
Social roles, from agents back to objects
Matteo Baldoni and Guido Boella

Dipartimento di Informatica
Università degli Studi di Torino

Email: {baldoni,guido}@di.unito.it

Leendert van der Torre
CWI Amsterdam and Delft university of Technology

Email: torre@cwi.nl

Abstract— In this paper we introduce a new view on roles
in Object Oriented programming languages. This view is based
on an ontological analysis of roles and attributes to roles the
following properties: first, a role is always associated not only
with an object instance playing the role, but also to another object
instance which constitutes the context of the role and which we
call institution. Second, the definition of a role depends on the
definition of the institution which constitutes its context. Third,
this second property allows to endow players of roles with powers
to modify the state of the institution and of the other roles of the
same institution. As an example of this model of roles in Object
Oriented programming languages, we introduce a role construct
in Java. We interpret these three features of roles in Java as the
fact that, first, roles are implemented as classes which can be
instantiated only in presence of an instance of the player of the
role and of an instance of the class representing the institution.
Second, the definition of a class implementing a role is included in
the class definition of the institution the role belongs to. Thirdly,
powers are methods of roles which can access private fields and
methods of the institution they belong to and of the other roles
of the same institution.

I. INTRODUCTION

The concept of role is used quite ubiquitously in Com-
puter Science: from databases to multiagent systems, from
conceptual modelling to programming languages. According
to Steimann [18], the reason is that even if the duality
of objects and relationships is deeply embedded in human
thinking, yet there is evidence that the two are naturally
complemented by a third, equality fundamental notion: that of
roles. Although definitions of the role concept abound in the
literature, Steimann maintans that only few are truly original,
and that even fewer acknowledge the intrinsic role of roles
as intermediaries between relationships and the objects that
engage in them. There are three main views of role:

• Names for association ends, like in UML or in Entity-
Relationship diagrams.

• Dynamic specialization, like in the Fibonacci [2] pro-
gramming language.

• Adjunct instances, like in the DOOR programming lan-
guage [22].

The two last views are more relevant for modelling roles in
programming languages. Both of them have pros and cons. For
example, dynamic specialization captures the dynamic relation
between a class and a role which can be played by it (e.g.,
a person can become a student), but it less easily models the
intuition that roles can have their own state (e.g., an employee
has a different phone number than the person playing that

role). In contrast, roles as adjunct instances can obviously
have their own state, but they may pose problems when role
instances are detached from the object which plays the role.

There is a wide literature on the introduction of the notion of
role in programming languages. However, most works, starting
from Bachman and Daya [3]’s revision of database models,
extend programming languages with roles starting from prac-
tical considerations. In contrast, the research question of this
paper is the following: How to introduce in an Object Oriented
programming language a notion of role which is ontologically
well founded? We refer to the ontological analysis of the
notion of role made in [7], [5], [6]. According to that proposal,
roles have the following properties:

• Roles are always associated both to an object instance
playing the role, and to another object instance which
constitutes the context of the role and which we call the
institution.

• The definition of a role depends on the definition of the
institution which constitutes its context.

• This second property allows to endow players of roles
with powers to modify the state of the institution and of
the other roles of the same institution.

For example, the role student has a person as its player
and it is always a student of a school, a president is always
the president of an organization, a customer can be played by
a person or an organization, and it is always a customer of
an enterprise. In contrast, almost all current approaches focus
only on the relation between the role and its player.

The methodology we follow is to introduce a new pro-
gramming construct in a real programming language, Java,
one of the most used Object Oriented languages and one of
the most principled. To prove its feasibility, we translate the
new language, called powerJava, to pure Java by means of a
precompilation phase.

The role construct we introduce in Java promotes the sepa-
ration of concerns between the core behavior of an object and
its context dependent behavior. In particular, the interaction
among a player object, the institution and the other roles is
encapsulated inside the role the object plays.

In Section II we summarize the ontological definition of
roles while, in Section III, we introduce roles Java with
powerJava. Related work and conclusion end the paper.

WOA 2005 164

II. FOUNDATION, DEFINITIONAL DEPENDENCE, AND

POWERS

The distinguishing features of roles in [7], [5], [6] are their
foundation, their definitional dependence from the institution
they belong to, and the powers attributed to the role by the
institution. Consider the roles student and teacher. A student
and a teacher are always a student and a teacher of some
school. Without the school the roles do not exist anymore:
e.g., if the school goes bankrupt, the actors (e.g. a person)
of the roles cannot be called teachers and students anymore.
The institution (the school) also specifies the properties of the
student, which extend the properties of the person playing the
role of student: the school specifies its enrollment number, its
email address, its scores at past examinations, and also how
the student can behave. For example, the student can give
an exam by submitting some written examination. A student
can make the teacher evaluate its examination and register the
mark because the school defines both the student role and
the teacher’s role: the school specifies how an examination
is evaluated by a teacher, and maintains the official records
of the examinations. Otherwise the student could not have
an effect on the teacher. But in defining such actions the
school empowers the person who is playing the role of student:
without being a student the person has no possibility to give
an examination and make the teacher evaluate it.

This example highlights the following properties that roles
have in our model [7], [5], [6]:

• Foundation: a (instance of) role must always be associ-
ated with an instance of the institution it belongs to (see
Guarino and Welty [10]), besides being associated with
an instance of its player.

• Definitional dependence: The definition of the role must
be given inside the definition of the institution it belongs
to. This is a stronger version of the definitional depen-
dence notion proposed by Masolo et al. [14], where the
definition of a role must use the concept of the institution.

• Institutional empowerment: the actions defined for the
role in the definition of the institution have access to the
state and actions of the institution and of the other roles:
they are powers.

Moreover, as Guarino and Welty [10] notice, contrary to
natural classes like person, roles lack rigidity: a player can
enter and leave a role without losing its identity; a person can
stop being a student but not being a person. Finally, Steimann
[19]’s highlights that a role can be played by different kinds
of actors. For example, the role of customer can be played by
instances both of person and of organization, i.e., two classes
which do not have a common superclass. The role must specify
how to deal with the different properties of the possible actors.
This requirement is in line with UML, which relates roles and
interfaces as partial descriptions of behavior.

This last property compels to avoid modelling roles as
dynamic specializations as, e.g., [2], [9] do. If customer were a
subclass of person, it could not be at the same time a subclass
of organization, since person and organization are disjoint

classes. Symmetrically, person and organization cannot be
subclass of customer, since a person can be a person without
ever becoming a customer.

III. INTRODUCING ROLES IN JAVA: POWERJAVA

Roles are useful in programming languages for several
reasons, from dealing with the separation of concerns between
the core behavior of an object and its interaction possibilities,
to reflecting the ontological structure of domains where roles
are present, from modelling dynamic changes of behavior in
a class to fostering coordination among components.

In our proposal, we model roles as instances of role classes,
which can be associated at runtime with objects which can play
a role. However, roles are special kind of objects, and instances
of role classes do not exist on their own, but they always
require to be associated with an object instance of its player
and an object instance of the related institution. The relations
of a role with these two instances are different. Concerning
the former relation, the player of the role is an object whose
properties and behavior are extended when it is seen under the
perspective of the role. Moreover , the role does not affect the
core behavior. In contrast, concerning the latter relation, the
object instance which represents the institution which the role
belongs to gives the role powers: the role is enabled to access
the institution’s own state and the state of the other roles via
its methods; thus, role’s behavior can effect the institution’s
behavior. Accessing the institution’s state is possible only if
the classes defining it and its roles are connected. This is what
it is called definitional dependence and it requires that the role
class belongs to the namespace of the institution class.

Analogously to classes and interfaces in OO, we distinguish
the role implementation in an institution from the role defini-
tion (both powers and requirements). A role implementation
should implements the role powers definition while a player
should implements a role requirements definition.

Finally, the constraint of foundation requires that the cre-
ation of a role instance involves both an institution instance
and an object instance. A power can be invoked from a role
only by specifying the role which the player had to play. Note
that an object can play not only several roles, but also the same
role in different institutions at the same time. Hence, the role
under which a player is seen must be specified using not only
the role but also the institution instance.

In this paper we extend Java with these desired features
of roles in OO programming languages. In summary, in our
proposal, first a role is defined specifying what is requested
to play a role and what is offered by a role by an abstract
definition similar to a Java interface. Second, since Java inner
classes allow a class to belong to the namespace of another
class, we use them to give powers to roles in institutions.
Moreover, implementing a role definition as an inner class
of an outer class defining an institution parallels exactly
the definitional dependence. Third, the association of a role
instance with an institution instance can be dealt with the
implicit reference in Java of an inner class from its outer class.
So we are left only to deal explicitly with the association of a

WOA 2005 165

interface StudentReq //Student’s requirements
{ String getName();

int getSocialSecNumber(); }

role Student playedby StudentReq // Student’s powers
{ String getName();

void takeExam(int examCode, HomeWork hwk);
int getMark(int examCode); }

interface TeacherReq // Teacher’s requirements
{ String getName();

int getSocialSecNumber();
int getQualificationNumber();
int read(HomeWork hwk); }

role Teacher playedby TeacherReq // Teacher’s powers
{ String getName();

int evalHomeWork(HomeWork hwk); }

Fig. 1. Definition of roles and their requirements.

role instance with a player instance, to complete foundation.
Finally, seeing an object under a role is paralleled with type
casting in Java.

A. The definition of roles

The definition of a role has to specify both what is required
to play the role and which powers the player have in the
institution the role will be implemented. In order to make role
systems reusable, it is necessary that a role is not played by a
class only. For Steimann and Mayer [20], roles define a certain
behavior or protocol demanded in a context independently
of how or by whom this behavior is to be delivered (and,
we add, roles also empowers the player in the context).
Thus, roles must be specified independently of the particular
classes playing the role, so that the objects which can play
the role might be of different classes and can be developed
independently of the implementation of the role. This is a
form of polymorphism. In order to achieve such polymorphism
we associate with a role descriptions of classes listing the
signatures of the methods which are requested to and object
in order to play a role. We, thus, have that a role definition
must express, first, the methods required to objects playing
the role: requirements. For the instances of a class to play a
role, the class must offer some methods. These are specified
by the role as an interface. Second, the methods offered to
objects playing the role: powers. If an object of a class offering
the requirements, plays the role, it is empowered with these
new methods. The definition of a role using the keyword
role is similar to the definition of an interface; it is the
specification of the powers acquired by the role in the form of
abstract methods signatures. The only difference is that the role
definition by means of the keyword playedby refers also to
another interface, that in turn specifies the requirements which
an object playing the role must satisfy.

In Figure 1, the definitions of the roles Student and
Teacher are introduced. The roles specify, like an interface,
the signatures of the methods that correspond to the powers
that are assigned to the objects playing the role. For example,
returning the name of the Student (getName), submitting

an homework as an examination (takeExam), and so forth.
Moreover, we couple a role definition with the specification
of its requirements by the keyword playedby. This specifi-
cation is given by means of the name of a Java interface, e.g.,
StudentReq, imposing the presence of methods getName
and getSocialSecNum (his social security number).

B. Institutions and definitional dependence

In [7], [5], [6] roles are always associated with an instance
of, and are definitionally dependent on, an institution. Roles
add powers to objects playing the roles. Power means the
possibility to modify also the state of the institution which
defines the role and the state of the other roles defined in
the same institution. In our running example, we have that
the method for taking an exam in the school must be able
to modify the private state of the school. For example, if
the exam is successful, the grade should be added to the
registry of exams in the school by the teacher. Analogously, the
student’s method for taking an exam can invoke the teacher’s
method of evaluating an examination. Powers, thus, seems to
violate the standard encapsulation principle, where the private
variables are visible to the class they belong to only. However,
here, the encapsulation principle is preserved: all roles of an
institution depend on the definition of the institution; so it
is the institution itself which gives to the roles access to its
private fields and methods. Since it is the institution itself
which defines its roles, there is no risk of abuse by part of
the role of its access possibilities. Enabling a class to belong
to the namespace of another class without requiring it to be
defined as friend is achieved in Java by means of the inner
class construct. Thus, we extend the notion of inner class
to allow roles to be implemented inside an institution (the
outer class). The inner class construct is extended with the
keyword realizes which specifies the name of the role
definition the inner class is implementing. An institution is
simply a class with an inner class realizing roles in the very
same way as a class implements an interface. In Figure 2,
StudentImpl (TeacherImpl) realizes the role definition
Student (Teacher), inside the institution School. Note
that, a role (implementation) could itself be an institution with
its own role implementations, it could enact other roles and,
analogously, an institution could play a role. Moreover, roles
can be implemented in different ways in the same institution.

Since the behavior of a role instance depends on the player
of the role, in the method implementation, the player instance
can be retrieved via a new reserved keyword: that. So this
keyword refers to that object which is playing the role at
issue, and it is used only in the role implementation. The
value of that is initialized when the constructor of the role
implementation is invoked. The referred object has the type
defined by the role requirements or a subtype. We do not need
a special expression for creating instances of the inner classes
implementing roles, because we use the Java inner classes
syntax: starting from an institution instance (or from a class
name in case of static inner classes), the keyword new allows
the creation of an instance of the role as an instance of the

WOA 2005 166

class School {
private int[][] marks;
private Teacher[] teachers;
private String schoolName;
public School (String schoolName) {
this.schoolName = schoolName;
...

}

class StudentImpl realizes Student {
private int studentID;
public int getStudentID() {

return studentID;
}
public void takeExam(int examCode; HomeWork hwk) {

marks[studentID][examCode] =
teachers[examCode].evalHomeWork(hwk);

}
public String getName() {

return that.getName() +
", student at " + schoolName;

}
}

class TeacherImpl realizes Teacher {
private int teacherID;
public int getTeacherID() { return teacherID; }
public int evalHomeWork(HomeWork hwk) { ...

mark = that.read(hwk); ...
return mark;

}
public String getName() {

return that.getName() + ", teacher at "
+ schoolName;

}
}

}

class Person implements StudentReq {
private String name;
private int socialSecNumber;
public Person(String name, int socialSecNumber) {
this.name = name;
this.socialSecNumber = socialSecNumber; }

public String getName() { return name; }
public int getSocialSecNumber() {

return socialSecNumber;
}

}

class QualifiedPerson extends Person
implements TeacherReq {

private int qualificationNumber;
public QualifiedPerson(String name,

int socialSecNumber,
int qualificationNumber) {
super(name, socialSecNumber);
this.qualificationNumber = qualificationNumber;

}
public int getQualificationNumber() {
return qualificationNumber;

}
public int read(HomeWork hwk) { ... }

}

Fig. 2. Definition of an institution and its role implementations.

class TestRole {
public static void main(String[] args) {

Person chris = new Person("Christine", 1234);
Person george =

new QualifiedPerson("George", 5678, 9876);
School harvard = new School("Harvard");
School mit = new School("MIT");
harvard.new StudentImpl(chris);
harvard.new TeacherImpl(george);
mit.new TeacherImpl(george);
String x =

((harvard.StudentImpl) chris).getName();
String y =

((harvard.TeacherImpl) george).getName();
String z =

((Teacher)(mit.TeacherImpl) george).getName();
((harvard.StudentImpl) chris).takeExam(...,...);

}
}

Fig. 3. Using roles.

inner class, e.g., harvard.new StudentImpl(chris)
in Figure 3. Note that, all the constructors of role implementa-
tions have at least a (implicit) parameter which must be bound
to the player of the role and become the value of that.

In order for an object to play a role it is sufficient that it
conforms to the role requirements. Since the role requirements
are a Java interface, it is sufficient that the class of the object
implements the methods of such an interface. In Figure 2,
the class Person can play the role Student, because it
conforms to the interface StudentReq by implementing it.

C. Exercising the powers of a role

A role represents a perspective on an object. An object
has different (or additional) properties when it is seen in the
perspective of a certain role, and it can perform new activities,
which we call powers, as specified by the role definition.
In Steimann [18]’s terminology, a role is a type specifying
behavior.

When an object is seen under the perspective of a role,
we want that the object has a specific state for it. This state
is different from the player’s one, it is specific to each role
in each institution, and it can evolve with time by invoking
methods on the roles (or on other roles of the same institution
as we have seen in the running example). This state is given by
a role instance which is associated with the player. Since a role
represents the perspective on an object, the object playing the
role should be able to invoke the role’s methods without any
explicit reference to the instance of the role. In this way the
association between the object instance and the role instance is
transparent to the programmer. The object should only specify
in which role it is invoking the method. For example, if a
person is a student and a student can be asked to return its
enrollment number, we want to be able to invoke the method
on the person as a student without referring to the student role
instance.

The same methods will have a different behavior according
to the role which the object plays when they are invoked.
On the other hand, methods of a role can exhibit different

WOA 2005 167

behaviors according to whom is playing it. So a method of
student returning the name of the student together with the
name of the school returns different values for the name
according to whom is playing the role of student. This is
possible since the implementation of methods representing
powers uses the methods required by the role to its player
in order to play the role. These required methods obviously
can access the state of the player since they are part of the
implementation of the player.

Roles are always roles in an institution. Hence, an object
can play at the same moment the same role more than once,
albeit in different institutions. Instead, we do not consider the
case of an object playing the same role more than once in
the same institution. An object can play several roles in the
same institution. In order to specify the role under which an
object is referred, we evocatively use the same terminology
used for casting by Java: we say that there is a casting from
the object to the role. However, to refer to an object in a certain
role, both the object and the institution where it plays the role
must be specified. We call this methodology role casting. Type
casting in Java allows to see the same object under different
perspectives while maintaining the same structure and state.
In contrast, role casting views an object as having a different
state and different behaviors when playing different roles. So,
the last syntactic change in powerJava is the introduction of
role casting expressions extending the original Java syntax
for casting. A role cast specifies both the role and the in-
stance of the institution the role belongs to. For example, in
(harvard.TeacherImpl) george, in Figure 3, the per-
son george is casted to its role harvard.TeacherImpl
of type School.TeacherImpl. It is important to ob-
serve that role casting is done to the inner class im-
plementing the role but the role instance can always be
type casted to the role as well as it can be done with
Java interfaces: ((Teacher)(harvard.TeacherImpl)
george).getName(). While in the previous case it was
possible to use all the methods of the specific implementation,
in this case, only the methods that are specified in the role
definition can be applied.

IV. TRANSLATING ROLES IN JAVA

In this section we provide a translation of the role construct
into Java. This is done by means of a precompilation phase, as,
e.g., Guillen-Scholten et al. [11] propose for introducing com-
ponents and channels in Java, or in the way inner classes are
implemented in Java. The precompiler has been implemented
by means of the tool javaCC, provided by Sun Microsystems
[1]. The translation of the example is shown in Figures 4–7.

The role definition is simply an interface (see Figure 4) to be
implemented by the inner class defining the role. So the role
powers and its requirements form a pair of interfaces used
to match the player of the role and the institution the role
belongs to. The relation between the role interface and the
requirement interface is used in the constructor of an inner
class implementing a role. The requirement interface is used

interface Student {
String getName();
void takeExam(int examCode, HomeWork hwk);
int getMark(int examCode);

}

interface Teacher {
String getName();
int evalHomeWork(HomeWork hwk);

}

Fig. 4. Translation of role definitions.

class School {
private int[][] marks;
private String schoolName;

class StudentImpl implements Student {
StudentReq that; // Added by the precompiler
public StudentImpl (StudentReq that) {

this.that = that; // Added the by precompiler
((ObjectWithRoles)this.that).

setRole(this, School.this);
}
// role’s fields and methods ...

}
class TeacherImpl implements Teacher {

TeacherReq that; // Added by the precompiler
public TeacherImpl (TeacherReq that) {

this.that = that; // Added by the precompiler
((ObjectWithRoles)this.that).

setRole(this, School.this);
}

} // role’s fields and methods ...
} // institution’s fields and methods ...

Fig. 5. Translation of an institution.

to constrain the creation of role instances relatively to players
that conform to the requirements.

When an inner class implements a role (see Figure 5), the
role specified by the realizes keyword is simply added to
the interfaces implemented by the inner class. The correspon-
dence between the player and the role object, represented by
the construct that, is precompiled in a field called that
of the inner class. If the inner class implements the role
Student the variable is of type StudentReq. This field is
automatically initialized by means of the constructors which
are extended by the precompiler by adding a first parameter
to pass the suitable value. The constructor adds to its player
that also a reference to the role instance (by means of
setRole method). The remaining link between the instance
of the inner class and the outer class defining it is provided
automatically by the language Java (School.this in our
running example).

To play a role an object must be enriched by some methods
and fields to maintain the correspondence with the different
role instances it plays in the different institutions (see Fig-
ure 6). Since every object can play a role, it is worth noticing
that the ideal solution would be that the Object class offered
directly these features.

Every object can play many roles simultaneously. This is
obtained by adding, at precompilation time, to every class a

WOA 2005 168

interface ObjectWithRoles {
public void setRole(Object pwr, Object inst);
public Object getRole(Object inst, String pwr);

}

class Person implements StudentReq,
TeacherReq, ObjectWithRoles {
/** Added by the precompiler: BEGIN */
private java.util.Hashtable roleslist =
new java.util.Hashtable();

public void setRole(Object pwr, Object inst) {
roleslist.put(inst.hashCode() +

pwr.getClass().getName(), pwr);
}
public Object getRole(Object inst, String pwr) {
return roleslist.get(inst.hashCode() +

inst.getClass().getName() + "$" + pwr);
}
/** Added by the precompiler: END */
private String name;
private int socialSecNumber;

public String getName() {
return name;

}
public int getSocialSecNumber() {
return socialSecNumber;

}
}

Fig. 6. Translation of players.

structure for book-keeping its role instances. This structure can
be accessed by the methods whose signature is specified by
the ObjectWithRole interface. The two methods that are
introduced by the precompiler are setRole and getRole
which respectively adds a role to an object specifying where
the role is played and returns the role played in the institution
passed as parameter. Further methods can be added for using
single institutions, leaving a role, transferring it, etc.

We present one possible implementation of these meth-
ods which is supported by a private hashtable rolelist.
As key in the hashtable we use the institution instance
address and the name of the inner class. Role casting
is precompiled using the getRole method. The expres-
sion referring to an object in its role (a Person as a
Teacher, e.g., (harvard.TeacherImpl) george) is
translated into the selector returning the reference to the
inner class instance, representing the desired role with re-
spect to the specified institution. The translation will be
george.getRole(harvard, "TeacherImpl") (see
Figure 7). The string "TeacherImpl", that is the name of
the inner class that implements the role inside the institution
School, is provided because in our solution it is used as a
part of the index and, therefore, it is necessary in order to
retrieve the proper definition of the role.

Note that, the interfaces that implement the requirements of
a role extend the interface ObjectWithRoles (see Figure 6.
This interface requires that the players implement the methods
for book-keeping their roles. Observe that if the Java Object
class supplied these features, this extension would not be
necessary.

Person chris = new Person("Christine");
Person george = new Person("George");
School harvard = new School("Harvard");
School mit = new School("MIT");
harvard.new StudentImpl(chris);
harvard.new TeacherImpl(george);
mit.new TeacherImpl(george);
String x = ((School.StudentImpl) chris.

getRole(harvard, "StudentImpl")).getName());
String y = ((School.TeacherImpl) george.

getRole(harvard, "TeacherImpl")).getName());
String z = ((Teacher)(School.TeacherImpl) george.

getRole(mit, "TeacherImpl")).getName());
...
((School.StudentImpl) chris.

getRole(harvard, "StudentImpl")).takeExam(...,...);

Fig. 7. Translation of the use of roles.

V. CONCLUSIONS AND RELATED WORK

In this paper we introduce a new view on roles in OO
programming languages based on an ontological analysis of
the notion of role. We introduce this model of roles in an
extention of Java, called powerJava. Many works on the
introduction of roles in programming languages [2], [9], [8],
[16] consider roles as dynamic specializations of classes, e.g.,
a customer is seen as a specialization of the class person. This
methodology does not capture the fact that a role like customer
can be played both by a person and by an organization (that is
not a person). Roles as specializations prevent realizing that
a role is always associated not only with a player, but also
to an institution, which defines it. This intuition sometimes
emerges also in these frameworks: in [16] the authors say “a
role is visible only within the scope of the specific application
that created it”, but context are not first class citizens like
institutions are in our model.

Some other works adopt a closer methodology: roles are
seen as instances which are associated with objects. Wong
et al. [22] introduce a parallel role class hierarchy connected
by a “played-by” relationship to the object class hierarchy.
However, they fail to capture the intuition that a role depends
on the context defining it. Moreover, the method lookup as
delegation they adopt has a troublesome implication: when
a method is invoked on some object in one of its roles, the
meaning of the method can change depending on all the other
roles played by the object. This is not a desired feature in a
language like Java.

In [13] it is recognized that a role depends on its player
and that the properties of the role are present only due to the
perspective the role is seen from. However, they consider roles
as a form of specialization, albeit one distinguishing the role
as an instance related to but separated from its player. As a
consequence, the properties of the role include the properties
inherited from its player. This idea conflits with our position,
which we adopt from Steimann [21], of roles as interfaces:
roles are partial descriptions of behavior, they shadow the other
properties of their players, rather than inheriting them.

Our approach share the idea of gathering roles inside wider

WOA 2005 169

entities with languages like Object Teams [12] and Caesar
[15]. However, these languages emerge as refinements of
aspect oriented languages aiming at resolving some of their
practical limitations. Aspects fit our conceptual model as well:
e.g., when the execution of methods gives raise, by advice
weaving, to the execution of a method of a role, in our model
this means that the actions of an object playing a role “count
as” actions executed by the role itself. Finally, our notion of
role, as a double-sided interface, bears some similarities with
Traits [17] and Mixins. However, they are different as, with a
few exceptions, e.g., [4], they are not used to extend instances,
like roles do, but classes.

REFERENCES

[1] “Java compiler compiler [tm] (javaCC [tm]) - the java parser generator,”
Sun Microsystems, https://javacc.dev.java.net/.

[2] A. Albano, R. Bergamini, G. Ghelli, and R. Orsini, “An object data
model with roles,” in Procs. of VLDB’93, 1993, pp. 39–51.

[3] C. Bachman and M. Daya, “The role concept in data models,” in Procs.
of VLDB’77, 1977, pp. 464–476.

[4] L. Bettini, V. Bono, and S. Likavec, “A core calculus of mixin-based
incomplete objects,” in Procs. of FOOL Workshop, 2004, pp. 29–41.

[5] G. Boella and L. van der Torre, “An agent oriented ontology of social
reality,” in Procs. of FOIS’04. Torino: IOS Press, 2004, pp. 199–209.

[6] ——, “Attributing mental attitudes to roles: The agent metaphor applied
to organizational design,” in Procs. of ICEC’04. IEEE Press, 2004.

[7] ——, “Regulative and constitutive norms in normative multiagent sys-
tems,” in Procs. of KR’04. AAAI Press, 2004, pp. 255–265.

[8] M. Dahchour, A. Pirotte, and E. Zimanyi, “A generic role model
for dynamic objects,” in Procs. of CAiSE’02, ser. LNCS, vol. 2348.
Springer, 2002, pp. 643–658.

[9] G. Gottlob, M. Schrefl, and B. Rock, “Extending object-oriented systems
with roles,” ACM Transactions on Information Systems, vol. 14(3), pp.
268 – 296, 1996.

[10] N. Guarino and C. Welty, “Evaluating ontological decisions with onto-
clean,” Communications of ACM, vol. 45(2), pp. 61–65, 2002.

[11] J. Guillen-Scholten, F. Arbab, F. de Boer, and M. Bonsangue, “A channel
based coordination model for components,” ENTCS, vol. 68(3), 2003.

[12] S. Herrmann, “Object teams: Improving modularity for crosscutting
collaborations,” in Procs. of Net.ObjectDays, 2002.

[13] B. Kristensen and K. Osterbye, “Roles: Conceptual abstraction theory
and practical language issues,” Theory and Practice of Object Systems,
vol. 2(3), pp. 143–160, 1996.

[14] C. Masolo, L. Vieu, E. Bottazzi, C. Catenacci, R. Ferrario, A. Gangemi,
and N. Guarino, “Social roles and their descriptions,” in Procs. of KR’04.
AAAI Press, 2004, pp. 267–277.

[15] M. Mezini and K. Ostermann, “Conquering aspects with caesar,” in
Procs. of the 2nd International Conference on Aspect-Oriented Software
Development (AOSD). ACM Press, 2004, pp. 90–100.

[16] M. Papazoglou and B. Kramer, “A database model for object dynamics,”
The VLDB Journal, vol. 6(2), pp. 73–96, 1997.

[17] N. Scharli, S. Ducasse, O. Nierstrasz, and A. Black, “Traits: Composable
units of behavior,” in LNCS, vol. 2743: Procs. of ECOOP’03, S. Verlag,
Ed., Berlin, 2003, pp. 248–274.

[18] F. Steimann, “On the representation of roles in object-oriented and
conceptual modelling,” Data and Knowledge Engineering, vol. 35, pp.
83–848, 2000.

[19] ——, “A radical revision of UML’s role concept,” in Procs. of
UML2000, 2000, pp. 194–209.

[20] F. Steimann and P. Mayer, “Patterns of interface-based programming,”
Journal of Object Technology, 2005.

[21] F. Steimann, W. Siberski, and T. Kühne, “Towards the systematic use
of interface in java programming,” in Proc. of 2nd Int. Conf. on the
Principle and Practice of Programming in Java, 2003, pp. 13–17.

[22] R. Wong, H. Chau, and F. Lochovsky, “A data model and semantics
of objects with dynamic roles,” in Procs. of IEEE Data Engineering
Conference, 1997, pp. 402–411.

WOA 2005 170

