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Abstract— The notion of an intelligent agent as an entity which
appears to be the subject of mental attitudes like beliefs, desires
and intentions (hence, the BDI acronym) is well known and
accepted by many researchers. Besides the definition of various
BDI logics, many languages and integrated environments for
programming BDI-style agents have been proposed since the
early nineties. In this reasoned bibliography, nine languages and
implemented systems, namely PRS, dMARS, JACK, JAM, Jadex,
AgentSpeak(L), 3APL, Dribble, and Coo-BDI, are discussed and
compared. References to other systems and languages based on
the BDI model are also provided, as well as pointers to surveys
dealing with related topics.

I. INTRODUCTION

The notion of an intelligent agent as an entity which
appears to be the subject of beliefs, desires, commitments, and
other mental attitudes, is well known and accepted by many
researchers [1]. The philosopher Dennett has coined the term
intentional system to denote systems of this kind [2].

In order to formalise intentional systems, different logics
have been developed, among which Cohen and Levesque’s
theory of intentions [3], and Rao and Georgeff’s Belief-Desire-
Intention logic [4], [5], [6]. However, intelligent software
agents cannot just be formalised using ad-hoc logical lan-
guages: they must be programmed using executable languages,
as any other piece of software. Hence, there is a pressing need
of programming languages which can fill the gap between the
logical theory and the practical issues concerned with software
agents’ development.

One of the computational models that gained more con-
sensus as a candidate to fill this gap is the Belief-Desire-
Intention (BDI) one [7], which, as the acronym itself suggests,
is characterized by the following concepts:

– Beliefs: the agent’s knowledge about the world.
– Desires: the objectives to be accomplished.
– Intentions: the courses of actions currently under execu-

tion to achieve the agent’s desires.
Besides these components, the BDI model includes a plan

library, namely a set of “recipes” representing the procedural
knowledge of the agent, and an event queue where both events
(either perceived from the environment or generated by the
agent itself to notify an update of its belief base) and internal
subgoals (generated by the agent itself while trying to achieve
a desire) are stored.

The typical BDI execution cycle is characterised by the
following steps:

1. observe the world and the agent’s internal state, and
update the event queue consequently;

2. generate possible new plan instances whose trigger event
matches an event in the event queue (relevant plan instances)
and whose precondition is satisfied (applicable plan instances);

3. select for execution one instance from the set of appli-
cable plan instances;

4. push the selected instance onto an existing or new
intention stack, according to whether or not the event is a
(sub)goal;

5. select an intention stack, take the topmost plan instance
and execute the next step of this current instance: if the step
is an action, perform it, otherwise, if it is a subgoal, insert it
on the event queue.
Usually, BDI-style agents do no adopt first principles planning
at all, as all plans must be generated by the agent programmer
at design time. The planning done by agents consists entirely
of context-sensitive subgoal expansion, which is deferred until
a point in time at which the subgoal is selected for execution.

This paper provides an overview of languages and imple-
mented systems for programming BDI-style agents. In Section
II, nine systems based on the BDI model are surveyed, and
in Section III they are compared along seven dimensions.
Our knowledge about these nine systems, comes both from
our own readings and experience, and from talks with most
of the authors of the systems themselves, in particular with
R. Bordini (AgentSpeak), M. Dastani (3APL), M. J. Huber
(JAM), A. Pokahr (Jadex), M. B. van Riemsdijk (Dribble),
and M. Winikoff (AgentTalk). All of them have been asked to
check the content of Section III before submission1. Section
III also contains pointers to other existing systems, together
with references to related work.

II. BDI-STYLE LANGUAGES AND SYSTEMS

The choice of the nine languages and systems that we
briefly introduce in this section is motivated either by their
historical relevance (PRS, dMARS, AgentSpeak(L)) or by
their current significance and with adoption (the remaining
six ones). Clearly, there are many more BDI-based languages
besides these ones, most of which are cited in Section III.

1Despite to the precious advices given by these researchers, the paper might
contain inaccuracies, whose responsibility is only ours!
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Although we could not treat all the existing languages and
systems in depth, our choice does not mean, in any way, that
the languages surveyed in this section are “better” (according
to whatever criterion) than those cited in Section III.

A. PRS

The SRI’s procedural reasoning system, PRS [8], [9], was
developed for representing and using an expert’s procedural
knowledge for accomplishing goals and tasks, based on the
research of procedural reasoning carried out at the Artificial
Intelligence Center, SRI International. It can be considered
the ancestor of all the languages and architectures for prac-
tical reasoning discussed in this paper. Procedural knowledge
amounts to descriptions of collections of structured actions for
use in specific situations. PRS supports the definition of real-
time, continuously-active, intelligent systems that make use
of procedural knowledge, such as diagnostic programs and
system controllers.

Main components of the language: PRS architecture
consists of (1) a database containing current facts and beliefs,
(2) a set of goals to be achieved, (3) a set of plans, called
Acts, describing how sequences of conditional tests and actions
may be performed to achieve certain goals or to react to
certain situations, and (4) an interpreter that manipulates
these components to select and execute appropriate plans for
achieving the system’s goals.

Agent operation: The PRS interpreter runs the entire
system. At any particular time, certain goals are established
and certain events occur that alter the beliefs held in the system
database. These changes in the system’s goals and beliefs
trigger (invoke) various Acts. One or more of these applicable
Acts will then be chosen and placed on the intention graph.
Finally, PRS selects a task (intention) from the root of the
intention graph and executes one step of that task. This will
result either in the performance of a primitive action in the
world, the establishment of a new subgoal or the conclusion
of some new belief, or a modification to the intention graph
itself.

Semantics: We were not able to find documents describ-
ing the formal semantics of the original PRS system; our
understanding is that the work on giving a formal semantics
to PRS started only with the research on dMARS (see Section
II-B).

Implementation: A list of implemented PRS systems can
be retrieved from M. Wooldridge’s page on BDI software,
http://www.csc.liv.ac.uk/˜mjw/pubs/rara/

resources.html. The list includes for example PRS-CL
(http://www.ai.sri.com/˜prs/) and UMPRS (http:
//ai.eecs.umich.edu/people/durfee/UMPRS.html).

Industrial-strength applications: The PRS has been eval-
uated in a simulation of maintenance procedures for the space
shuttle, as well as other domains [10].

B. dMARS

dMARS was implemented at the Australian AI Institute,
under the direction of M. Georgeff. It was a kind of “second

generation PRS”, implemented in C++ and used for commer-
cial agent development projects.

Main components of the language: An agent in dMars is
characterised by a plan library, three main selection functions
which select the intention to execute, the plan to adopt, and
the event to manage respectively, and two auxiliary selection
functions that are used during the agent’s functioning.

A plan is in turn constituted by an invocation condition, an
optional context and a mandatory maintainance condition, a
body – that is a tree representing the possible flows of actions;
arcs are labelled with either an internal or an external action, or
a subgoal, while nodes are labelled with states – two sequences
of internal actions (updates to the belief base), to be executed
if the plan succeeds or fails.

The state of an agent includes the current belief base, the
set of current intentions (namely, plan instances which contain
information about the current state of execution of the plans
they originate from), and the event queue.

Agent operation: The dMARS operation cycle respects
the basic cycle depicted in the introduction:
– If the event queue is not empty, an event is selected from
it and relevant plans and, in turn, applicable plans are deter-
mined. An applicable plan is selected and used to generate
a plan instance. With an external event, a new intention
containing just the plan instance as a singleton sequence is
created. With an internal event, the plan instance is pushed
onto the intention stack which generated that (subgoal) event.
– If the event queue is empty, an intention is chosen and the
action labelling the current branch in the body of its topmost
plan is executed.

A plan fails if all its branches have been attempted, and
all of them failed. In this case, the failure actions must be
executed. Otherwise, a plan succeeds and the success actions
must be executed.

Implementation: The first implementation of dMARS
has been developed by the Australian Artificial Intelligence
Institute (AAII) - Melbourne, Australia - in 1995. AAII imple-
mented the dMARS platform for distributed reasoning agents
consisting of graphical editors, a compiler and an interpreter
for a logic goal-oriented programming language, a number
of run-time libraries (including an in-memory knowledge
database, a multi-threading package and a communication
subsystem). dMARS was developed in C++ and ran on a
variety of Unix platforms. At the end of 1997, dMARS was
being ported to Windows/NT.

Semantics: In [11], an operational semantics of dMARS
described using Z [12].

Industrial-strength applications: The dMARS system has
been used for both research and production in factory au-
tomation, simulation, business and air traffic control systems.
Among the customers of dMARS, there are NASA (space
shuttle malfunction handling), AirServices, Thomson Airsys
(air traffic control), Daimler Chrysler (supply chain manage-
ment, resource & logistics management), Hazelwood Power
(process control). A survey of the applications developed with
dMARS can be found in [13].
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C. JACK

JACK Intelligent Agents [14], [15] incorporates the BDI
model and allows developers to create new reasoning models
to suit their customers particular requirements. It is imple-
mented in Java, and the JACK Agent Language extends Java
with constructs for agent characteristics such as plans and
events. JACK has been built by a team of experts who have
worked on PRS and dMARS, and is a commercial product.

Main components of the language: The JACK Agent
Language extends the regular Java syntax. It allows the pro-
grammers to develop the components that are necessary to
define BDI agents and their behaviour, namely:

• Agents - which have methods and data members just like
objects, but also contain capabilities that an agent has,
namely belief bases (beliefsets), descriptions of events
that they can handle, and plans that they can use to handle
them.

• Capabilities - which serve to encapsulate and aggregate
functional components of the JACK Agent Language for
use by agents.

• Beliefsets - which are used to store beliefs and data that
the agent has acquired.

• Views - which provide a way of modelling any data in a
way easily manipulated by JACK.

• Events - which identify the circumstances and messages
that it can respond to.

• Plans - which are executed in response to these events.
Agent operation: When an agent is instantiated in a

system, it will wait until it is given a goal or it experiences
an event to which it must respond. When it receives an event
(or goal), the agent initiates activity to handle the event. If
it does not believe that the goal or event has already been
handled, it will look for the appropriate plan(s) to handle it.
The agent then executes the plan or plans depending on the
event type. The handling of the event may be synchronous
or asynchronous relative to the posting. The plan execution
may involve interaction with an agent’s beliefset relations or
other Java data structures. The plan being executed can in
turn initiate other subtasks, which may in turn initiate further
subtasks (and so on). Plans can succeed or fail. Under certain
circumstances, if the plan fails, the agent may try another plan.

Implementation: JACK is implemented entirely in Java
and should run on any Java-based platform. JACK stores
all program files and data as normal text, allowing standard
configuration management and versioning tools to be used.

Semantics: We did not find any formal semantics of
JACK.

Industrial-strength applications: One of the most signif-
icant applications of JACK was an unmanned aerial vehicle
(UAV) that was guided by an on-board JACK intelligent
software agent that directed the aircraft’s autopilot during the
course of the mission.

D. JAM

JAM is an intelligent agent architecture that grew out of
academic research and extended during the last five years of

use, development, and application. JAM combines ideas drawn
from the BDI theories, the PRS system and its UMPRS and
PRS-CL implementations, the SRI International’s ACT plan
interlingua [16], and the Structured Circuit Semantics (SCS)
representation [17]. It also addresses mobility aspects from
Agent Tcl [18], Agents for Remote Action (ARA) [19], Aglets
[20] and others.

Main components of the language: Each JAM agent is
composed of five primary components: a world model, a plan
library, an interpreter, an intention structure, and an observer.
The world model is a database that represents the beliefs of
the agent. The plan library, interpreter, and intention structure
has the same purpose of the corresponding components in
dMARS. The observer is a user-specified lightweight declara-
tive procedure that the agent interleaves between plan steps (in
addition to the reasoning performed by the JAM interpreter) in
order to perform functionality outside of the scope of JAM’s
normal goal/plan-based reasoning (e.g., to buffer incoming
messages).

Note that, like in Coo-BDI (discussed in Section II-I), the
set of plans available to the agent in the plan library can
be augmented during execution through communication with
other agents, generated from internal reasoning or by many
other means.

Agent operation: The JAM interpreter is responsible for
selecting and executing plans based upon the intentions, plans,
goals, and beliefs about the current situation. The agent checks
all the plans that can be applied to a goal to make sure they are
relevant to the current situation. Those plans that are applicable
are collected into what is called the Applicable Plan List (or
APL). An utility value is determined for each instantiated
plan in the APL and, if no meta-level plans are available to
select between the APL elements, the JAM interpreter selects
the highest utility instantiated plan (called an intention) and
intends it to the goal. Note that neither the original PRS
specification nor prior PRS-based implementations (such as
PRC-CL) support utility-based reasoning.

Implementation: JAM is distributed freely for non-
commercial use and can be downloaded from http://www.

marcush.net/IRS/download_jam.html

Semantics: We are not aware of any formal semantics of
JAM.

Industrial-strength applications: We could not find any
information on industrial-strength applications developed us-
ing JAM.

E. Jadex

The Jadex research project is conducted by the Distributed
Systems and Information Systems Group at the University
of Hamburg. The developed software framework is currently
in a beta-stage. A basic set of features already supports
the development of rational agents on top of the the FIPA-
compliant JADE platform [21]. The main purposes of Jadex
are both to bring together BDI-style reasoning and FIPA-
compliant communication [22], and to extend the traditional
BDI-model (e.g. with explicit goals).

WOA 2005 11



Main components of the language: Jadex agents have
beliefs, which can be any kind of Java object and are stored
in a belief base, goals, that are implicit or explicit descriptions
of states to be achieved, and plans, that are procedural recipes
coded in Java.

Agent operation: After initialisation, the Jadex runtime
engine executes the agent by keeping track of its goals while
continuously selecting and executing plan steps, based on
internal events and messages from other agents. Jadex is
supplied with some predefined functionalities and can integrate
third party tools like the “beangenerator” plug-in for the
ontology design tool Protégé [23].

Implementation: Jadex is implemented on top of JADE.
To easily integrate the Jadex engine (implemented in Java)
into JADE agents, a wrapper agent class is provided, which
creates and initialises an instance of the Jadex engine with the
beliefs, goals and plans from an agent definition file.

Semantics: For the basic operation of the Jadex inter-
preter, as well as for some specific aspects such as goal
deliberation, an operational semantics has been sketched in
[24].

Industrial-strength applications: From the Jadex
home page (http://vsis-www.informatik.
uni-hamburg.de/projects/jadex/), the pointers to
three applications developed using Jadex, namely MedPAge,
Dynatech, and Blackjack, can be found.

F. AgentSpeak(L)

AgentSpeak(L) [25] takes as its starting point PRS and
dMARS and formalizes its operational semantics. It can be
viewed as a simplified, textual language of PRS or dMARS.

Main components of the language: AgentSpeak(L) is
based on a restricted first-order language with events and
actions. The beliefs, desires and intentions of the agent are
not represented as modal formulas, but they are ascribed to
agents, in an implicit way, at design time. The current state
of the agent can be viewed as its current belief base; states
that the agent wants to bring about can be viewed as desires;
and the adoption of programs to satisfy such stimuli can be
viewed as intentions.

Agent operation: Like in PRS and dMARS, at every in-
terpretation cycle of an agent program, AgentSpeak(L) updates
a list of events, which may be generated from perception of
the environment, or from the execution of intentions (when
subgoals are specified in the body of plan). In [26], R.
Machado and R. H. Bordini have introduced a Belief Revision
Function (BRF) in the architecture which is implicit in Rao’s
interpreter, and in [27] R. H. Bordini, et al., enhance the
interpreter with an efficient intention selection in BDI agents
via decision-theoretic task scheduling.

Implementation: There are many implementations of the
AgentSpeak(L) language, among which:

• SIM Speak [26] (the first working AgentSpeak(L) inter-
preter), which runs on Sloman’s SIM AGENT toolkit, a
testbed for cognitively rich agent architectures [28], and

• Jason [29], which provides an interpreter for a version
of AgentSpeak(L) extended with speech-acts [30]; Jason
supports the distribution of the agents by means of SACI
[31].

• AgentTalk [32], an interpreter for a simplified version of
AgentSpeak(L) implemented by M. Winikoff.
Semantics: The agent operation described above is for-

malised in [25], [33], and [34].
Industrial-strength applications: AgentSpeak(L) has

been used to program animated embodied agents in virtual
environments.

G. 3APL

3APL [35] supports the design and construction of intelli-
gent agents for the development of complex systems through
a set of intuitive concepts like beliefs, goals and plans.

Although the 3APL architecture has many similarities with
other cognitive architectures such as PRS, it departs from
them in many ways. For example, the PRS architecture is
designed to plan agents’ goals (desires) while the 3APL
architecture is designed to control and revise agents’ to-do-
goals. Moreover, there is no ingredient in the PRS architecture
that corresponds to the practical reasoning rules, which are a
powerful mechanism to revise mental attitudes. Finally, the
deliberation cycle in 3APL is supposed to be a programmable
component while the deliberation cycle in PRS is integrated.

Main components of the language: An agent in 3APL is
characterised by two sets: the expertise of the agent, which is
a set of actions, and the agent’s rule base, which is a set of
rules.

A rule is formed by:
• an optional head and an optional body (both of which

are goals, namely either basic actions, or queries, or
achievement, or sequences of goals, or nondeterministic
choices of goals, or goal variables);

• a guard, that is a belief;
• a type, that may be either reactive, or failure, or
plan, or optimisation.

In 3APL goals represent both the target of the agent and the
way to achieve this target, thus 3APL goals are similar both
to dMARS achieve goals and to dMARS plans.

The state of a 3APL agent is constituted by its belief base
and its goal base.

Agent operation: The architecture for 3APL is based on
the think-act cycle, which is divided into two parts. The first
part corresponds to a phase of practical reasoning by using
practical reasoning rules, and the second corresponds to an
execution phase in which the agent performs some action.

Think stage. The application of a rule to a goal results in
the replacement of a subgoal which matches with the head of
the rule by the body of the rule in case the head of the rule
is non-empty. If the body of the rule is empty, the subgoal is
simply dropped. In case the head of a rule is empty only the
guard of the rule needs to be derivable from the beliefs of the
agent, and a new goal (the body of the rule) is added to the
goal base of the agent.
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Act stage. The execution of a goal is specified through
the computation steps an agent can perform on a goal. A
computation step corresponds to a simple action of the agent,
which is either a basic action or else a query on the beliefs of
the agent.

Implementation: Both a Java version and an Haskell
version of 3APL can be downloaded from http://www.cs.

uu.nl/3apl/download.html.
Semantics: Originally, the operational semantics of 3APL

was specified by means of Plotkin-style transition semantics
[36], while in [37] 3APL has been re-specified in Z. In [38],
the specification of a programming language for implementing
the deliberation cycle of cognitive agents is shown, and 3APL
has been used as the object language.

Industrial-strength applications: We are not aware of real
applications developed using 3APL.

H. Dribble

Dribble [39] is a propositional language that constitutes
a synthesis between the declarative features of the language
GOAL [40], and the procedural features of 3APL.

Some attention should be devoted to the terminology used.
In the original paper on 3APL [35], 3APL is defined to
have beliefs and goals (no plans). These goals are however
procedural (basically sequences of actions) and are actually
the same as the plans of Dribble (modulo some details).
The important feature of Dribble compared with the original
version of 3APL, is the addition of declarative goals (based on
GOAL). In the Dribble paper, the term “goal” has been used
for declarative goals (in the sense of propositional formulas
describing a situation that is to be achieved), and “plans” for
the procedural part of the agent (which was termed “goals” in
[35]). Further, the ideas of Dribble have been incorporated in
the latest version of 3APL, as discussed in [41]. That paper
presents a first order version of Dribble, with some minor
extensions. It uses the Dribble terminology of “goals” for
declarative goals and “plans” for the procedural part.

Main components of the language: The language Dribble
incorporates beliefs, declarative goals, and plans (i.e., proce-
dural goals, following 3APL terminology).

Agent operation: Dribble basically adopts a Think-Act
cycle like 3APL.

Implementation: We were not able to find documents
describing a working implementation of the Dribble language.

Semantics: In [39], an operational semantics of the pos-
sible mental state changes is defined using transition systems.
A dynamic logic is also sketched in which one can reason
about actions defined in that logic. These actions transform the
mental state of the agent. In [42], a demonstration that mental
state transitions defined by actions in the logic, correspond to
the mental state transitions defined by the transition system is
provided.

Industrial-strength applications: We are not aware of
applications developed using Dribble.

I. Coo-BDI

Coo-BDI (Cooperative BDI) [43] is based on the dMARS
specification and extends it by introducing cooperations
among agents to retrieve external plans for achieving desires.

Main components of the language: The cooperation
strategy of an agent A includes the set of agents with which
is expected to cooperate (a set of agent names), the plan
retrieval policy (always, noLocal) and the plan acquisition
policy (discard, add, replace).

Coo-BDI plans are classified in specific and default ones;
besides the standard components, they also have an access
specifier which determines the set of agents the plan can be
shared with (private, public and only(TrustedAgents)).

Coo-BDI intentions are characterized by “standard” com-
ponents plus components introduced to manage the external
plan retrieval mechanism.

Agent operation: The operation of a Coo-BDI agent is
based on a three steps cycle:

1) process the event queue;
2) process suspended intentions;
3) process active intentions.

The mechanism for retrieving relevant plans involves coopera-
tion with the trusted agents, in order to retrieve external plans,
besides the local ones.

Implementation: An integration of the ideas underlying
Coo-BDI into the Jason programming language has been
designed [44], and its implementation is under way [45].

Semantics: No formal semantics of Coo-BDI has been
defined. In [43] the Coo-BDI interpreter is fully described
in Prolog, which gives an operational specification of its
operation.

Industrial-strength applications: No applications have
been developed using Coo-BDI.

III. COMPARISON AND RELATED WORK

In Tables 1 and 2, we summarise the analysis of the nine
surveyed systems along seven dimensions. In particular, in
Table 2 we take the ability of the agents to easily integrate
ontologies (Ont) and to update the plan library at runtime
(Dyn) into account. In Table 2, references are given if the
analysed feature is not supported by the original system, but
by some of its extensions. Instead, a “Yes” in the cell means
that the original version of the system natively supports the
corresponding feature.

Many resources on BDI-style languages are available to the
research community, although, to the best of our knowledge,
no exhaustive roadmap on this topic exists. An introduction
to the BDI logics, architecture, and to some languages based
on BDI concepts can be found both in [54] and in [1]. The
paper [55] discusses and compares five MAS development
toolkits, namely AgentBuilder [56], CaseLP [57], DESIRE
[58], IMPACT [59], and ZEUS [60], that support the definition
of agents in terms of mental attitudes.

Among the on-line resources, http://www.csc.liv.ac.uk/
˜mjw/pubs/rara/resources.html provides pointers to some
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Implementations Formal semantics Industrial-strength applic.
PRS UMPRS [46], PRS-CL [47], others [48] No [10]

dMARS In 1995, AAII implemented a C++ platform running on
Unix; in 1997 dMARS was ported to Windows/NT Operational [11] [13]

JACK Java [49] No Unmanned vehicle
JAM Java [50] No No
Jadex Java [51] Operational (sketched in [24]) [51]
AS(L) SIM Speak [26], AgentTalk [32], Jason [29] Operational [33], [25], [34] Virtual environments
3APL Java and Prolog [52] Operational [37], [36]; meta-level [38] No
Dribble No Operational [39], dynamic logic-based [42] No
Coo-BDI Coo-AgentSpeak [44], [45] Operational [43] No

TABLE I
IMPLEMENTATIONS, SEMANTICS, APPLICATIONS OF THE SURVEYED SYSTEMS

Basic components Operation cycle Ont Dyn
PRS Standard Standard No No
dMARS Standard Standard No No

JACK Standard + capabilities (that aggregate functional components) + views (to easily
model data) Standard No No

JAM Standard + observer (user-specified declarative procedure that the agent interleaves
between plan steps) + utility of plans Utility-based No Yes

Jadex Beliefs + goals + plans + capabilities (that aggregate functional components) Standard Yes No
AS(L) Standard Standard; efficient [27] Yes [53] Yes [44]
3APL Beliefs, plans, practical reasoning rules, basic action specifications Think-act No Yes

Dribble Beliefs, plans, declarative goals, practical reasoning rules, goal rules, basic action
specifications Think-act No Yes

Coo-BDI Standard + cooperation strategy (trusted agents + plan retrieval and acquisition
policies) + plans’ access specifiers Perceive-cooperate-act No Yes

TABLE II
OTHER FEATURES OF THE SURVEYED LANGUAGES AND SYSTEMS

implemented BDI systems, while http://www.cs.rmit.edu.

au/agents/SAC/survey.html surveys systems based on the
concepts of action, event, plan, belief, goal, decision and
choice.

Besides the BDI-based languages and integrated environ-
ments that we have not discussed in Section II, we can cite:
MYWORLD [61], in which agents are directly programmed in
terms of beliefs and intentions; ViP [62], a visual programming
language for plan execution systems with a formal semantics
based upon an agent process algebra; CAN [63], a conceptual
notation for agents with procedural and declarative goals;
NUIN [64], a Java framework for building BDI agents, with
strong emphasis on Semantic Web aspects; SPARK [65], that
builds on PRS and supports the construction of large-scale,
practical agent systems; and Jason [29], that supports many
extensions to the AgentSpeak language and is a BDI system
in the spirit of Jadex, JAM, JACK, but with much better formal
basis.

When we move from BDI-style languages to the more
general class of agent programming languages based on
computational logics (which, however, includes the BDI-style
languages), we can find two surveys that complement each
other in many ways. The first one, [66], discusses different
formalisms with the aim of putting in evidence the contribution
of logic to knowledge representation formalisms and to basic
mechanisms and languages for agents and MAS modeling.

The second one, [67], analyses a subset of logic-based exe-
cutable languages whose main features are their suitability for
specifying agents and MASs and their possible integration into
an existing conceptual framework for agent-oriented software
engineering based on computational logic.

ACKNOWLEDGEMENTS

The authors acknowledge Rafael Bordini, Mehdi Dastani,
Marcus J. Huber, Alexander Pokahr, M. Birna van Riemsdijk,
and Michael Winikoff for their precious advices.

This work was partially funded by the MIUR project
“Sviluppo e verifica di sistemi multi-agente basati sulla log-
ica”, 2004-2005, coordinated by A. Martelli.

REFERENCES

[1] M. Wooldridge and N. R. Jennings, “Intelligent agents: Theory and
practice,” The Knowledge Engineering Review, vol. 10, no. 2, pp. 115–
152, 1995.

[2] D. C. Dennett, The Intentional Stance. The MIT Press, 1987.
[3] P. R. Cohen and H. J. Levesque, “Intention is choice with commitment,”

Artificial Intelligence, vol. 42, 1990.
[4] A. S. Rao and M. P. Georgeff, “Modeling rational agents within a BDI–

architecture,” in Proc. of KR’91, 1991, pp. 473–484.
[5] ——, “Asymmetry thesis and side-effect problems in linear-time and

branching-time intention logics.” in Proc. of IJCAI’91, 1991, pp. 498–
504.

[6] ——, “A model-theoretic approach to the verification of situated rea-
soning systems,” in Proc. of IJCAI’93, 1993, pp. 318–324.

[7] ——, “BDI agents: from theory to practice,” in Proc. of ICMAS’95,
1995, pp. 312–319.

WOA 2005 14



[8] M. P. Georgeff and A. L. Lansky, “Reactive reasoning and planning,”
in Proc. of AAAI’87, 1987, pp. 677–682.

[9] K. L. Myers, “User guide for the procedural reasoning system,” Artificial
Intelligence Center, SRI International, Menlo Park, CA, Tech. Rep.,
1997.

[10] M. P. Georgeff and F. F. Ingrand, “Decision-making in an embedded
reasoning system,” in Proc. of IJCAI’89, 1989, pp. 972–978.

[11] M. d’Inverno, D. Kinny, M. Luck, and M. Wooldridge, “A formal
specification of dMARS,” in Proc. of ATAL’97, 1997, pp. 155–176.

[12] M. Spivey, The Z Notation: A Reference Manual, 2nd edition. Prentice
Hall International Series in Computer Science, 1992.

[13] M. P. Georgeff and A. S. Rao, “A profile of the Australian AI institute,”
IEEE Expert, vol. 11, no. 6, pp. 89–92, 1996.

[14] P. Busetta, R. Ronnquist, A. Hodgson, and A. Lucas, “JACK intelligent
agents – components for intelligent agents in Java,” AgentLink News
Letter, vol. 2, 1999.

[15] Agent Oriented Software Group, “What is JACK?” http://www.
agent-software.com/shared/products/index.html.

[16] K. L. Myers and D. E. Wilkins, “The Act Formalism, Version 2.2,”
SRI International AI Center Technical Report, SRI International, Menlo
Park, CA, Tech. Rep., 1997.

[17] J. Lee and E. H. Durfee, “Structured circuit semantics for reactive plan
execution systems,” in Proc. of AAAI’94, 1994, pp. 1232–1237.

[18] R. S. Gray, D. Kotz, G. Cybenko, and D. Rus, “Agent Tcl,” in Mobile
Agents: Explanations and Examples. Manning Publishing, 1997.

[19] H. Peine, “ARA - Agents for Remote Action,” in Mobile Agents.
Manning Publishing, 1997.

[20] D. Lange and O. Mitsuru, Programming and Deploying Java Mobile
Agents with Aglets, 1998.

[21] JADE Home Page, http://jade.tilab.com/.
[22] FIPA Home Page, http://www.fipa.org/.
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