

Abstract — Agents are problem-solving entities that, thanks to

characteristics such as autonomy, reactivity, proactivity and
sociality, together with mobility, can be used to develop complex
and distributed systems. In particular, mobility enables agents to
migrate among several hosts, becoming active entities of
networks. Java is today one of the most exploited languages to
build mobile agent systems, thanks to its object-oriented support,
portability and network facilities. Nevertheless, Java does not
support strong mobility, i.e., the mobility of threads along with
their execution state; thus developers cannot develop agents as
real mobile entities. This paper reports our approach for Java
thread strong migration, based on the IBM Jikes Research
Virtual Machine, presenting our results and proposing an
enrichment of the Aglets mobile agent platform in order to
exploit strong agent mobility.

Index Terms — Mobile Agents, JikesRVM, Aglets, strong
mobility.

I. INTRODUCTION
GENTS are autonomous, proactive, active and social

entities able to perform their task without requiring a
continue user interaction [23]; thanks to the above features,
the agent-oriented paradigm is emerging as a feasible
approach to the development of today’s complex software
systems [18]. Moreover agents can be mobile, which means
they can migrate among different sites/hosts during their
execution.

Mobility is an interesting feature for agents, since they are
able to move among networks to find out data and
information, to perform load balancing activities, and so on.
The exploiting of mobile agents can simplify different issues
in the design and implementation of applications and enables
developers to quickly build distributed and parallel systems.

Mobile agent execution is hosted by a special software
layer, called Mobile Agent Platform (MAP) that enables also
the agent migration and allows security checks over agents. In
order to enable agents to migrate among different platforms
and, thus, architectures, portable technologies and languages
must be adopted to develop MAPs and the corresponding
agents. Thanks to its portability and network facilities, Java is
today the most exploited language to develop mobile agents,
and in fact several Java-based MAPs exist [17, 3, 28].

With regard to mobility, we distinguish [34] strong

mobility, which enables the migration of code, data and
execution state of execution units (for instance, threads), from
weak mobility, which migrates only code and data [14]. Some
distributed operating systems [32] go even further and make it
possible for entire processes to be migrated with also their
kernel mediated state, comprising I/O descriptor, alarm timers
and others. This extremely transparent migration is known as
full migration [16]. Unfortunately, current standard Java
Virtual Machines (JVMs) do not support thread migration
natively, and thus a Mobile Agent Platform running on top of
them cannot provide strong mobility of agents. Moreover, the
Java language itself [15] does not support constructs or
mechanisms for thread serialization and migration: that is,
there is no way, using the standard Java language and JVMs,
to enable agents to exploit strong mobility. Even if this does
not represent a problem for many applications based on
mobile agents, such as those of automated booking [13], it
does not allow using the agent paradigm to develop more
complex and distributed systems, such as those for load
balancing [25].

To overcome this limitation, this paper proposes an
approach to support strong thread migration for Java MAPs,
based on the IBM JikesRVM [5], which is a Java virtual
machine with very interesting features. Our approach
significantly differs from other proposals, since it requires
neither any modification to the JVM, nor it exploits any pre-
processing, but it simply defines an appropriate Java library.

The paper is organized as follows: section II presents the
state of the art, explaining the existing approaches and
pointing out their limitations. Section III introduces the
features of JikesRVM and explains how they can be exploited
to build a library for supporting strong mobility. Section IV
presents the Aglets platform and shows how strong mobility
can be designed and implemented in such a platform by using
our mobility library. Finally, Section V reports our first
performance measures and Section VI concludes the paper.

II. STATE OF THE ART

The approach presented in this paper aims at implementing
strong thread migration in Java, which is not a new idea.
Several approaches have been proposed so far and they can
be, typically, split into two categories, depending on the fact
that they require to modify the JVM (JVM-level approach) to
support an advanced thread management or exploit some kind
of bytecode instrumentation (Application-level approach) to

Improving Aglets with Strong Agent Mobility
through the IBM JikesRVM

Giacomo Cabri, Luca Ferrari, Letizia Leonardi, Raffaele Quitadamo, Member, IEEE

A

WOA 2005 136

track the state of each thread.
Approaches that modify the JVM (such as Sumatra [2], ITS

[10], Merpati [29], Jessica2 [33] and JavaThread [9]) often
introduce the problem of the management of the virtual
machine itself. First of all, it is worth noting that they are
applied to JVM that are at least one (or even more) version
older than the SUN production one. Second, the adoption of a
modified JVM can introduce problems of trust and security
bugs. Third, virtual machines are usually written in a language
different from Java (e.g., C++), thus suffering from portability
problems.

Instead, approaches that exploit bytecode manipulation (e.g.
JavaGoX [26] or Brakes [30]) or Java source code
manipulation [16], even if based on a pure Java technique
(and thus really portable), do not provide a full thread
management and suffer from problems related to
performances. In fact, the idea of these approaches is to
transparently place a few control instructions, similar to
recovery-points, which allow a thread to deactivate itself once
it has reached one of them. Recovery-points are quite similar
to entry points used in most Java MAPs (i.e., methods that are
executed when an agent is reactivated at the destination host),
even if the former ones enable a finer grain control than entry
points. Un23ily, a thread cannot deactivate (or reactivate)
itself outside of these recovery-points, which are also not
customizable, thus a thread cannot really suspend itself in an
arbitrary point of the computation. Moreover, the use of
bytecode manipulation produces low performances, thus these
techniques are not appropriate for those applications where
speed represents a strong requirement.

In general, all existing strongly mobile systems have to deal
with the problem of locating object references when they want
to migrate a thread with all its set of stack-referenced objects:
they force the use of some “type inference” mechanism [9,
33], either at execution or at compilation time, thus
introducing a significant performance overhead in threads
execution. In order to tackle the drawbacks of strong mobility
while saving its clarity and power, some interesting algorithms
have been proposed [8] that translate transparently the
apparently “strongly mobile code” into a “weakly mobile”
form, with the above mentioned benefits of weak mobility.
Starting from the above considerations, we have decided to
design and implement a thread migration system able to
overcome all the problems of the above-explained approaches.
In particular, it is written entirely in Java, thus portable as
much as possible and it grants high performances even
without modifying the JVM. In fact, every single component
of the migration system has been designed and developed to
be used as a normal Java library, without requiring rebuilding,
changing or patching the virtual machine, in specific, the IBM
JikesRVM. Programmers and users do not have to download a
modified, untrustworthy, version of JikesRVM, but can import
the implemented mobility package into their code and execute
it on their own copy of JikesRVM. Therefore, our JikesRVM-
based approach can be classified as a midway approach
between the above-mentioned JVM-level and Application-

level approaches.

III. FROM WEAK TO STRONG MOBILITY: A JIKESRVM-BASED
APPROACH

A Mobile Agent Platform realizes an environment for the

execution of agents, featured with a bent for mobility. The
support for mobility is often one of the first design choices
when implementing such a platform, since it has a great
impact on the remainder of the design.

A. Weak vs. Strong Mobility

Current execution environments for programming
languages (e.g., the Java Virtual Machine [22] and the
Common Language Runtime, embedded into Microsoft .NET
Framework [1]) are usually not suited or not capable of
providing the required level of mobility to the execution units
(i.e. the threads) that they host. They all lack an explicit
support for the mobility of their execution units and, in order
to overcome this lack, MAP designers must choice between
two directions [14]:

• Adopting one of the techniques explained in the
previous section so that threads can suspend their
execution locally and resume elsewhere
transparently (strong mobility).

• Introducing a further abstraction level above the
thread concept: the weak mobile agent, which is
explicitly thought as a serializable representation
of an execution unit.

From the complexity point of view, weak mobility is quite
simple to implement using well-established techniques like
network class loading or object serialization [27]. However,
weak mobility systems, by definition, discard the execution
state across migration and hence, if the application requires
the ability to retain the thread of control, extra programming is
required in order to manually save the execution state. The
transparency of the migration offered by strong mobility
systems has instead a twofold advantage: it reduces the
migration programming effort to the invocation of a single
operation (e.g. a migrate() method), and requires a size of
the migrated code smaller because it does not add artificial
code.

Despite these advantages, most of the mobile agent systems
support only weak mobility and the reason lies mainly in the
complexity issues of strong mobility and in the insufficient
support of existing JVMs to deal with the execution state. It is
a common idea that strong mobility should be convenient only
in load balancing contexts or when thread persistence is
needed to build fault-tolerant applications [9].

Recently, an innovative project is drawing researcher’s
attention to the benefits that a virtual machine written in the
Java language can offer. The main features of this open-source
project, called JikesRVM [5], are outlined in the following
subsection: for the sake of brevity, we will focus on those

WOA 2005 137

aspects that make JikesRVM an ideal execution environment
for strongly mobile agents, overcoming the drawbacks and the
limitations of many existing solutions.

B. The Jikes Research Virtual Machine

JikesRVM began life in 1997 at IBM T. J. Watson Research
Center as a project with two main design goals: supporting
high performance Java servers and providing a flexible
research platform “where novel VM ideas can be explored,
tested and evaluated” [4]. JikesRVM is almost totally written
in the Java language, but with great care to achieving
maximum performance and scalability exploiting as much as
possible the target architecture’s peculiarities. The all-in-Java
philosophy of this VM makes very easy for researchers to
manipulate or extend its functionalities. Further, JikesRVM
source code can be built, with a prior custom compilation,
both on IA32 and on PPC platforms [19], but the bulk of the
runtime is made up of Java objects portable across different
architectures.

The first step toward the development of our MAP based on
JikesRVM has been the implementation of the strong Java
thread mobility. Threads embody concurrent flows of
execution within an instance of the JVM and are represented
by the java.lang.Thread object [22], used by the Java
programmers disregarding any knowledge of their underlying
physical implementation. In JikesRVM, threads are full-
fledged Java objects and are designed explicitly to be as
lightweight as possible [4]. Many server applications need to
create new threads for each incoming request and a Mobile
Agent Platform has similar requirements since thousands of
agents may request to execute within it. While some JVMs
adopted the so-called native-thread model (i.e. the threads are
scheduled by the operating system that is hosting the virtual
machine), JikesRVM designers chose the green-thread model
[24]: Java threads are hosted by the same operating-system
thread, implemented by a so-called virtual processor, through
an object of class VM_Processor [6]. Each virtual
processor manages the scheduling of its virtual threads (i.e.,
Java threads), represented by objects of the class
VM_Thread. The scheduling of virtual threads was defined
quasi-preemptive, since it is driven by the JikesRVM
compiler. What happens is that the compiler introduces,
within each compiled method body, special code (yield points)
that causes the thread to request its virtual processor if it can
continue the execution or not. If the virtual processor grants
the execution, the virtual thread continues until a new yield
point is reached, otherwise it suspends itself so that the virtual
processor can execute another virtual thread.

The choice of using virtual processors not only allows
JikesRVM to reduce the number of threads the operating
system is in charge of, but also allows it to perform an
efficient and well-controlled thread-switch. As a consequence,
this allows elegantly addressing the problem of precisely
locating object references when a garbage collection occurs.

JikesRVM uses type-accurate collectors [31] that build the so-
called reference maps automatically at compile-time, unlike
conservative collectors, which attempt somehow to infer
whether a stack word is a reference or not. These reference
maps are periodical snapshots of the situation of references in
each method frame.

The tracks of object references used to speed up the
JikesRVM type-accurate garbage collectors can be exploited
by MAP designers to collect stack-referenced objects for
strong thread migration. This eliminates the need for “type
inference” mechanisms required by existing strongly mobile
systems.

In general, many JVMs do not permit the programmer to
access the execution state (i.e. the stack and the context
registers), in order to enforce the security model of the Java
language. As a consequence, they do not allow strong
mobility. Instead, JikesRVM provides, once again, a built-in
facility to extract correctly the execution state of a suspended
thread. This facility is an efficient implementation of the On-
Stack Replacement (OSR) technique, originally developed for
the Self language [35]. It enables a method to be automatically
replaced by the system while it is executing. In particular, the
system replaces the runtime stack activation frame of the
method with that of the new version, and continues execution
at the same point within the new version. JikesRVM exploits
the OSR mechanism [12] in order to enable the dynamic
optimization of methods. The Adaptive Optimization System
(AOS) [7] samples the execution of programs to identify
frequently executed (i.e. “hot”) methods and, when their
optimization is predicted to be beneficial, the system compiles
the method with JikesRVM optimizing compiler [11]. The old
less-optimal frame is discarded and a new optimized frame is
placed, initialized with the current state of the method (i.e. the
value of the local variables and stack operands, together with
the current bytecode index).

This mechanism has been successfully exploited to quickly
get a complete and portable representation of the serialized
call stack. The structure of the OSR scope descriptor [12]
inspired the idea of the MobileFrame: an object
representing the current state of the method execution in a
format that should be understandable by any JVM since it
refers purely to bytecode-level entities (bytecode program
counter, locals and stack operands). Our mechanism applies
the capturing to all user frames in the stack of the serialized
thread and, on the one hand, offers the advantage of the
portability of the frames and, on the other hand, exploits a
fully integrated component of the JVM. The latter aspect is
crucial from both the reliability and the performance point of
view, since no unsafe manipulations are carried out on the
JVM code to force the externalization of the execution state of
the thread.

The presented features of JikesRVM allow the addition of
strong thread migration, without modifying the virtual
machine, but simply extending it. The entire system is
available as a library comprised in a Java package that can be
imported as usual into the application code. This means that

WOA 2005 138

the implemented JikesRVM extension does not affect the
performance of other applications, since no permanent
modifications have been made to the VM itself.

IV. STRONG MOBILITY IN AGLETS

A. Overview Of The Aglets Workbench

The Aglets Workbench [3] is a project originally developed
by the IBM Tokyo Research Laboratory with the aim of
producing a platform for the development of mobile agent
based applications by means of a 100% Java library. The
Aglets Workbench provides developer with applet-like APIs
[20], thus creating a mobile agent (called Aglet) is a quite
straightforward task. It suffices to inherit from the base class
Aglet and to override some methods transparently invoked by
the platform during the agent life. Weak mobility is provided
through the Java serialization mechanism, and a specific agent
transfer protocol (ATP) has been built on top of such
mechanism [21]. Each Aglet can exploit the special method
dispatch(..) to move to another host; such method is the
equivalent of the generic migrate(..) previously
mentioned.

As many other Java MAPs, Aglets exploits weak mobility,
that means, from a programming point of view, that each time
an agent is resumed at a destination machine, its execution
restarts from a defined entry point, that is the run() method
call. Due to this, dealing with migrations is not always trivial,
and developers have to adopt different techniques to handle
the fact an agent will execute several times the same code but
on different machines. Even if the Aglets library provides a
set of classes that helps dealing with migrations, the code will
appear like the one shown in the simple example of Figure 1.
There, in case of a single migration, the migrated flag is used
to select a code branch for the execution either on the source
or destination machine.

public class MyAgent extends Aglet{
 protected boolean migrated = false;
 // indicates if the agent has moved yet
 public void run(){
 if(! migrated){
 // things to do before the migration
 // ….
 migrated = true;
 try{
 dispatch(new URL(“atp://nexthost.unimore.it”);
 }catch(Exception e){ migrated = false; }
 }
 else{
 // things to do on the destination host
 // ….
 }
 }
}

Figure 1. An example of Aglet with a single migration.

The code of Figure 1 is just a simple example, but similar

agents can be written for other agent platforms. The point here

is that with weak mobility, which is the one provided by the
Java language and the most existing MAPs, it is as the code
routinely performs rollbacks. In fact, looking at the code in
Figure 1, it is clear how, after a successful dispatch(..)
method call that causes the agent migration, the code does not
continue its execution in the run() method from that point.
Instead, the code restarts from the beginning of the run()
method (on the destination machine, of course), and thus there
is a code rollback. The fact that an agent restarts its execution
always from a defined entry point, could produce awkward
solutions, forcing the developer to use flags and other
indicators to take care of the host the agent is currently
running on.

B. Designing Strong Mobility

In Section III.B we have presented the innovative features
of JikesRVM that can be exploited to strongly migrate
threads. Now we apply these features to the Aglets to realize
the idea of an Aglet as a strong migrable thread. Instead of
using one of the pre-created threads to execute methods of the
aglets, JikesRVM makes feasible to have a single independent
thread for each aglet. As already mentioned, this is possible
because of the lightweight implementation of Java threads in
that JVM, being targeted to server architectures, where
scalability and performance are key requirements. Further,
having a separate thread for each aglet ensures a high level of
isolation between agents: consider, for example, the case
where an agent wants to sleep for some time, without being
deactivated (i.e. serialized on the hard disk). Using the
classical sleep() method on the java.lang.Thread
object will produce strange effects on the current Aglets
implementation platform (such as locking the message passing
mechanism). These shortcomings are due to the
aforementioned thread sharing among multiple agents through
the pool of threads. Instead, potentially dangerous actions by
malicious (or bugged) aglets do not affect the stability of our
platform, allowing possibly a clean removal of the dangerous
agent without the need of a MAP reboot.

Message handling or events are implemented using the
quasi pre-emptive JikesRVM scheduler, described earlier.
Yield points are used to let the running aglet/thread extract
messages from its message queue and handle them. Thus, for
example, the aglet can process a dispatch message even in the
middle of its execution (i.e. while the run() method is still in
the stack) and strongly migrate to the destination site, where it
will resume transparently restarting from the last execution
point. The programmer gets rid of the burden of saving
intermediate results into serializable fields and of structuring
its code with entry points (such as methods) from which the
agent execution is restarted each time it arrives at a new host,
as mentioned above.

The conceptual model of our prototype was thought as
intuitive and understandable as possible in this development
stage: we took inspiration from the fantastic world of space

WOA 2005 139

travels through black holes. According to this model, a mobile
agent (i.e. "the traveller") invokes the services offered by (i.e.
"gets himself absorbed by") a black hole on one host (i.e.
"planet") to move through the network (i.e. "the space") and
arrives at the destination host (i.e. "another planet on a distant
universe"), being extracted from the other side of the black
hole.

C. Implementing Strong Mobility

After having tested the mobility library building a simple
prototypal framework whose classes manage the departure
and arrival of the mobile threads, we now in our research are
integrating the mobility support in the Aglets framework to
have a full-fledged MAP endowed with strong mobility.

The implementation of the black hole model is based on
JikesRVM and embedded into the Aglets runtime to make
available the migration services to agents. In Figure 2, our
system is described using the classical notation of queuing
networks. The software components added by our approach
are highlighted with boxes and it can be clearly seen how
these parts are dynamically integrated into JikesRVM
scheduler, when the programmer opens a black hole to enable
migration services: no JVM manipulations are performed,
therefore a non invasive extension is carried out.

Agents are classified into three main categories:
1. Incoming agents, coming from the outside world and

requesting execution on the current host. They are
read from a network socket and re-established in the
local execution context, to be scheduled there.

2. Outgoing agents, which are leaving the scheduler
queues to be transferred on another machine. They
invoked a dispatch() method and got queued into the
hole’s migration queue.

3. Stationary agents, not interested or affected by the
migration facilities of our mechanism.

Figure 2. The queuing network model of the mobility framework

The black hole provides two kinds of services: a sending

service, for agents exiting the local JVM, and a receiving

service, for incoming execution requests. The former service
is implemented by a server thread created with BlackHole
instantiation, started when the BlackHole gets opened. This
thread, instance of the OutGoingHole class, tests a
migration queue in an endless loop, until the application
closes its parent BlackHole, and analyzes every extracted
mobile agent: its execution state is retrieved using OSR built-
in state capturing and the thread object, together with the
chain of all the stack frames, are written into the socket
established with another peer host. In more details, the
JikesRVM thread/agent is suspended before the state
capturing can occur and the stack is walked back from the last
pushed frame to the first one (i.e. the run() method). At
every step, the corresponding physical frame is analyzed
invoking the OSR extraction service and the OSR descriptor is
produced; but this intermediate form is not yet fully portable,
mainly because it has been conceived only to refer to
structures that are supposed to stay in the local memory: in
particular, we are talking about the compiled methods in
method area and the corresponding program counters (the so
called return address of each frame) in the machine code
body. So, the next essential stage performed by our
mechanism is to retrieve a return address as much portable as
possible: the bytecode index corresponding to the machine
code index of the method. The mapping between the two
indexes is, once again, granted by JikesRVM compilers and
can be calculated in very little times. Local variable and stack
operands are converted also into portable objects and stored
into the MobileFrame for each method in the stack, as
shown in Figure 3.

It must be pointed out that this representation of the
serialized thread is a very general one, as it uses only bytecode
level entities (e.g. bytecode indexes as program counters, local
variables and stack operands and so on) and this grants high
portability of the state. Dataspace objects are packed into the
mobile frames (or in the thread object) and serialized as well.
When all the necessary frames are successfully captured, the
system can send them all to the destination host.

Figure 3. A MobileFrame object

WOA 2005 140

To let external mobile agents enter a local environment, a
group of InComingHole threads are created and started at
BlackHole opening time. Each InComingHole opens a
server socket bound to a specified TCP port and waits, in an
endless loop, for incoming connection requests. When a
connection is accepted and established, the InComingHole
reads all the information about the state of the agent and,
when finished reading, resumes the agent in the local instance
of JikesRVM. At the arrival the aglet rebuilding is performed
following some essential steps:

1. the aglet object is read from the network stream into
the memory;

2. a new thread is created for this aglet or an existing
one acquired from the pool, if available;

3. this agent is notified the arrival event and its
execution is temporarily frozen;

4. the physical frames, produced by the
MobileFrame objects, are injected on the fly into
its stack;

5. the execution of the thread/aglet is transparently
resumed.

The injection task is performed by a frame installer
component, which adds each frame to a newly allocated stack,
adjusting thread context registers and frame pointers. Frames
are constructed in compliance with the baseline layout of the
target platform. We have currently implemented a working
frame installer for the IA32 architecture, but we are planning
to complete the system with the PPC frame installer.

The migrated aglet will be, by default, destroyed in the
source JVM and its associated thread added back to the thread
pool, for a possible future reuse. Nevertheless, the dispose
message can be explicitly intercepted by the programmer so
that the aglet can continue executing, thus realizing a form of
“agent cloning”.

Referring to the code example of Figure 1, the adoption of
strong thread mobility overtakes the mentioned drawback,
since the code restarts at the destination machine from the
same point it stopped at the source one. Thus the code shown
in Figure 1 becomes the one of Figure 4.

public class MyAgent extends Aglet{
 public void run(){
 // things to do before the migration
 try{
 migrate(new URL(“atp://nexthost.unimore.it”);
 }catch(Exception e){ … }
 // things to do after migration
 }
}

Figure 4. An example of Aglet code using our approach.

As readers can see, the code is simpler (no flags and
branches are required) and shorter than the previous one.

V. PERFORMANCE AND OPEN ISSUES

At the current stage of our research, the thread serialization
mechanism, integrated into the Aglets framework, has been

successfully tested, focusing mainly on the state capturing and
restoring of the threads executing the aglet.

First of all, we made some first performance tests to
discover possible bottlenecks and evaluate the cost of each
migration phase. The times measured are expressed in seconds
and are average values computed across multiple runs, on a
Pentium IV 3.4Ghz with 1GB RAM on JikesRVM release
2.4.1. We tested the serialization with increasing stack sizes
(5, 15 and 25 frames) and found a very graceful time
degradation. These times are conceptually divided into two
tables, where Table 1 refers to the thread serialization process,
while Table 2 refers to the symmetrical de-serialization
process at the arrival host.

 5 frames 15 frames 25 frames

Frame extraction 1.78E-5 1.89E-5 1.96E-5

State building 3.44E-5 3.75E-5 3.43E-5

Pure serialization 2.49E-3 7.32E-3 1.50E-2

Overall times 2.54E-3 7.38E-3 1.51E-2

Table 1. Evaluated times for thread serialization (sec.)

 5 frames 15 frames 25
frames

Pure deserialization 4.46E-3 5.33E-3 7.06E-3

State rebuilding 5.45E-4 5.27E-4 5.06E-4

Stack installation 1.53E-3 1.60E-3 1.71E-3

Overall times 6.54E-3 7.46E-3 9.28E-3

Table 2. Evaluated times for thread rebuilding (sec.)

Considering how these times are partitioned among the

different phases of each process, we can see that the bulk of
the time is wasted in the pure Java serialization of the captured
state, while the extraction mechanism (i.e. the core of the
entire facility) has very short times instead. The same
bottleneck due the Java serialization may be observed in the
de-serialization of the thread. In the latter case, however, we
have an additional overhead in the stack installation phase,
since the system has often to create a new thread and compile
the methods for the injected frames.

VI. CONCLUSIONS AND FUTURE WORK

This paper has introduced our approach to support Java
thread strong mobility based on the IBM JikesRVM virtual
machine, and has outlined how this mechanism is being
integrated in the Aglets Mobile Agent Platform in order to
exploit such approach. Thanks to the support to thread
serialization, agents will be simpler in terms of code, and, at
the same time, the code will be easier to be read since a single
execution flow will be followed from the beginning to the
end.

Our approach represents an extension of JikesRVM but
does not change any part of this JVM. Rather, it exploits some

WOA 2005 141

interesting facilities provided by that JVM to avoid many of
the drawbacks of the presented solutions. OSR facility also
allowed us to capture the state in a very portable (i.e.
bytecode-level) format. Thanks to the scheduling policy of the
JikesRVM, which enables the support of thousands of Java
threads, our approach will keep the thread management
efficient, and allows having one thread for each agent,
overcoming the limitation of the current implementation of the
Aglets system.

With regard to future work, we will perform a comparison
test between the current Aglets release (with weak mobility)
and our JikesRVM-based version (with strong mobility). This
comparison will be performed also under critical conditions
(such as a large number of agents).). From the first results
reported in section V, we can draw the conclusion that the
prototype can be further optimized with respect to the Java
serialization bottleneck, in particular trying to reduce the size
of the thread state data to be serialized. This perhaps will
allow us to reduce strongly the unavoidable gap between a
weak agent serialization and a strong one.

ACKNOWLEDGMENT
Work supported by the Italian MIUR and CNR within the

project "IS-MANET, Infrastructures for Mobile ad-hoc
Networks" and by the European Community within the project
"CASCADAS".

REFERENCES

[1] ECMA TC39/TG3. The CLI Architecture. Technical Report,
ECMA, October 2001.

[2] A. Acharya, M. Ranganathan, J. Saltz, "Sumatra: A Language for
Resource-aware Mobile Programs". 2nd International
Workshop on Mobile Object Systems (MOS'96), Linz, Austria,
1996

[3] The Aglets Mobile Agent Platform website
http://aglets.sourceforge.net

[4] B.Alpern, C.R. Attanasio, D. Grove and others, "The Jalapeno
virtual machine", IBM System Journal, Vol. 39, N°1, 2000

[5] B. Alpern, S. Augart, S.M. BlackBurn, M. Butrico, A. Cocchi, P.
Cheng, J. Dolby, S. Fink, D. Grove, M. Hind and others, “The
Jikes Research Virtual Machine project: Building an open-
source research community”, IBM Systems Journal, Vol. 44,
No. 2, 2005

[6] B. Alpern, D. Attanasio, J. J. Barton, A. Cocchi, S. F. Hummel,
D. Lieber, M. Mergen, T. Ngo, J. Shepherd, S. Smith,
“Implementing Jalapeño in Java.”, ACM SIGPLAN
Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA '99), Denver,
Colorado, November 1, 1999

 [7] Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and
Peter F. Sweeney, “Adaptive Optimization in the Jalapeño
JVM”, ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA 2000), Minneapolis, Minnesota, October 15-19,
2000

[8] L. Bettini and R. De Nicola, “Translating Strong Mobility into
Weak Mobility”, MA2001, pages 182-197, number 2240,
Springer, 2001.

[9] S. Bouchenak, D. Hagimont, S. Krakowiak, N. De Palma and F.
Boyer, "Experiences Implementing Efficient Java Thread
Serialization, Mobility and Persistence", I.N.R.I.A., Research
report n°4662, December 2002

[10] S. Bouchenak, D. Hagimot, "Pickling Threads State in the Java
System", Technology of Object-Oriented Languages and
Systems Europe (TOOLS Europe'2000) Mont-Saint-
Michel/Saint-Malo, France, Jun. 2000

[11] G. Burke, J.Choi, S. Fink, D.Grove, M. Hind, V. Sarkar, M.J.
Serrano, V.C. Sreedhar, H. Srinivasan, "The Jalapeno Dynamic
Optimizing Compiler for Java", ACM Java Grande Conference,
June 1999

[12] Stephen Fink, and Feng Qian, “Design, Implementation and
Evaluation of Adaptive Recompilation with On-Stack
Replacement”, International Symposium on Code Generation
and Optimization San Francisco, California, March 2003

[13] M. 13chetti, “Tireless travel agent Special Report: The Rise Of
E-Business/Wheeling And Dealing”, available at
http://domino.research.ibm.com/comm/wwwr_thinkresearch.ns
f/pages/travel199.html

[14] A. Fuggetta, G. P. Picco, G. Vigna, “Understanding Code
Mobility”, IEEE Transactions on Software Engineering, Vol
24, 1998

[15] J. Gosling, B. Joy, G. Steele, G. Bracha, “The Java Language
Specification, second edition”, SUN Microsystem

[16] M. Hohlfeld and B.S. Yee, “How to Migrate Agents”,
Unpublished, available at http://www.cse.ucsd.edu/~bsy/, 1998.

[17] F. Bellifemine, G. Caire, A. Poggi, G. Rimassa, "JADE - A
White Paper", EXP in Search of Innovation, TILAB, vol. 3,
2003

[18] N. R. Jennings, “An agent-based approach for building complex
software systems”, Communications of the ACM, Vol. 44,
No. 4, pp. 35-41 (2001)

[19] The JikesRVM project site: http://jikesrvm.sourceforge.net

[20] D. B. Lange, M. Oshima, G. Karjoth, K. Kosaka, "Aglets:
Programming Mobile Agents in Java", in the Proceedings of
the International Conference on Worldwide Computing and Its
Applications (WWCA), 1997

[21] D. B. Lange, Y. Aridor, ”Agent Transfer Protocol (ATP)”,
IBM=TRL, draft number 4, 19 March 1997

[22] T. Lindholm, F. Yellin, “The Java Virtual Machine
Specification, second edition”, SUN Microsystem

[23] M. 23, P. McBurney, C. Preist, “Agent Technology: Enabling
Next Generation Computing – A Roadmap for Agent Based
Computing”, AgentLink, http://www.agentlink.org/roadmap

[24] Scott Oaks and Henry Wong, “Java Threads, 2nd edition”,
Oreilly, 1999

[25] The 25 Project web site: http://25.sourceforge.net/

[26] T. Sakamoto, T. Sekiguchi, A. Yonezawa, "A bytecode
transformation for Portable Thread Migration in Java", 4th
International Symposium on Mobile Agents 2000 (MA'2000),
Zurich, Sep. 2000.

WOA 2005 142

http://jikesrvm.sourceforge.net/
http://www.agentlink.org/roadmap

[27] “The Java Object Serialization Specification”, Sun
Microsystems, 1997

[28] D. Sislak, M. Rollo, M. Pechoucek, "A-globe: Agent Platform
with Inaccessibility and Mobility Support", in Cooperative
Information Agents VIII , n. 3191, Springer-Verlag Heidelberg,
2004

[29] T. Suezawa, "Persistent Execution State of a Java Virtual
Machine", ACM Java Grande 2000 Conference, San Francisco,
CA, USA, Jun. 2000

[30] E. Truyen, B. Robben, B. Vanhaute, T. Coninx, W. Joosen, P.
Verbaeten, "Portable support for Transparent Thread Migration
in Java" 4th International Symposium on Mobile Agents 2000
(MA'2000), Zurich, Switzerland, Sep. 2000

[31] Paul R. Wilson, “Uniprocessor Garbage Collector Techniques”,
in the Proceedings of the International Workshop on Memory
Management (IWMM92), St. Malo, France, September 1992

[32] B. Walker, G. Popek, R. English, C. Kline, and G. Thiel, “The
LOCUS distributed operating system”, In Proceeding of the
Ninth Symposium on Operating Systems Principles, pages 49-
70, ACM 1983.

[33] W. Zhu, C. Wang, F. C. M. Lau, "JESSICA2: A Distributed
Java Virtual Machine with Transparent Thread Migration
Support". IEEE Fourth International Conference on Cluster
Computing, Chicago, USA, September 2002

[34] G. Vigna, G. Cugola, C. Grezzi and G.P. Picco, “Analyzing
Mobile Code Languages”, Mobile Object Systems n. 1222,
Springer, 1997.

[35] C. Chambers, “The Design and Implementation of the Self
Compiler, an Optimizing Compiler for Object-Oriented
Programming Languages”, PhD thesis, Stanford University,
Mar. 1992. Published as technical report STAN-CS-92-1420.

WOA 2005 143

