
 

  
Abstract — Agents are problem-solving entities that, thanks to 

characteristics such as autonomy, reactivity, proactivity and 
sociality, together with mobility, can be used to develop complex 
and distributed systems. In particular, mobility enables agents to 
migrate among several hosts, becoming active entities of 
networks. Java is today one of the most exploited languages to 
build mobile agent systems, thanks to its object-oriented support, 
portability and network facilities. Nevertheless, Java does not 
support strong mobility, i.e., the mobility of threads along with 
their execution state; thus developers cannot develop agents as 
real mobile entities. This paper reports our approach for Java 
thread strong migration, based on the IBM Jikes Research 
Virtual Machine, presenting our results and proposing an 
enrichment of the Aglets mobile agent platform in order to 
exploit strong agent mobility. 
 

Index Terms —  Mobile Agents, JikesRVM, Aglets, strong 
mobility.  
 

I. INTRODUCTION 
GENTS are autonomous, proactive, active and social 

entities able to perform their task without requiring a 
continue user interaction [23]; thanks to the above features, 
the agent-oriented paradigm is emerging as a feasible 
approach to the development of today’s complex software 
systems [18]. Moreover agents can be mobile, which means 
they can migrate among different sites/hosts during their 
execution.  

Mobility is an interesting feature for agents, since they are 
able to move among networks to find out data and 
information, to perform load balancing activities, and so on. 
The exploiting of mobile agents can simplify different issues 
in the design and implementation of applications and enables 
developers to quickly build distributed and parallel systems. 

Mobile agent execution is hosted by a special software 
layer, called Mobile Agent Platform (MAP) that enables also 
the agent migration and allows security checks over agents. In 
order to enable agents to migrate among different platforms 
and, thus, architectures, portable technologies and languages 
must be adopted to develop MAPs and the corresponding 
agents. Thanks to its portability and network facilities, Java is 
today the most exploited language to develop mobile agents, 
and in fact several Java-based MAPs exist [17, 3, 28].  

With regard to mobility, we distinguish [34] strong 

 
 

mobility, which enables the migration of code, data and 
execution state of execution units (for instance, threads), from 
weak mobility, which migrates only code and data [14]. Some 
distributed operating systems [32] go even further and make it 
possible for entire processes to be migrated with also their 
kernel mediated state, comprising I/O descriptor, alarm timers 
and others. This extremely transparent migration is known as 
full migration [16].  Unfortunately, current standard Java 
Virtual Machines (JVMs) do not support thread migration 
natively, and thus a Mobile Agent Platform running on top of 
them cannot provide strong mobility of agents. Moreover, the 
Java language itself [15] does not support constructs or 
mechanisms for thread serialization and migration: that is, 
there is no way, using the standard Java language and JVMs, 
to enable agents to exploit strong mobility. Even if this does 
not represent a problem for many applications based on 
mobile agents, such as those of automated booking [13], it 
does not allow using the agent paradigm to develop more 
complex and distributed systems, such as those for load 
balancing [25]. 

To overcome this limitation, this paper proposes an 
approach to support strong thread migration for Java MAPs, 
based on the IBM JikesRVM [5], which is a Java virtual 
machine with very interesting features. Our approach 
significantly differs from other proposals, since it requires 
neither any modification to the JVM, nor it exploits any pre-
processing, but it simply defines an appropriate Java library. 

The paper is organized as follows: section II presents the 
state of the art, explaining the existing approaches and 
pointing out their limitations. Section III introduces the 
features of JikesRVM and explains how they can be exploited 
to build a library for supporting strong mobility. Section IV 
presents the Aglets platform and shows how strong mobility 
can be designed and implemented in such a platform by using 
our mobility library. Finally, Section V reports our first 
performance measures and Section VI concludes the paper. 

II. STATE OF THE ART 
 

The approach presented in this paper aims at implementing 
strong thread migration in Java, which is not a new idea. 
Several approaches have been proposed so far and they can 
be, typically, split into two categories, depending on the fact 
that they require to modify the JVM (JVM-level approach) to 
support an advanced thread management or exploit some kind 
of bytecode instrumentation (Application-level approach) to 
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track the state of each thread.  
Approaches that modify the JVM (such as Sumatra [2], ITS 

[10], Merpati [29], Jessica2 [33] and JavaThread [9]) often 
introduce the problem of the management of the virtual 
machine itself. First of all, it is worth noting that they are 
applied to JVM that are at least one (or even more) version 
older than the SUN production one. Second, the adoption of a 
modified JVM can introduce problems of trust and security 
bugs. Third, virtual machines are usually written in a language 
different from Java (e.g., C++), thus suffering from portability 
problems.  

Instead, approaches that exploit bytecode manipulation (e.g. 
JavaGoX [26] or Brakes [30]) or Java source code 
manipulation [16], even if based on a pure Java technique 
(and thus really portable), do not provide a full thread 
management and suffer from problems related to 
performances. In fact, the idea of these approaches is to 
transparently place a few control instructions, similar to 
recovery-points, which allow a thread to deactivate itself once 
it has reached one of them. Recovery-points are quite similar 
to entry points used in most Java MAPs (i.e., methods that are 
executed when an agent is reactivated at the destination host), 
even if the former ones enable a finer grain control than entry 
points. Un23ily, a thread cannot deactivate (or reactivate) 
itself outside of these recovery-points, which are also not 
customizable, thus a thread cannot really suspend itself in an 
arbitrary point of the computation. Moreover, the use of 
bytecode manipulation produces low performances, thus these 
techniques are not appropriate for those applications where 
speed represents a strong requirement. 

In general, all existing strongly mobile systems have to deal 
with the problem of locating object references when they want 
to migrate a thread with all its set of stack-referenced objects: 
they force the use of some “type inference” mechanism [9, 
33], either at execution or at compilation time, thus 
introducing a significant performance overhead in threads 
execution. In order to tackle the drawbacks of strong mobility 
while saving its clarity and power, some interesting algorithms 
have been proposed [8] that translate transparently the 
apparently “strongly mobile code” into a “weakly mobile” 
form, with the above mentioned benefits of weak mobility.  
Starting from the above considerations, we have decided to 
design and implement a thread migration system able to 
overcome all the problems of the above-explained approaches. 
In particular, it is written entirely in Java, thus portable as 
much as possible and it grants high performances even 
without modifying the JVM. In fact, every single component 
of the migration system has been designed and developed to 
be used as a normal Java library, without requiring rebuilding, 
changing or patching the virtual machine, in specific, the IBM 
JikesRVM. Programmers and users do not have to download a 
modified, untrustworthy, version of JikesRVM, but can import 
the implemented mobility package into their code and execute 
it on their own copy of JikesRVM. Therefore, our JikesRVM-
based approach can be classified as a midway approach 
between the above-mentioned JVM-level and Application-

level approaches. 
 

III. FROM WEAK TO STRONG MOBILITY: A JIKESRVM-BASED 
APPROACH 

 
A Mobile Agent Platform realizes an environment for the 

execution of agents, featured with a bent for mobility. The 
support for mobility is often one of the first design choices 
when implementing such a platform, since it has a great 
impact on the remainder of the design.  

 

A. Weak vs. Strong Mobility 
 

Current execution environments for programming 
languages (e.g., the Java Virtual Machine [22] and the 
Common Language Runtime, embedded into Microsoft .NET 
Framework [1]) are usually not suited or not capable of 
providing the required level of mobility to the execution units 
(i.e. the threads) that they host. They all lack an explicit 
support for the mobility of their execution units and, in order 
to overcome this lack, MAP designers must choice between 
two directions [14]: 

• Adopting one of the techniques explained in the 
previous section so that threads can suspend their 
execution locally and resume elsewhere 
transparently (strong mobility). 

• Introducing a further abstraction level above the 
thread concept: the weak mobile agent, which is 
explicitly thought as a serializable representation 
of an execution unit. 

From the complexity point of view, weak mobility is quite 
simple to implement using well-established techniques like 
network class loading or object serialization [27]. However, 
weak mobility systems, by definition, discard the execution 
state across migration and hence, if the application requires 
the ability to retain the thread of control, extra programming is 
required in order to manually save the execution state. The 
transparency of the migration offered by strong mobility 
systems has instead a twofold advantage: it reduces the 
migration programming effort to the invocation of a single 
operation (e.g. a migrate() method), and requires a size of 
the migrated code smaller because it does not add artificial 
code.  

Despite these advantages, most of the mobile agent systems 
support only weak mobility and the reason lies mainly in the 
complexity issues of strong mobility and in the insufficient 
support of existing JVMs to deal with the execution state. It is 
a common idea that strong mobility should be convenient only 
in load balancing contexts or when thread persistence is 
needed to build fault-tolerant applications [9]. 

Recently, an innovative project is drawing researcher’s 
attention to the benefits that a virtual machine written in the 
Java language can offer. The main features of this open-source 
project, called JikesRVM [5], are outlined in the following 
subsection: for the sake of brevity, we will focus on those 
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aspects that make JikesRVM an ideal execution environment 
for strongly mobile agents, overcoming the drawbacks and the 
limitations of many existing solutions. 

 

B. The Jikes Research Virtual Machine 
 

JikesRVM began life in 1997 at IBM T. J. Watson Research 
Center as a project with two main design goals: supporting 
high performance Java servers and providing a flexible 
research platform “where novel VM ideas can be explored, 
tested and evaluated” [4]. JikesRVM is almost totally written 
in the Java language, but with great care to achieving 
maximum performance and scalability exploiting as much as 
possible the target architecture’s peculiarities. The all-in-Java 
philosophy of this VM makes very easy for researchers to 
manipulate or extend its functionalities. Further, JikesRVM 
source code can be built, with a prior custom compilation, 
both on IA32 and on PPC platforms [19], but the bulk of the 
runtime is made up of Java objects portable across different 
architectures.  

The first step toward the development of our MAP based on 
JikesRVM has been the implementation of the strong Java 
thread mobility. Threads embody concurrent flows of 
execution within an instance of the JVM and are represented 
by the java.lang.Thread object [22], used by the Java 
programmers disregarding any knowledge of their underlying 
physical implementation. In JikesRVM, threads are full-
fledged Java objects and are designed explicitly to be as 
lightweight as possible [4]. Many server applications need to 
create new threads for each incoming request and a Mobile 
Agent Platform has similar requirements since thousands of 
agents may request to execute within it. While some JVMs 
adopted the so-called native-thread model (i.e. the threads are 
scheduled by the operating system that is hosting the virtual 
machine), JikesRVM designers chose the green-thread model 
[24]: Java threads are hosted by the same operating-system 
thread, implemented by a so-called virtual processor, through 
an object of class VM_Processor [6]. Each virtual 
processor manages the scheduling of its virtual threads (i.e., 
Java threads), represented by objects of the class 
VM_Thread. The scheduling of virtual threads was defined 
quasi-preemptive, since it is driven by the JikesRVM 
compiler. What happens is that the compiler introduces, 
within each compiled method body, special code (yield points) 
that causes the thread to request its virtual processor if it can 
continue the execution or not. If the virtual processor grants 
the execution, the virtual thread continues until a new yield 
point is reached, otherwise it suspends itself so that the virtual 
processor can execute another virtual thread.  

The choice of using virtual processors not only allows 
JikesRVM to reduce the number of threads the operating 
system is in charge of, but also allows it to perform an 
efficient and well-controlled thread-switch. As a consequence, 
this allows elegantly addressing the problem of precisely 
locating object references when a garbage collection occurs. 

JikesRVM uses type-accurate collectors [31] that build the so-
called reference maps automatically at compile-time, unlike 
conservative collectors, which attempt somehow to infer 
whether a stack word is a reference or not. These reference 
maps are periodical snapshots of the situation of references in 
each method frame.  

The tracks of object references used to speed up the 
JikesRVM type-accurate garbage collectors can be exploited 
by MAP designers to collect stack-referenced objects for 
strong thread migration. This eliminates the need for “type 
inference” mechanisms required by existing strongly mobile 
systems. 

In general, many JVMs do not permit the programmer to 
access the execution state (i.e. the stack and the context 
registers), in order to enforce the security model of the Java 
language. As a consequence, they do not allow strong 
mobility. Instead, JikesRVM provides, once again, a built-in 
facility to extract correctly the execution state of a suspended 
thread. This facility is an efficient implementation of the On-
Stack Replacement (OSR) technique, originally developed for 
the Self language [35]. It enables a method to be automatically 
replaced by the system while it is executing. In particular, the 
system replaces the runtime stack activation frame of the 
method with that of the new version, and continues execution 
at the same point within the new version. JikesRVM exploits 
the OSR mechanism [12] in order to enable the dynamic 
optimization of methods. The Adaptive Optimization System 
(AOS) [7] samples the execution of programs to identify 
frequently executed (i.e. “hot”) methods and, when their 
optimization is predicted to be beneficial, the system compiles 
the method with JikesRVM optimizing compiler [11]. The old 
less-optimal frame is discarded and a new optimized frame is 
placed, initialized with the current state of the method (i.e. the 
value of the local variables and stack operands, together with 
the current bytecode index). 

This mechanism has been successfully exploited to quickly 
get a complete and portable representation of the serialized 
call stack. The structure of the OSR scope descriptor [12] 
inspired the idea of the MobileFrame: an object 
representing the current state of the method execution in a 
format that should be understandable by any JVM since it 
refers purely to bytecode-level entities (bytecode program 
counter, locals and stack operands). Our mechanism applies 
the capturing to all user frames in the stack of the serialized 
thread and, on the one hand, offers the advantage of the 
portability of the frames and, on the other hand, exploits a 
fully integrated component of the JVM. The latter aspect is 
crucial from both the reliability and the performance point of 
view, since no unsafe manipulations are carried out on the 
JVM code to force the externalization of the execution state of 
the thread. 

The presented features of JikesRVM allow the addition of 
strong thread migration, without modifying the virtual 
machine, but simply extending it. The entire system is 
available as a library comprised in a Java package that can be 
imported as usual into the application code. This means that 
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the implemented JikesRVM extension does not affect the 
performance of other applications, since no permanent 
modifications have been made to the VM itself. 

 

IV. STRONG MOBILITY IN AGLETS 
 

A. Overview Of The Aglets Workbench 
 

The Aglets Workbench [3] is a project originally developed 
by the IBM Tokyo Research Laboratory with the aim of 
producing a platform for the development of mobile agent 
based applications by means of a 100% Java library. The 
Aglets Workbench provides developer with applet-like APIs 
[20], thus creating a mobile agent (called Aglet) is a quite 
straightforward task. It suffices to inherit from the base class 
Aglet and to override some methods transparently invoked by 
the platform during the agent life. Weak mobility is provided 
through the Java serialization mechanism, and a specific agent 
transfer protocol (ATP) has been built on top of such 
mechanism [21]. Each Aglet can exploit the special method 
dispatch(..) to move to another host; such method is the 
equivalent of the generic migrate(..) previously 
mentioned. 

As many other Java MAPs, Aglets exploits weak mobility, 
that means, from a programming point of view, that each time 
an agent is resumed at a destination machine, its execution 
restarts from a defined entry point, that is the run() method 
call. Due to this, dealing with migrations is not always trivial, 
and developers have to adopt different techniques to handle 
the fact an agent will execute several times the same code but 
on different machines. Even if the Aglets library provides a 
set of classes that helps dealing with migrations, the code will 
appear like the one shown in the simple example of Figure 1. 
There, in case of a single migration, the migrated flag is used 
to select a code branch for the execution either on the source 
or destination machine. 

 
public class MyAgent extends Aglet{ 
 protected boolean migrated = false;    
      // indicates if the agent has moved yet 
 public void run(){ 
  if( ! migrated ){ 
   // things to do before the migration 
   // …. 
   migrated = true; 
   try{     
    dispatch(new URL(“atp://nexthost.unimore.it”); 
   }catch(Exception e){ migrated = false; } 
  } 
  else{ 
   // things to do on the destination host 
   // …. 
  } 
 } 
} 

Figure 1. An example of Aglet with a single migration. 
 
The code of Figure 1 is just a simple example, but similar 

agents can be written for other agent platforms. The point here 

is that with weak mobility, which is the one provided by the 
Java language and the most existing MAPs, it is as the code 
routinely performs rollbacks. In fact, looking at the code in 
Figure 1, it is clear how, after a successful dispatch(..) 
method call that causes the agent migration, the code does not 
continue its execution in the run() method from that point. 
Instead, the code restarts from the beginning of the run() 
method (on the destination machine, of course), and thus there 
is a code rollback. The fact that an agent restarts its execution 
always from a defined entry point, could produce awkward 
solutions, forcing the developer to use flags and other 
indicators to take care of the host the agent is currently 
running on. 

 

B. Designing Strong Mobility 
 

In Section III.B we have presented the innovative features 
of JikesRVM that can be exploited to strongly migrate 
threads. Now we apply these features to the Aglets to realize 
the idea of an Aglet as a strong migrable thread. Instead of 
using one of the pre-created threads to execute methods of the 
aglets, JikesRVM makes feasible to have a single independent 
thread for each aglet. As already mentioned, this is possible 
because of the lightweight implementation of Java threads in 
that JVM, being targeted to server architectures, where 
scalability and performance are key requirements. Further, 
having a separate thread for each aglet ensures a high level of 
isolation between agents: consider, for example, the case 
where an agent wants to sleep for some time, without being 
deactivated (i.e. serialized on the hard disk). Using the 
classical sleep() method on the java.lang.Thread 
object will produce strange effects on the current Aglets 
implementation platform (such as locking the message passing 
mechanism). These shortcomings are due to the 
aforementioned thread sharing among multiple agents through 
the pool of threads. Instead, potentially dangerous actions by 
malicious (or bugged) aglets do not affect the stability of our 
platform, allowing possibly a clean removal of the dangerous 
agent without the need of a MAP reboot.  

Message handling or events are implemented using the 
quasi pre-emptive JikesRVM scheduler, described earlier. 
Yield points are used to let the running aglet/thread extract 
messages from its message queue and handle them. Thus, for 
example, the aglet can process a dispatch message even in the 
middle of its execution (i.e. while the run() method is still in 
the stack) and strongly migrate to the destination site, where it 
will resume transparently restarting from the last execution 
point. The programmer gets rid of the burden of saving 
intermediate results into serializable fields and of structuring 
its code with entry points (such as methods) from which the 
agent execution is restarted each time it arrives at a new host, 
as mentioned above. 

The conceptual model of our prototype was thought as 
intuitive and understandable as possible in this development 
stage: we took inspiration from the fantastic world of space 
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travels through black holes. According to this model, a mobile 
agent (i.e. "the traveller") invokes the services offered by (i.e. 
"gets himself absorbed by") a black hole on one host (i.e. 
"planet") to move through the network (i.e. "the space") and 
arrives at the destination host (i.e. "another planet on a distant 
universe"), being extracted from the other side of the black 
hole. 

 

C. Implementing Strong Mobility 
 

After having tested the mobility library building a simple 
prototypal framework whose classes manage the departure 
and arrival of the mobile threads, we now in our research are 
integrating the mobility support in the Aglets framework to 
have a full-fledged MAP endowed with strong mobility. 

The implementation of the black hole model is based on 
JikesRVM and embedded into the Aglets runtime to make 
available the migration services to agents. In Figure 2, our 
system is described using the classical notation of queuing 
networks. The software components added by our approach 
are highlighted with boxes and it can be clearly seen how 
these parts are dynamically integrated into JikesRVM 
scheduler, when the programmer opens a black hole to enable 
migration services: no JVM manipulations are performed, 
therefore a non invasive extension is carried out. 

Agents are classified into three main categories:  
1. Incoming agents, coming from the outside world and 

requesting execution on the current host. They are 
read from a network socket and re-established in the 
local execution context, to be scheduled there.  

2. Outgoing agents, which are leaving the scheduler 
queues to be transferred on another machine. They 
invoked a dispatch() method and got queued into the 
hole’s migration queue.  

3. Stationary agents, not interested or affected by the 
migration facilities of our mechanism.  

 

 
Figure 2. The queuing network model of the mobility framework 

 
The black hole provides two kinds of services: a sending 

service, for agents exiting the local JVM, and a receiving 

service, for incoming execution requests. The former service 
is implemented by a server thread created with BlackHole 
instantiation, started when the BlackHole gets opened. This 
thread, instance of the OutGoingHole class, tests a 
migration queue in an endless loop, until the application 
closes its parent BlackHole, and analyzes every extracted 
mobile agent: its execution state is retrieved using OSR built-
in state capturing and the thread object, together with the 
chain of all the stack frames, are written into the socket 
established with another peer host. In more details, the 
JikesRVM thread/agent is suspended before the state 
capturing can occur and the stack is walked back from the last 
pushed frame to the first one (i.e. the run() method). At 
every step, the corresponding physical frame is analyzed 
invoking the OSR extraction service and the OSR descriptor is 
produced; but this intermediate form is not yet fully portable, 
mainly because it has been conceived only to refer to 
structures that are supposed to stay in the local memory: in 
particular, we are talking about the compiled methods in 
method area and the corresponding program counters (the so 
called return address of each frame) in the machine code 
body. So, the next essential stage performed by our 
mechanism is to retrieve a return address as much portable as 
possible: the bytecode index corresponding to the machine 
code index of the method. The mapping between the two 
indexes is, once again, granted by JikesRVM compilers and 
can be calculated in very little times. Local variable and stack 
operands are converted also into portable objects and stored 
into the MobileFrame for each method in the stack, as 
shown in Figure 3.  

It must be pointed out that this representation of the 
serialized thread is a very general one, as it uses only bytecode 
level entities (e.g. bytecode indexes as program counters, local 
variables and stack operands and so on) and this grants high 
portability of the state. Dataspace objects are packed into the 
mobile frames (or in the thread object) and serialized as well. 
When all the necessary frames are successfully captured, the 
system can send them all to the destination host. 

 

 
Figure 3. A MobileFrame object 
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To let external mobile agents enter a local environment, a 
group of InComingHole threads are created and started at 
BlackHole opening time. Each InComingHole opens a 
server socket bound to a specified TCP port and waits, in an 
endless loop, for incoming connection requests. When a 
connection is accepted and established, the InComingHole 
reads all the information about the state of the agent and, 
when finished reading, resumes the agent in the local instance 
of JikesRVM. At the arrival the aglet rebuilding is performed 
following some essential steps: 

1. the aglet object is read from the network stream into 
the memory; 

2. a new thread is created for this aglet or an existing 
one acquired from the pool, if available; 

3. this agent is notified the arrival event and its 
execution is temporarily frozen; 

4. the physical frames, produced by the 
MobileFrame objects, are injected on the fly into 
its stack; 

5. the execution of the thread/aglet is transparently 
resumed. 

The injection task is performed by a frame installer 
component, which adds each frame to a newly allocated stack, 
adjusting thread context registers and frame pointers. Frames 
are constructed in compliance with the baseline layout of the 
target platform. We have currently implemented a working 
frame installer for the IA32 architecture, but we are planning 
to complete the system with the PPC frame installer. 

The migrated aglet will be, by default, destroyed in the 
source JVM and its associated thread added back to the thread 
pool, for a possible future reuse. Nevertheless, the dispose 
message can be explicitly intercepted by the programmer so 
that the aglet can continue executing, thus realizing a form of 
“agent cloning”. 

Referring to the code example of Figure 1, the adoption of 
strong thread mobility overtakes the mentioned drawback, 
since the code restarts at the destination machine from the 
same point it stopped at the source one. Thus the code shown 
in Figure 1 becomes the one of Figure 4. 

 
public class MyAgent extends Aglet{ 
 public void run(){ 
  // things to do before the migration 
  try{    
     migrate(new URL(“atp://nexthost.unimore.it”); 
  }catch(Exception e){ … } 
  // things to do after migration 
 } 
} 

Figure 4. An example of Aglet code using our approach. 
 

As readers can see, the code is simpler (no flags and 
branches are required) and shorter than the previous one.  

V. PERFORMANCE AND OPEN ISSUES  
 

At the current stage of our research, the thread serialization 
mechanism, integrated into the Aglets framework, has been 

successfully tested, focusing mainly on the state capturing and 
restoring of the threads executing the aglet.  

First of all, we made some first performance tests to 
discover possible bottlenecks and evaluate the cost of each 
migration phase. The times measured are expressed in seconds 
and are average values computed across multiple runs, on a 
Pentium IV 3.4Ghz with 1GB RAM on JikesRVM release 
2.4.1. We tested the serialization with increasing stack sizes 
(5, 15 and 25 frames) and found a very graceful time 
degradation. These times are conceptually divided into two 
tables, where Table 1 refers to the thread serialization process, 
while Table 2 refers to the symmetrical de-serialization  
process at the arrival host.  

 
 5 frames 15 frames 25 frames 

Frame extraction 1.78E-5 1.89E-5 1.96E-5 

State building 3.44E-5 3.75E-5 3.43E-5 

Pure serialization  2.49E-3 7.32E-3 1.50E-2 

Overall times 2.54E-3 7.38E-3 1.51E-2 

Table 1. Evaluated times for thread serialization (sec.) 
 

 5 frames 15 frames 25      
frames 

Pure deserialization 4.46E-3 5.33E-3 7.06E-3 

State rebuilding 5.45E-4 5.27E-4 5.06E-4 

Stack installation 1.53E-3 1.60E-3 1.71E-3 

Overall times 6.54E-3 7.46E-3 9.28E-3 

Table 2. Evaluated times for thread rebuilding (sec.) 
 
Considering how these times are partitioned among the 

different phases of each process, we can see that the bulk of 
the time is wasted in the pure Java serialization of the captured 
state, while the extraction mechanism (i.e. the core of the 
entire facility) has very short times instead. The same 
bottleneck due the Java serialization may be observed in the 
de-serialization of the thread. In the latter case, however, we 
have an additional overhead in the stack installation phase, 
since the system has often to create a new thread and compile 
the methods for the injected frames.  

 

VI. CONCLUSIONS AND FUTURE WORK 
 

This paper has introduced our approach to support Java 
thread strong mobility based on the IBM JikesRVM virtual 
machine, and has outlined how this mechanism is being 
integrated in the Aglets Mobile Agent Platform in order to 
exploit such approach. Thanks to the support to thread 
serialization, agents will be simpler in terms of code, and, at 
the same time, the code will be easier to be read since a single 
execution flow will be followed from the beginning to the 
end. 

Our approach represents an extension of JikesRVM but 
does not change any part of this JVM. Rather, it exploits some 
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interesting facilities provided by that JVM to avoid many of 
the drawbacks of the presented solutions. OSR facility also 
allowed us to capture the state in a very portable (i.e. 
bytecode-level) format. Thanks to the scheduling policy of the 
JikesRVM, which enables the support of thousands of Java 
threads, our approach will keep the thread management 
efficient, and allows having one thread for each agent, 
overcoming the limitation of the current implementation of the 
Aglets system. 

With regard to future work, we will perform a comparison 
test between the current Aglets release (with weak mobility) 
and our JikesRVM-based version (with strong mobility). This 
comparison will be performed also under critical conditions 
(such as a large number of agents). ). From the first results 
reported in section V, we can draw the conclusion that the 
prototype can be further optimized with respect to the Java 
serialization bottleneck, in particular trying to reduce the size 
of the thread state data to be serialized. This perhaps will 
allow us to reduce strongly the unavoidable gap between a 
weak agent serialization and a strong one. 
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