
A temporal approach to the specification and
verification of Interaction Protocols

L. Giordano ∗, A. Martelli†, P. Terenziani∗, A. Bottrighi∗ and S. Montani∗
∗ Dipartimento di Informatica, Università del Piemonte Orientale, Alessandria, Italy

† Dipartimento di Informatica, Università di Torino, Torino, Italy

Abstract— The paper presents a proposal for the specification
and verification of systems of communicating agents in a tem-
poral logic. The proposal is based on a social approach to agent
communication, where communication is described in terms of
changes to the social state, and interaction protocols are defined
by a set of temporal constraints, which specify the effects and
preconditions of the communicative actions on the social state.
The paper addresses the problem of combining protocols to define
new more specialized protocols and exploits this idea in the
specification of clinical guidelines.

I. INTRODUCTION

Agent technology has been rapidly developing in the last
decade to answer the needs for new conceptual tools for
modelling and developing complex software systems and it
has given rise to a large amount of literature [6]. Autonomous
agents can communicate, cooperate and negotiate using com-
monly agreed communication languages (ACLs) and proto-
cols. The issue of interoperability has lead to the development
of standardized agent communication languages, including
KQML [21] and FIPA-ACL [4]. One of the central issues in the
field concerns the specification of conversation policies, which
govern the communication between software agents in an
agent communication language (ACL). Conversation policies
(or interaction protocols) define stereotypical interactions in
which ACL messages are used to achieve communicative
goals.

The specification of interaction protocols has been tradi-
tionally done by making use of finite state machines, but the
transition net approach has been soon recognized to be too
rigid to allow for the flexibility needed in agent communi-
cation [24], [16]. For these reasons, several proposals have
been put forward to address the problem of specifying (and
verifying) agent protocols in a flexible way. One of the most
promising approaches to agent communication, first proposed
by Singh [28], is the social approach [1], [8], [18], [24]. In
the social approach, communicative actions affect the “social
state” of the system, rather than the internal (mental) states
of the agents. The social state records social facts, like the
permissions and the commitments of the agents.

In this paper we present a temporal approach to the specifi-
cation and verification of interaction protocols among agents.
Temporal logics are extensively used in the area of reasoning
about actions and planning [2], [14], [11], [26], [3], and, in
particular, they have been used in the specification and in the
verification of systems of communicating agents. In [34], [22]

agents are written in MABLE, an imperative programming lan-
guage, and the formal claims about the system are expressed
using a quantified linear time temporal BDI logic and can
be automatically verified by making use of the SPIN model
checker. Guerin in [17] defines an agent communication frame-
work which gives agent communication a grounded declarative
semantics. In such a framework, temporal logic is used for
formalizing temporal properties of the system. Our theory
for reasoning about communicative actions is based on the
Dynamic Linear Time Temporal Logic (DLTL) [19], which
extends LTL by strengthening the until operator by indexing
it with the regular programs of dynamic logic. As a difference
with [34] we adopt a social approach to agent communication.
The dynamics of the system emerges from the interactions of
the agents, which must respect permissions and commitments
(if they are compliant with the protocol). The social approach
allows a high level specification of the protocol, and it is well
suited for dealing with “open” multi-agent systems, where the
history of communications is observable, but the internal states
of the single agents may not be observable.

The paper provides an overview of the approach developed
in [12], [13], and describes the different kinds of verification
problems which can be addressed, which can be formalized
either as validity or as satisfiability problems in DLTL. These
verification tasks can be automated by making use of Büchi
automata. In particular, we can make use of the tableau-based
algorithm presented in [10] for constructing a Büchi automaton
from a DLTL formula. The construction of the automata can
be done on-the-fly, while checking for the emptiness of the
language accepted by the automaton. As for LTL, the number
of states of the automata is, in the worst case, exponential in
the size of the input formula. We discuss the applicability of
this approach to the specification of clinical guidelines.

II. DYNAMIC LINEAR TIME TEMPORAL LOGIC

In this section we shortly define the syntax and semantics
of DLTL as introduced in [19]. In such a linear time temporal
logic the next state modality is indexed by actions. Moreover,
(and this is the extension to LTL) the until operator is indexed
by programs in Propositional Dynamic Logic (PDL).

Let Σ be a finite non-empty alphabet. The members of Σ are
actions. Let Σ∗ and Σω be the set of finite and infinite words
on Σ, where ω = {0, 1, 2, . . .} and let ε denote the empty
word. Let Σ∞ =Σ∗ ∪Σω. We denote by σ, σ′ the words over
Σω and by τ, τ ′ the words over Σ∗. Moreover, we denote by

WOA 2005 171



≤ the usual prefix ordering over Σ∗ and, for u ∈ Σ∞, we
denote by prf(u) the set of finite prefixes of u.

We define the set of programs (regular expressions) Prg(Σ)
generated by Σ as follows:

Prg(Σ) ::= a | π1 + π2 | π1;π2 | π∗

where a ∈ Σ and π1, π2, π range over Prg(Σ). A set of finite
words is associated with each program by the mapping [[]] :
Prg(Σ) → 2Σ∗ , which is defined as usual.

Let P = {p1, p2, . . .} be a countable set of atomic proposi-
tions. The set of formulas of DLTL(Σ) is defined as follows:

DLTL(Σ) ::= p | ¬α | α ∨ β | αUπβ

where p ∈ P and α, β range over DLTL(Σ) and π ranges over
Prg(Σ).

A model of DLTL(Σ) is a pair M = (σ, V ) where σ ∈ Σω

and V : prf(σ) → 2P is a valuation function. Given a model
M = (σ, V ), a finite word τ ∈ prf(σ) and a formula α, the
satisfiability of a formula α at τ in M , written M, τ |= α, is
defined as follows:
• M, τ |= p iff p ∈ V (τ);
• M, τ |= ¬α iff M, τ 6|= α;
• M, τ |= α ∨ β iff M, τ |= α or M, τ |= β;
• M, τ |= αUπβ iff there exists τ ′ ∈ [[π]] such that ττ ′ ∈

prf(σ) and M, ττ ′ |= β. Moreover, for every τ ′′ such
that ε ≤ τ ′′ < τ ′1, M, ττ ′′ |= α.

A formula α is satisfiable iff there is a model M = (σ, V )
and a finite word τ ∈ prf(σ) such that M, τ |= α.

The formula αUπβ is true at τ if “α until β” is true on a
finite stretch of behavior which is in the linear time behavior
of the program π.

The derived modalities 〈π〉 and [π] can be defined as
follows: 〈π〉α ≡ >Uπα and [π]α ≡ ¬〈π〉¬α.

Furthermore, if we let Σ = {a1, . . . , an}, the U , © (next),
3 and 2 operators of LTL can be defined as follows: ©α ≡∨

a∈Σ〈a〉α, αUβ ≡ αUΣ∗β, 3α ≡ >Uα, 2α ≡ ¬3¬α,
where, in UΣ∗ , Σ is taken to be a shorthand for the program
a1 + . . . + an. Hence both LTL(Σ) and PDL are fragments
of DLTL(Σ). As shown in [19], DLTL(Σ) is strictly more
expressive than LTL(Σ). In fact, DLTL has the full expressive
power of the monadic second order theory of ω-sequences.

III. PROTOCOL SPECIFICATION

In the social approach an interaction protocol is specified by
describing the effects of communicative actions on the social
state, and by specifying the permissions and the commitments
that arise as a result of the current conversation state.

Let us shortly recall the action theory developed in [11] that
we use for the specification of interaction protocols.

Let P be a set of atomic propositions, the fluents. A fluent
literal l is a fluent name f or its negation ¬f . Given a fluent
literal l, such that l = f or l = ¬f , we define |l| = f . We
will denote by Lit the set of all fluent literals.

1We define τ ≤ τ ′ iff ∃τ ′′ such that ττ ′′ = τ ′. Moreover, τ < τ ′ iff
τ ≤ τ ′ and τ 6= τ ′.

A domain description D is defined as a tuple (Π, C), where
Π is a set of action laws and causal laws, and C is a set of
constraints.

Action laws in Π have the form: 2(α → [a]β), with a ∈ Σ
and α, β arbitrary formulas, meaning that executing action a
in a state where precondition α holds causes the effect β to
hold.

Causal laws in Π have the form: 2((α ∧ ©β) → ©γ),
meaning that if α holds in a state and β holds in the next state,
then γ also holds in the next state. Such laws are intended to
expresses “causal” dependencies among fluents.

Constraints in C are arbitrary temporal formulas of DLTL.
In particular, the set of constraints includes precondition laws
of the form: 2(α → [a]⊥), meaning that the execution of an
action a is not possible if α holds. (i.e. there is no resulting
state following the execution of a if α holds). Observe that,
when there is no precondition law for an action, the action is
executable in all states.

Action laws and causal laws describe the changes to the
state. All other fluents which are not changed by the actions
are assumed to persist unaltered to the next state. To cope with
the frame problem, the laws in Π, describing the (immediate
and ramification) effects of actions, have to be distinguished
from the constraints in C and given a special treatment. In
[11], we defined a completion construction which, given a
domain description, introduces frame axioms in the style of
the successor state axioms introduced by Reiter [27]. The
completion construction is applied only to the action laws and
causal laws in Π and not to the constraints. In the following
we call Comp(Π) the completion of a set of laws Π.

Let us now provide the specification of the Contract Net
protocol [4].

Example 1: The Contract Net protocol begins with an
agent (the manager) broadcasting a task announcement (call
for proposals) to other agents viewed as potential contractors
(the participants). Each participant can reply by sending either
a proposal or a refusal. The manager must send an accept
or reject message to all those who sent a proposal. When a
contractor receives an acceptance it is committed to perform
the task.

Let us consider first the simplest case where we have only
two agents: the manager (M) and the participant (P). The two
agents share all the communicative actions, which are: cfp (the
manager issues a call for proposals for task T), accept and
reject whose sender is the manager, refuse and propose whose
sender is the participant, inform done by which the participant
informs the manager that the task has been executed and
end protocol by which the manager declares the completion
of the protocol.

The social state contains the following domain specific flu-
ents: CN (which is true during the execution of the protocol),
task (whose value is true after the task has been announced),
replied (the participant has replied), proposal (the participant
has sent a proposal), acc rej (the manager has sent an accept
or reject message to the participant) accepted (the manager has
accepted the proposal of participant) and done (the participant

WOA 2005 172



has performed the task). Such fluents describe observable facts
concerning the execution of the protocol.

We also introduce special fluents to represent base-level
commitments of the form C(i, j, α), meaning that agent i is
committed to agent j to bring about α, where α is an arbitrary
formula, or they can be conditional commitments of the form
CC(i, j, β, α) (agent i is committed to agent j to bring about
α, if the condition β is brought about). The two kinds of base-
level and conditional commitments we allow are essentially
those introduced in [35]. For modelling the Contract Net
example we introduce the following commitments

C(P, M, replied) C(M,P, acc rej)
C(i,M, done) C(M, P, task)

and conditional commitments
CC(P, M, task, replied)
CC(M, P, proposal, acc rej)
CC(i,M, accepted, done).

Some reasoning rules have to be defined for cancelling
commitments when they have been fulfilled and for dealing
with conditional commitments. We introduce the following
causal laws:

2(©α →©¬C(i, j, α))
2(©α →©¬CC(i, j, β, α))
2((CC(i, j, β, α) ∧©β) →

©(C(i, j, α) ∧ ¬CC(i, j, β, α)))
A commitment (or a conditional commitment) to bring about
α is cancelled when α holds, and a conditional commitment
CC(i, j, β, α) becomes a base-level commitment C(i, j, α)
when β has been brought about.

Let us now describe the effects of communicative actions
by the following action laws:

2[cfp](task∧CN∧CC(M, P, proposal, acc rej))
2[accept]acc rej
2[reject]acc rej
2[refuse]replied
2[propose](replied ∧ proposal∧

CC(P, M, accepted, done))
2[inform done]done
2[end protocol(CN)]¬CN

The laws for action cfp add to the social state the information
that a call for proposal has been done for the task, and that,
if the manager receives a proposal, it is committed to accept
or reject it.

The permissions to execute communicative actions in each
state are determined by social facts. We represent them by
precondition laws. Preconditions on the execution of action
accept can be expressed as:

2(¬CN ∨ ¬proposal ∨ acc rej → [accept]⊥)
meaning that action accept cannot be executed outside the
protocol, or if a proposal has not been done, or if the manager
has already replied. Similarly we can give the precondition
laws for the other actions:

2(¬CN ∨ task → [cfp]⊥)
2(¬CN ∨ ¬proposal ∨ acc rej → [reject]⊥)

2(¬CN ∨ ¬task ∨ replied → [refuse]⊥)
2(¬CN ∨ ¬task ∨ replied → [propose]⊥)
2(¬CN ∨ ¬accepted ∨ done → [inform done]⊥)
2(¬CN ∨ ¬task → [end protocol(CN)]⊥)

The precondition law for action propose (refuse) says that a
proposal can only be done if a task has already been announced
and the participant has not already replied. The last law says
that the manager cannot issue a new call for proposal if a task
has already been announced.

In the following we will denote Permi (permissions of
agent i) the set of all the precondition laws of the protocol
pertaining to the actions of which agent i is the sender.

Assume now that we want the participant to be committed
to reply to the task announcement. We can express it by adding
the following conditional commitment to the initial state of the
protocol: CC(P, M, task, replied). Furthermore the manager
is committed initially to issue a call for proposal for a task.
We can define the initial state Init of the protocol as follows:

{¬CN,¬task,¬replied,¬proposal,¬done,
CC(P, M, task, replied), C(M, P, task)}

In the following we will be interested in those execution of
the protocol in which all commitments have been fulfilled. We
can express the condition that the commitment C(i, j, α) will
be fulfilled by the following constraint:

2(C(i, j, α) → CN U α)

We will call Comi the set of constraints of this kind for all
commitments of agent i. Comi states that agent i will fulfill
all the commitments of which he is the debtor.

Given the above rules, the domain description D = (Π, C)
of a protocol is defined as follows: Π is the set of the action
and causal laws given above, and C = Init ∧ ∧

i(Permi ∧
Comi) is the set containing the constraints on the initial state,
the permissions Permi and the commitments Comi of all the
agents (the agents P and M, in this example).

Given a domain description D, let the completed domain
description Comp(D) be the set of formulas (Comp(Π) ∧
Init∧∧

i(Permi∧Comi)). The runs of the system according
the protocol are the linear models of Comp(D). Observe that
in these protocol runs all permissions and commitments are
fulfilled. However, if Comj is not included for some agent
j, the runs may contain commitments which have not been
fulfilled by j.

IV. PROTOCOL VERIFICATION

Different kinds of verification problems can be addressed,
given the specification of a protocol by a domain description.

A. Verifying agents compliance at runtime

We are given a history τ = a1, . . . , an of the communicative
actions executed by the agents, and we want to check the com-
pliance of that execution with the protocol. Namely, we want to
verify that the history τ is the prefix of a run of the protocol,
that is, it respects the permissions and commitments of the

WOA 2005 173



protocol. This problem can be formalized as a satisfiability
problem. The formula

(Comp(Π)∧Init∧
∧

i

(Permi∧Comi))∧ < a1; a2; . . . ; an > >

(where i ranges on all the agents involved in the protocol) is
satisfiable if it is possible to find a run of the protocol starting
with the action sequence a1, . . . , an.

B. Verifying protocol properties

Proving that the protocol satisfies a given (temporal) prop-
erty ϕ can be formalized as a validity check. The formula

(Comp(Π) ∧ Init ∧
∧

i

(Permi ∧ Comi)) → ϕ. (1)

is valid if all the runs of the protocol satisfy ϕ. Observe that,
all the agents are assumed to be compliant with the protocol.
As an example of property to be checked, we consider the
property of termination of the protocol. After the manager
has announced a task, the protocol will eventually arrive to
completion. This property can be formalized by the temporal
formula:

ϕ = 2[cfp]3¬CN

meaning that, always, after a call for proposal has been issued
by the manager, the protocol will eventually reach a state in
which the proposition CN is false, i.e. the protocol is finished,
for all possible runs of the protocol.

C. Verifying the compliance of an agent with the protocol at
compile-time

When the program executed by an agent is given (or, at
least, its logical specification is given), we are faced with
the problem of verifying if the agent is compliant with the
protocol, that is, to verify if the agent’s program respects the
protocol. Solving this problem requires: first to provide an
abstract specification of the behavior (program) of the agent;
and, second, to check that all the executions of the agent
program satisfy the specification of the protocol, assuming that
the other agents are compliant with the protocol.

In the general case, addressing this problem requires to
move to the Product Version of DLTL [13]. However, for
protocols involving two agents, where all fluents and all
actions of the social state are shared by both agents, this
verification problems can be represented in DLTL.

In DLTL the behavior of an agent can be specified by
making use of complex actions (regular programs). Consider
for instance the following program πP for the participant:

[¬end?; ((cfp; eval task; (¬ok?; refuse+
ok?; propose))+

reject+
(accept; do task; inform done)+
(end protocol(CN); exit))]∗; end?

The participant cycles and reacts to the messages received
by the manager: for instance, if the manager has issued a
call for proposal, the participant can either refuse or make a

proposal according to his evaluation of the task; if the manager
has accepted the proposal, the participant performs the task;
and so on.

The state of the agent is obtained by adding to the fluents of
the protocol the following local fluents: end, which is initially
false and is made true by action exit, and ok which says if the
agent must make a bid or not. The local actions are eval task,
which evaluates the task and sets the fluent ok to true or false,
do task and exit. Furthermore, end? and ok? are test actions.

The program of the participant can be specified by a
domain description ProgP = (ΠP , CP ), where ΠP is a set of
action laws describing the effects of the private actions of the
participant. For instance, the action exit sets the proposition
endi to true:

2[exit]end

The set of constraints CP contains InitP which provides the
initial values for the local fluents (¬end,¬ok)of the participant
as well as the formula 〈πP 〉> stating that the program of the
participant is executable in the initial state.

To prove that the participant is compliant with the protocol,
i.e. that all executions of program πP satisfy the specification
of the protocol, we cannot consider the program πP alone. In
fact, it is easy to see that the correctness of the behavior of
the participant depends on the behavior of the manager. Since
we don’t know its internal behavior, we will assume that the
manager respects its public behavior, i.e. that it respects its
permissions and commitments in the protocol specification.

The verification that the participant is compliant with the
protocol can be formalized as a validity check. Let D = (Π, C)
be the domain description describing the protocol, as defined
above. The formula

(Comp(Π)∧Init∧PermM∧ComM∧Comp(ΠP )∧CP ) →
(PermP ∧ ComP )

is valid if in all the behaviors of the system, in which
the participant executes its program πP and the manager
(whose internal program is unknown) respects the protocol
specification (in particular, its permissions and commitments),
the permissions and commitment of the participant are also
satisfied.

D. Proofs and model checking in DLTL

The above verification and satisfiability problems can be
solved by extending the standard approach for verification and
model-checking of Linear Time Temporal Logic, based on the
use of Büchi automata. An approach for constructing a Büchi
automaton from a DLTL formula making use of a tableau-
based algorithm has been proposed in [10]. The construction
of the states of the automaton is similar to the standard
construction for LTL [9], but the possibility of indexing
until formulas with regular programs puts stronger constraints
on the fulfillment of until formulas than in LTL, requiring
more complex acceptance conditions. The construction of the
automaton can be done on-the-fly, while checking for the
emptiness of the language accepted by the automaton. As
for LTL, the number of states of the automaton is, in the

WOA 2005 174



worst case, exponential in the size if the input formula, but in
practice it is much smaller.

Standard model checking techniques [5] cannot be im-
mediately applied to our approach, because protocols are
formulated as sets of properties rather than as programs.
Furthermore, in principle, with DLTL we do not need to use
model checking, because programs and domain descriptions
can be represented in the logic itself, as we have shown in the
previous section. However representing everything as a logical
formula can be rather inefficient from a computational point
of view. In particular all formulas of the domain description
are universally quantified, and this means that our algorithm
will have to propagate them from each state to the next one,
and to expand them with the tableau procedure at each step.

Therefore we have adapted model checking to the proof of
the formulas given in the previous section, by deriving the
model from the domain theory in such a way that the model
describes all possible runs allowed by the domain theory.
In particular, we can obtain from the domain description a
function next statea(S), for each action a, for transforming
a state in the next one, and then build the model (an automaton)
by repeatedly applying these functions starting from the initial
state. We can then proceed as usual to prove a property ϕ by
taking the product of the model and of the automaton derived
from ¬ϕ, and by checking for emptiness of the accepted
language.

An alternative way for applying this approach in practice,
is to make use of existing model checking tools. In particular,
by translating DLTL formulas into LTL formulas, it would be
possible to use LTL-based model checkers such as for instance
SPIN [20]. Although in general DLTL is more expressive than
LTL, many protocol properties, such as for instance fulfillment
of commitments, can be easily expressed in LTL.

We have done some experiments with the model checker
SPIN on proving properties of protocols expressed according
to the approach presented in this paper. The model is obtained
as suggested above by formulating the domain description
as a PROMELA program, which describes all possible runs
allowed by the domain theory. Properties and constraints are
expressed as LTL formulas. In the case of verification of
compliance of an agent implementation with the protocol, we
have used different PROMELA processes for representing the
agent and the protocol. The representation of the agent is
derived from its regular program.

V. AN APPLICATION TO CLINICAL GUIDELINES

Clinical guidelines can be roughly defined as frameworks
for specifying the ”best” clinical procedures and for stan-
dardizing them. Clinical guidelines play different roles in the
clinical process: for example, they can be used to support
physicians in the treatment of diseases, or for critiquing,
for evaluation, and for education purposes. Many different
systems and projects have been developed in recent years
in order to realize computer-assisted management of clinical
guidelines (see e.g., [15], [7]). GLARE (Guidelines Acquisi-
tion, Representation and Execution) [29], [31] is one of such

domain-independent systems. GLARE is being developed by
a group of computer scientists from Universita’ del Piemonte
Orientale and Universita’ di Torino, in collaboration with
Azienda Ospedaliera S. Giovanni Battista in Torino, one of
the largest hospitals in Italy. Despite the system is basically a
research product, whose features are continuously refined and
updated, the facilities it embeds have been formally tested or
at least carefully examined by physicians. Some of the peculiar
features of GLARE (with respect to the other computer-
based approaches to clinical guidelines in the literature) are
its decision-making facilities, which also involve advanced
decision theory features [32], and its treatment of temporal
constraints [30]. Despite the fact that several specialized
”reasoning” facilities are provided by GLARE (see, e.g., [30],
[32]), extensive logical reasoning capabilities such as the one
which can be provided by theorem proving and/or model
checking techniques can provide critical advances (see also
[23]). We thus started to analyze (i) how clinical guidelines
(such as the one represented by the GLARE system) can be
modeled in our framework (ii) how the reasoning facilities
provided by the model checker can be exploited within the
clinical application environment.

As regards modeling, clinical guidelines are a hierarchical
description of clinical procedures. At the lower level, they are
basically composed by sequences of elementary actions (corre-
sponding to actions to be executed on the specific patient) and
decision actions needed to choose among alternative paths. All
the elementary actions in a chosen path must be necessarily
executed, unless their preconditions are not satisfied by the
patient’s data. This can be easily modeled by making use
of precondition laws and obligations. Decisions are the core
elements in clinical guidelines and are preceded by a data
acquisition phase, which can be modeled as an interaction
between the physician executing the guideline, the clinical
record containing the patient data and, possibly, laboratories,
which can be modeled as follows. The physician sends a
data request to the database containing clinical records, which
is committed to send back the requested data (if available)
together with a timestamp stating their time of validity. If the
data are not available or not up to date, the physician asks
for them to the proper laboratories and waits for the answers.
When all the up to date data are available, the decision process
can start. In the GLARE approach, decision is modeled as
an interaction between the system and the physician. On the
basis of the decision criteria embodied in the guideline, and
of the patient’s data, the system proposes to the physician the
subset of alternative paths suggested for the given patient. The
physician can commit to one of the suggested alternatives or
even to a non suggested one. In the latter case, however, the
system sends a warning to the physician.

As regards reasoning, model checking can be used in order
to instantiate a guideline on a specific patient, for instance, by
checking, on the basis of the patient data, whether there are ex-
ecutable paths. Analogously, guidelines can be contextualized
to specific hospitals, considering locally available laboratories
and resources. Moreover, model checking capabilities can be

WOA 2005 175



used to look for executable paths which satisfy a given set
of requirements (concerning e.g. costs, execution times, goals
and intention).

VI. CONCLUSIONS

In the paper we have presented an approach to the specifi-
cation and verification of interaction protocols in a multiagent
system that has been developed in the context of the national
project PRIN 2003 “Logic-based development and verification
of multi-agent systems”. We are currently investigating the ap-
plicability of the approach, on the one hand to the specification
and verification of clinical guidelines and, on the other hand,
to the specification and verification of Web Services, with a
particular regard to the problem of service composition.

REFERENCES

[1] M. Alberti, D. Daolio and P. Torroni. Specification and Verification of
Agent Interaction Protocols in a Logic-based System. SAC’04, March
2004.

[2] F. Bacchus and F. Kabanza. Planning for temporally extended goals. in
Annals of Mathematics and AI, 22:5–27, 1998.

[3] D. Calvanese, G. De Giacomo and M.Y.Vardi. Reasoning about Actions
and Planning in LTL Action Theories. In Proc. KR’02, 2002.

[4] FIPA Contract Net Interaction Protocol Specification, 2002. Available
at http://www.fipa.org.

[5] E.M.Clarke, O.Grumberg, and D. Peled, Model Checking, MIT Press,
2000.

[6] F.Dignum and M.Greaves. Issues in Agent Communication: An In-
troduction”. In F.Dignum and M.Greaves (Eds.), Issues in Agent
Communication, LNAI 1916, pp. 1-16, 1999.

[7] Special Issue on Workflow Management and Clinical Guidelines, D.B.
Fridsma (Guest ed.), JAMIA, 22(1), 1-80, (2001).

[8] N. Fornara and M. Colombetti. Defining Interaction Protocols using a
Commitment-based Agent Communication Language. Proc. AAMAS’03,
Melbourne, pp. 520–527, 2003.

[9] R. Gerth, D. Peled, M.Y.Vardi and P. Wolper. Simple On-the-fly
Automatic verification of Linear Temporal Logic. In Proc. 15th Work.
Protocol Specification, Testing and Verification, Warsaw, June 1995,
North Holland.

[10] L. Giordano and A. Martelli. On-the-fly Automata Construction for
Dynamic Linear Time Temporal Logic. TIME 04, June 2004.

[11] L. Giordano, A. Martelli, and C. Schwind. Reasoning About Actions
in Dynamic Linear Time Temporal Logic. In The Logic Journal of the
IGPL, Vol. 9, No. 2, pp. 289-303, March 2001.

[12] L. Giordano, A. Martelli, and C. Schwind. Verifying Communicating
Agents by Model Checking in a Temporal Action Logic. JELIA 2004,
Lisbon, Portugal, September 27-30, 2004, pp. 57-69.

[13] L. Giordano, A. Martelli, and C. Schwind. Specifying and Verifying
Interaction Protocols in a Temporal Action Logic. Journal of Applied
Logic (Special issue on Logic Based Agent Verification), Accepted for
publication, 2005.

[14] F. Giunchiglia and P. Traverso. Planning as Model Checking. In Proc.
The 5th European Conf. in Planning (ECP’99), pp.1–20, Durham (UK),
1999.

[15] C. Gordon and J.P. Christensen, Health Telematics for Clinical Guide-
lines and Protocols. IOS Press, Amsterdam, 1995.

[16] M. Greaves, H. Holmback and J. Bradshaw. What Is a Conversation
Policy?. Issues in Agent Communication,LNCS 1916 Springer, pp. 118-
131, 2000.

[17] F. Guerin. Specifying Agent Communication Languages. PhD Thesis,
Imperial College, London, April 2002.

[18] F. Guerin and J. Pitt. Verification and Compliance Testing. Communi-
cations in Multiagent Systems, Springer LNAI 2650, pp. 98–112, 2003.

[19] J.G. Henriksen and P.S. Thiagarajan. Dynamic Linear Time Temporal
Logic. in Annals of Pure and Applied logic, vol.96, n.1-3, pp.187–207,
1999

[20] G.J. Holzmann The SPIN Model Checker. Primer and Reference Manual.
Addison-Wesley, 2003

[21] Y. Labrou and T. Finin, A semantic approach for KQML - a general
purpose communication language for software agents. In 3rd Int Conf.
on Information and Knowledge Management, CIKM’94, pp.447-455,
1994.

[22] M.P. Huget and M. Wooldridge. Model Checking for ACL Compliance
Verification. ACL 2003, Springer LNCS 2922, pp. 75–90, 2003.

[23] M. Marcos, M. Balser, A. ten Teije, F. van Harmelen, C. Duelli
Experiences in the formalisation and verification of medical protocols,
AIME’03.

[24] N. Maudet and B. Chaib-draa. Commitment-based and dialogue-game
based protocols: new trends in agent communication languages. In The
Knowledge Engineering Review, 17(2):157-179, June 2002.

[25] S. Narayanan and S. McIlraith. Simulation, Verification and Automated
Composition of Web Services. In Proceedings of the Eleventh Interna-
tional World Wide Web Conference (WWW-11), May, 2002.

[26] M.Pistore and P.Traverso. Planning as Model Checking for Extended
Goals in Non-deterministic Domains. Proc. IJCAI’01, Seattle, pp.479-
484, 2001.

[27] R. Reiter. The frame problem in the situation calculus: a simple solution
(sometimes) and a completeness result for goal regression. In Artificial
Intelligence and Mathematical Theory of Computation: Papers in Honor
of John McCarthy, V. Lifschitz, ed.,pages 359–380, Academic Press,
1991.

[28] M. P. Singh. A social semantics for Agent Communication Languages.
In IJCAI-98 Workshop on Agent Communication Languages, Springer,
Berlin, 2000.

[29] P. Terenziani, G. Molino, and M. Torchio, A Modular Approach for
Representing and Executing Clinical Guidelines. Artificial Intelligence
in Medicine 23, 249-276, 2001.

[30] P. Terenziani, C. Carlini, S. Montani. Towards a Comprehensive Treat-
ment of Temporal Constraints in Clinical Guidelines. Proc. TIME’02,
Manchester, UK, IEEE Press, 20-27, 2002.

[31] Terenziani, P., Montani, S., Bottrighi, A., Torchio, M., Molino, G.,
Correndo, G. A context-adaptable approach to clinical guidelines. Proc.
MEDINFO’04, M. Fieschi et al. (eds), Amsterdam, IOS Press, (2004),
169-173.

[32] P. Terenziani, S. Montani, A. Bottrighi. Exploiting Decision Theory for
Supporting Therapy Selection in Computerized Guidelines. Proc. Int’l
Conf. Artificial Intelligence in Medicine Europe, LNCS, Sprinter Verlag,
2005.

[33] P.Traverso and M.Pistore. Automated Composition of Semantic Web
Services into Executable Processes. Proc. Third International Semantic
Web Conference (ISWC2004), November 9-11, 2004, Hiroshima, Japan.

[34] M. Wooldridge, M. Fisher, M.P. Huget and S. Parsons. Model Checking
Multi-Agent Systems with MABLE. In AAMAS’02, pp. 952–959,
Bologna, Italy, 2002.

[35] P. Yolum and M.P. Singh. Flexible Protocol Specification and Execution:
Applying Event Calculus Planning using Commitments. In AAMAS’02,
pp. 527–534, Bologna, Italy, 2002.

WOA 2005 176


