, pp. 66–73, 2004.

[43] W. M. P. van der Aalst, M. Dumas, A. H. M. ter Hofstede, N. Russell,
H. M. W. Verbeek, and P. Wohed, “Life after BPEL?” in Proc. of WS-
FM’05, ser. LNCS, vol. 3670. Springer, 2005, pp. 35–50, invited
speaker.

[44] C. Walton, “Uniting agents and web services,” AgentLink News, vol. 18,
pp. 26–28, 2005.

[45] WS-CDL, “http://www.w3.org/tr/2004/wd-ws-cdl-10-20041217/,” 2004.

WOA 2005 183


