
 1

Abstract—This paper presents ANEMONE, a multi-agent

platforms network that provides services for the academic
community implemented by using the JADE agent development
framework. In particular, ANEMONE provides a set of services
to support i) academic people in some of their recurrent activities
(fix an appointment, organize a meeting and search documents on
the Web, ii) students in getting information about courses and iii)
information technology people (including students) in getting
information on documents and people that may help them to solve
their programming problems. Moreover, it also provides a set of
system-oriented services for the management of agent platforms
and services and for the realization of new types of service.

Index Terms—Multi-agent systems, cooperative systems, user-
oriented services

I. INTRODUCTION

NE of the main reasons to use autonomous software
agents is their ability to interact to show useful social

behaviors rapidly adapting to changing environmental
conditions. But the most interesting applications require that
large and open societies of agents are in place, where
collaborating and competing peers are able to interact
effectively. In a context where a number of possible partners
or competitors can appear and disappear, agents can highlight
their ability to adapt to evolving social conditions, building
and maintaining their networks of trust relations within a
global environment.

The first effort to create such a large and open society of
autonomous software agents was Agentcities [1]. This project
developed a network of agent platforms spanning over the
whole globe and a number of complex agent-based

Manuscript received November 3, 2005. This work is partially supported

by the “Ministero dell'Istruzione, dell'Università e della Ricerca” through the
COFIN project ANEMONE.

M. Mari and A. Poggi are with the Dipartimento di Ingegneria
dell’Informazione, University of Parma, Italy (e-mail: mari@ce.unipr.it,
poggi@ce.unipr.it).

P. Baroni is with the Dipartimento di Elettronica per l’Automazione,
University of Brescia, Italy (e-mail: baroni@ing.unibs.it).

G. Armano and G. Cerchi are with the Dipartimento di Ingegneria Elettrica
ed Elettronica, University of Cagliari, Italy (e-mail: armano@diee.unica.it).

C. Santoro is with the Dipartimento di Ingegneria Informatica e delle
Telecomunicazioni, University of Catania, Italy (e-mail: csanto@diit.unict.it).

E. Tramontana is with the Dipartimento di Matematica e Informatica,
University of Catania, Italy (e-mail: tramontana@dmi.unict.it).

M. Colombetti and M. Verdicchio are with the Dipartimento di Elettronica
e Informazione, Politecnico of Milano, Italy (e-mail: colombet@elet.polimi.it,
verdicch@elet.polimi.it).

applications were deployed on the network. OpenNet is an
evolution of Agentcities whose goal is to integrate agent
platforms with Web Services / Semantic Web platforms [2]. In
this paper, we present ANEMONE, an agent platform network
developed inside the OpenNet initiative.

II. ANEMONE

ANEMONE is a multi-agent platforms network that
provides services for the academic community (professors,
researchers and students) implemented by using the JADE
agent development framework [3].

ANEMONE offers both system-oriented and user oriented
services. System oriented services allow the management of
the network and the realization of new user-oriented services
through their extension and composition. User-oriented
services have the goal of helping academic users and can be
used through a simple Web browser.

III. SYSTEM-ORIENTED SERVICES

System-oriented services have the goal to provide support to
the management of agent platforms and services and provide
reusable components to realize new types of service.

A. Platforms and Services Management
Platform and service management services are based on the

services provided by the JADE agent development software
and a set of services to register and search platforms
(Agent/Service Platform Directory Services), agents (Agent
Directories) and services (Service Directories) in an open
network of agent platforms. Using these services, it is possible
to connect a new platform to the openNet network, making it
visible to others, and deploy own naming, directory and
monitoring services.

Moreover, a set of monitoring services (Agent/Service
Platform Monitoring Services) allow to monitor the platform's
status and its ability to communicate with others.

B. Agent Interaction
As we introduced above, the platforms in the ANEMONE

network are developed by using JADE. Agent interaction in
JADE systems is based on message exchange. Thus, the
adopted agent communication language has a crucial role.
JADE agents’ messages follow the standard proposed by the
Foundation for Intelligent and Physical Agents (FIPA [10]),
which is the most complete proposal to date.

ANEMONE - A Network of Multi-Agent
Platforms for Academic Communities

G. Armano, P. Baroni, G. Cerchi, M. Colombetti, A. Gerevini, M. Mari, A. Poggi,
C. Santoro, E. Tramontana, M. Verdicchio

O

WOA 2005 120

 2

Still, the FIPA semantics shows some shortcomings that
inevitably affect the systems whose communication is based on
such standard. Our aim is to provide a different semantics to
tackle these problems. The FIPA proposal and ours share the
assumption that agent communication should be dealt in terms
of communicative acts, a special action type aiming at
allowing information interchange. We part from FIPA
guidelines when it comes to defining the semantics of such
acts. The FIPA semantics exploits the Belief, Desire, Intention
(BDI, [5]) model, which views communicative acts as events
that change agents’ mental states. Instead of analyzing changes
in the state of the internal architecture of agents, our approach
focuses on the external social state holding among agents. We
describe communicative acts as actions performed by agent to
change their commitments towards the others. We rewrote the
FIPA Communicative Act Library according to our
perspective to have a benchmark for the two approaches. The
advantages of dealing with social states rather than mental
ones have surfaced in the analysis of the Contract Net
protocol, in which an agent, in a need for a specific service,
issues a call for proposal to other agents. To check whether the
contract has been fulfilled, the current FIPA protocol
prescribes an inform message from the service provider itself.
This procedure is effective only under very strict assumptions
about the sincerity of the agents, which we cannot afford when
we deal with open multi-agent systems. In a commitment-
based approach, on the contrary, each message exchange of the
Contract Net protocol leads to changes in the social dimension
of the multi-agent system, in that, commitments are proposed,
and such proposals are accepted or rejected. Commitments are
public and reflect an objective state of affairs between agents.
They can be stored for further reference and thus they offer an
effective way to check whether agents have fulfilled their
commitments. The FIPA communicative act library in terms of
commitments and the results of the analysis of the Contract
Net protocol are formally presented in [6].

We provide the ANEMONE network and, more generally,
every JADE-based multi-agent system such commitment-based
communication system in the form of an agent that is called
Notary. The Notary is responsible for examining the content of
the messages that are exchanged over the system and creating
public structured data items reporting the relevant
commitments between agents. The Notary makes use of
witness agents the communicating agents have agreed upon to
check whether the commitments have been fulfilled or
violated. The witnesses reply to queries by the Notary, and
thus increase its knowledge base. The Notary exploits a JESS
(Java Expert System Shell, [7]) inference engine to reason
about its own knowledge base and verify whether a
commitment has been fulfilled or not. To support the
commitment generation and manipulation processes, the
exchanged messages need to be carrying more information
than as prescribed by the usual FIPA standard. To maximize
backward compatibility, we have chosen not to add fields to
the original FIPA message structure, but to enrich and

standardize its content field by means of XML. The Notary is
provided with XML parsing capabilities thanks to a SAX
(Simple API for XML, [8]) module.

The Notary-enhanced communication system introduces
significant overhead in the message interchange process,
which may not suit the needs for lightweight application in
such environments like PDAs or mobile phones. This service
is offered as an option when agents need a trusted third-party
to guarantee for their communication process, e.g. in electronic
auctions or business transactions. Agents only need to put the
Notary among the messages’ addressees to obtain its service.

C. Automated Reasoning
Domain-independent automated reasoning services, based

on stand-alone software tools previously developed in the
context of other research activities, are made available to the
community by a wrapper agent, which is in charge of receiving
requests from other agents specifying reasoning tasks to be
carried out, of exploiting the suitable software system to
produce the relevant solutions, and of returning them to the
requestor agents.

The wrapper agent and the related agents devoted to
registration and brokering of the available reasoning services
are implemented according to the FIPA specification “Agent
software integration” [10].

Two reasoning services are currently being integrated into
the ANEMONE network, namely an argumentation system and
a planning system.

Argumentation theory is a framework for practical and
uncertain reasoning, where arguments supporting conclusions
are progressively constructed in order to identify the set of
conclusions that should be considered justified according to
the current state of available knowledge. The use of
argumentation has been advocated both at the level of
interaction among agents to support dialogue and negotiation
and at the level of an agent's internal reasoning (see [14] for a
survey).

Since the construction of arguments proceeds by exploiting
incomplete and uncertain information, conflicts between them
may arise: the conflict relations between arguments are
formally represented by a structure called defeat graph. The
core problem is then to compute the “defeat status” of the
arguments, namely to determine which arguments emerge
undefeated from the conflict: several semantics have been
proposed to this purpose in the literature.

A reasoning task in this case consists in the specification of
a defeat graph and the solution provided is the defeat status
assignment for the arguments included in the graph. The
solution may be produced according to the well-known
grounded [13] semantics or to the recently introduced CF2 [9]
semantics.

As to the planning system, this reasoning service receives
requests to solve plan generation problems specified using the
recent standard PDDL2.2 language [12], and computes plans
solving such problems (assuming they are solvable and not too
hard for the integrated planner). PDDL2.2 is an expressive

WOA 2005 121

 3

planning language supporting the representation of domains
involving numerical quantities, actions with durations,
predictable exogenous events and domain axioms. The
integrated planning system is LPG [11], an efficient, state-of-
the-art, fully-automated planner which received two awards at
the last International planning competition.

IV. USER-ORIENTED SERVICES

ANEMONE provides a set of services to support i)
academic people in some of their recurrent activities (fix an
appointment, organize a meeting and search documents on the
Web, ii) students in getting information about courses and iii)
information technology people (including students) in getting
information on documents and people that may help them to
solve their programming problems.

A. Agenda Management
An agenda management system called MAgentA (Multi-

Agent Agenda) has been developed. The system, besides
managing users’ personal agendas, provides a specific support
to meeting organization: through a process of automated
negotiation agents are able to determine the temporal location
of a meeting which best fits the preferences of their owners,
while satisfying some constraints specified by the meeting
proposer.

The MAgentA system, implemented using the JADE agent
development environment, consists in the following agents:

- a user management (UM) agent, in charge of managing
the authentication of authorized users;

- a meeting management (MM) agent, in charge of
coordinating the negotiation of a meeting among
users’ agents and of managing a database of meetings;

- a set of personal agenda (PA) agents, which represent
individual users and maintain information about their
scheduled activities and their preferences over their
possible temporal allocation. PA agents are expected
to be continuously running and available to receive
meeting organization requests from other agents;

- a set of GUI agents, in charge of managing the
interaction with the MAgentA users through a
graphical interface. A GUI agent is activated only
when necessary, i.e. during a user working session.

In a typical use scenario, a user, after authentication,
interacts with a GUI agent to express her/his preferences about
temporal locations of requested meetings and possibly to insert
some personal scheduled activities within her/his agenda. The
GUI agent communicates this information to user's PA agent
which will use them when negotiating the organization of a
meeting.

Moreover, using the GUI, a user may initiate the
organization of a meeting by specifying:

- some temporal constraints about the temporal location
of the meeting;

- the minimum and maximum duration of the meeting;
- a list of expected participants, partitioned into

necessary participants and optional participants.

Once a request of a meeting organization has been
formulated by the initiator user, it is submitted to the MM
agent which tries to identify a solution, namely a suitable
temporal location of the meeting, through a negotiation
process consisting in the following steps.

First of all, using the FIPA contract-net protocol, the PA
agent of every participant is solicited to propose a set of
possible solutions compatible with the meeting temporal
constraints, and to specify the user’s preferences about the
proposed solutions.

Then the MM agent verifies whether there exists a temporal
location where all participants are available and, if one or
more of them exists, it proposes them to the initiator user,
ordering them on the basis of participants’ preferences.
Otherwise, the solutions where at least the necessary
participants are available are searched for. Again, if these
“weaker” solutions are found, they are proposed in an order
consistent with the preferences specified in the agendas of the
involved users; otherwise, a final search for (possibly less-
satisficing) solutions is carried out, where personal activities
included in participants’ agendas are ignored. The list of the
solutions found or a message of failure is then provided to the
initiator user.

If a list of solutions has been found, the initiator user selects
and confirms one of them: a notification is then sent to the
MM agent and to the involved PA agents, which add the
meeting to their databases.

In case of failure, it is up to the user to define a new request
with different constraints and to initiate a new negotiation
process.

B. Supporting Students in their University Activities
DIEE has developed an e-service devised to support

graduated and undergraduated students in their activities. It is
built upon a generic multi-agent architecture, designed to
support the implementation of applications aimed at: (i)
retrieving heterogeneous data spread among different Internet
sources (i.e., generic web pages, news, and forums), (ii)
filtering and organizing information according to personal
interests explicitly stated by each user, and (iii) providing
adaptation techniques to improve and refine throughout time
the profile of each selected user. The generic architecture has
been called PACMAS, standing for Personalize, Adaptive, and
Cooperative MultiAgent System, and encompasses four main
levels (i.e., information, filter, task, and interface), each being
associated to a specific role that agents can play. The
communication between adjacent levels is achieved through
suitable middle agents, which form a corresponding mid-span
level. Each level is populated by a society of agents, which are
autonomous and flexible, and can be personalized, adaptive
and cooperative depending on the role they assume in the
implemented application. PACMAS agents belong to one of
the following categories:

- information agents, which access information sources,
and are able to collect and manipulate such
information [19];

WOA 2005 122

 4

- filter agents, able to process information according to
user preferences [16] ;

- task agents, which help users to perform tasks by
solving problems and exchanging information with
other agents [17];

- interface agents, devised to facilitate the interaction
between the user and other agents [18];

- middle agents, which are in charge of establishing
communication among requesters and providers.

Let us consider a typical University Department. It generally
makes available the information about courses, seminars,
exams, professors, and students on different areas: web sites,
forums, and news (NNTP) servers. All relevant information is
not directly available but it is usually spread on the department
portal, on the web site of each course, and on the personal
page of each professor. Furthermore, each professor might
activate her/his news and forum service. Some of the
information potentially interest all students, such as lesson
timetables, exam dates, taxes, and student tutoring. On the
other hand, students belonging to different courses are
interested in different lessons and exams. Typically, a student
in search of relevant information about her/his University

activities browses web sites, and reads announcements from
forum and news services. This is often a repetitive and boring
task that can be automated. From our perspective,
personalization and adaptation represent the added value of
such an automated system.

 To provide an e-service able to support students in their
activities, a prototype based on the PACMAS architecture has
been implemented, using JADE [3] as the underlying
framework. Supporting students involves several activities:
information extraction, information retrieval and filtering,
information processing, and result presentation. Each activity
corresponds to a suitable level of the PACMAS architecture.
Information extraction is carried out at the information level
by information agents that play the role of wrappers,
specialized for dealing with a specific information source.
Information retrieval and filtering is carried out at the filter
level, populated by two kind of agents: generic and personal.
Generic filters are specifically aimed at removing all non
relevant information retrieved from the involved information
sources, whereas personal filters are devoted to select the
information according to the personal needs, interests, and

Figure 1. The GUIs of the four user-oriented

WOA 2005 123

 5

preferences of the corresponding user. Information processing
is carried out at the task level, where agents are customized for
a specific task (e.g. lesson timetable, seminars, and exams
scheduling). Result presentation is carried out at the interface
level, through agents that interact with the users. A suitable
graphical interface - personalized for each user - that can run
on a web browser, is available to allow communication among
interface agents and the user.

The prototype has been tested on the information system of
the Department of Electrical and Electronic Engineering
(DIEE) at the University of Cagliari.. The system is able to
learn specific user’s interests to retrieve, filter, and show only
the information deemed relevant by her/him. A beta version of
the web service is available at:
http://iascw.diee.unica.it/PacmasWWW.

C. Documents Search
SHARK is a multi-agent P2P document sharing system

aiming to provide users with a more effective tool to find
documents and promote collaborations among them [20]. Each
SHARK agent (such as Categoriser, Searcher, UserProfiler,
etc.) autonomously performs a small task, such as document
categorisation, finding, user profiling, etc. and communicates
its results to other agents.

The hosts in a SHARK network are given different roles. A
client host provides users with a few services, such as user
profiling and document analysis, and allow users to log in to
an AgentCities [21] host. AgentCities hosts are servers,
connected to each other, each running a FIPA-compliant agent
platform and handling data related to SHARK users and their
documents.

1) SHARK Agents
n the following we describe the agents that constitute

SHARK. Agent Cruncher analyses shared documents and
extracts from each a set of keywords. For this, Cruncher uses
filters to recognise and remove HTML, LaTex, RTF and PDF
tags that are used only to format the text; then it removes the
stop words, and, for all the remaining words, it extracts the
appropriate stems. The output is a list of word stems ranked by
the number of occurrences found [22][23].

Agent Categoriser, on the basis of extracted word stems,
associates categories to documents. Categoriser holds a
knowledge base, containing, for each known category: its
name, the list of keyword stems and the respective frequency.
Taking as input a list of word stems, Categoriser calculates the
“distance” between such a list and the known categories, by
using the dot product. The category that minimises the distance
is chosen as the category to which the document belongs.

Agent UserProfiler detects the activities that a user
operating with a web browse performs, and analyses the shared
documents in order to continually update his/her profile. The
user profile consists of the list of categories corresponding to
shared documents or visited web pages. Each category is
associated with a score, which reflects the degree of interest,
measured on the basis of the number of shared documents and
visited web pages.

Agent Searcher runs on an AgentCities host and holds the
list of categories identified for the local shared documents, for
each category the list of documents and the user providing
each document. Given a user-provided query (as a list of
keywords), Searcher looks for matching categories and returns
the list of corresponding documents with the user providing
each. The query is then propagated to the other AgentCities
hosts, where local Searchers will perform analogous activities.

Agent Correspondent handles document download requests
originating from other users.

Agent Advertiser periodically checks user profiles in order
to find a partial match. Whenever the matching degree is
above a given threshold, the users with common interests are
notified with an email message. It is then up to the users to
find the opportunity for a collaboration.

The instances of the agent classes described above run on
different hosts. The user host is equipped with Cruncher,
UserProfiler and Correspondent; AgentCities servers host
Categoriser, Searcher and Advertiser.

2) Using SHARK
Users interact with SHARK by means of a web interface, of

which we highlight here two important features. The first one
is the searching facility: once a user has performed a query, by
typing a set of keywords into a web form, this is sent to the
Searcher on the AgentCities server the user is connected with.
The results of Searcher are sorted so that the more relevant
document is that exhibiting the highest frequency (in
percentage with respect to all the document’s keywords) of the
keyword queried-if only one keyword is provided. If more than
one keyword is given, the total relevance is computed as the
average of each single keyword relevance.

The second feature is the collaboration facility. This is
connected with searches and consists of providing a list that
reports the name of the users who have, in their user profile,
the keyword(s) queried. Names are ranked according to the
relevance of the user profile with respect to the keyword(s)
queried. Relevance is computed using the same method
employed for documents.

D. Software Development
RAP (Remote Assistant for Programmers), is a Web and

multi-agent based system to support remote students and
programmers during common projects or activities based on
the use of the Java programming language [24].

1) RAP Agents
In this section we describe the agents that compose the RAP

system. Personal Agents allow the interaction between the user
and the different parts of the system and, in particular, between
the users themselves. Moreover, these agents are responsible
of building the user profile and maintaining it when the user is
“on-line”. User-agent interaction can be performed in two
different ways: through a Web based interface or through
emails (if the user is not on-line). User Profile Managers are
responsible of maintaining and updating the profile of system
users. Answer Managers maintain the answers provided by
users during the life of the system and they find the

WOA 2005 124

 6

appropriate answers to the new queries of the users. Besides
providing an answer, these agents update the score of the
answer and forward the vote to the User Profile Manager for
updating the user profile. Document Managers find the
appropriate documents to answer the queries submitted by
system users. E-mail Managers are responsible of the
communication between the system and the off-line users.
Starter Agents are responsible for activating a Personal Agent
when either a user logs on or another agent requests it.
Directory Facilitators are responsible to inform an agent about
the address of the other agents active in the system (yellow
pages service).

2) Profile Management and Open Communities
The management of user and document profiles is

performed in two different phases: an initialization phase and
an updating phase. In order to simplify and reduce the
possibility of inaccuracy due to people’s opinions of
themselves and to incomplete information, we decided to build
the initial profile of the users and documents in an automated
way. Profiles are represented by vectors of weighted terms
whose values are related to the frequency of the term itself in
the user’s documents. Document and user profiles are
computed by using “term frequency inverse document
frequency” (TF-IDF) [24] algorithm. Each user profile is built
by user’s Personal Agent through the analysis of the software
she/he wrote. This is only the initial user’s profile, it will be
updated when the user writes new code or interacts with the
system answering some queries.

An important requirement that has guided the design of
RAP has been the support for open and distributed
communities. RAP structure is open, since new users can
register and access the system, and a registered user can
acquire new skills or produce new software. The community
beneath RAP is distributed: the whole system can consist of a
dynamic group of local communities. Each community can
operate isolated, but can also decide to join a group of
communities, sharing experts and documents repositories.

The open and distributed nature of the system entails some
significant problems in the evaluation of information: the
evaluation of both experts and documents is strongly
dependent on the actual composition of the community group.
For example, if a user is rated as the maximum expert to
answer a query, he is rated considering only the users
registered in the system at that moment. As a matter of fact,
TF-IDF algorithm can be easily used in a centralized system
where all the profiles and the data are managed, while our
context is more complex. For these reasons, each profile
component of RAP is associated with two elements: an
absolute element and a TF-IDF weighted element. The
absolute one depends only on the user (or document) profile,
instead the TF-IDF element is related to both the user profile
and the whole community profiles. Moreover, while the
absolute element is stored in a database, the weighted one is
maintained in memory and it is recalculated when necessary.

V. CONCLUSION

In this paper, we presented ANEMONE, a multi-agent
platforms network that provides services for the academic
community (professors, researchers and students).

The ANEMONE network and services are the result of a
project involving five Italian universities (University of Parma,
University of Brescia, University of Cagliari, University of
Catania and “Politecnico di Milano” Technical University) and
the realized network is composed of five nodes deployed in
the different universities. However, the ANEMONE network
can interoperate with agent platforms deployed in different
parts of the world. In fact, ANEMONE project takes part of
the OpenNet initiative [2] that is a project dedicated to
facilitating collaboration between research projects
developing, applying and above all deploying Agent, Semantic
Web, Web Services, Grid and similar networked application
technologies in large-scale open environments such as the
public Internet. In particular, the core partners of this initiative
deployed a backbone network of agent platforms, including a
platform at the University of Parma. This backbone network
has the goal to be the interconnection network among the
systems and prototypes belonging to the initiative (currently
different projects are running in different part of the world and
different tens of agent platform are active).

REFERENCES
[1] "Agentcities: A Worldwide Open Agent Network" Steven Willmott,

Jonathan Dale, Bernard Burg, Patricia Charlton and Paul O'brien. Short
article in Agentlink News Issue 8, November 2001.

[2] OpenNet initiative Home Page. Available from http://x-opennet.org/.
[3] F. Bellifemine, A. Poggi, G. Rimassa, Developing multi agent systems

with a FIPA-compliant agent framework. Software Practice &
Experience, 31:103-128, 2001

[4] Foundation for Intelligent Physical Agents, “Agent Communication
Language Specifications”, http://www.fipa.org/repository/aclspecs.html,
2002

[5] M. Wooldridge, “Reasoning about rational agents”, MIT Press, 2000
[6] M. Verdicchio, M. Colombetti, “A Commitment-based Communicative

Act Library”, Proceedings of the Fourth International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 05), vol. 2,
p755-761, Utrecht, 2005

[7] Ernest Friedman Hill, “JESS in Action”, Manning Publications, 2003
[8] D. Megginson, “SAX”, http://www.saxproject.org, 2004
[9] P. Baroni, M. Giacomin, G. Guida, SCC-recursiveness: a general

schema for argumentation semantics, accettato per la pubblicazione su
Artificial Intelligence, 2005

[10] FIPA Specification 00079, Agent Software Integration, 2001,
http://www.fipa.org/specs/fipa00079/

[11] A.Gerevini, A, Saetti, I. Serina, Planning through Stochastic Local
Search and Temporal Action Graphs in LPG, Journal of Artificial
Intelligence Research (JAIR), 20, 2005, 239-290

[12] J. Hoffmann, S. Edelkamp, The Deterministic Part of IPC-4: An
Overview, to appear in Journal of Artificial Intelligence Research
(JAIR), 2005

[13] J. Pollock, How to Reason Defeasibly, Artificial Intelligence, 57(1),
1992, 1-42

[14] H. Prakken and G. A. W. Vreeswijk, Logics for Defeasible
Argumentation, in Dov M. Gabbay and F. Guenthner Eds., Handbook of
Philosophical Logic, Kluwer, 2001

[15] K. Decker, K. Sycara, and M. Williamson. Middle-agents for the
internet. In Proceedings of the 15th International Joint Conference on
Artificial Intelligence (IJCAI 97), pages 578.583, 1997.

WOA 2005 125

 7

[16] A. Falk and I. Josson. Paws: An agent for www-retrieval and filtering. In
Proceedings of Practical Application of Intelligent Agents and Multi-
agents Technology (PAAM-96), pages 169.179, 1996.

[17] J. Giampapa, K. Sycara, A. Fath, A. Steinfeld, and D. Siewiorek. A
multi-agent system for automatically resolving network interoperability
problems. In Proceedings of the Third International Joint Conference on
Autonomous Agents and Multiagent Systems, pages 1462.1463, 2004.

[18] H. Lieberman. Autonomous interface agents. In Proceedings of the
ACM Conference on Computers and Human Interface (CHI-97), pages
67.74, 1997.

[19] P. Maes. Agents that reduce work and information overload.
Communications of the ACM, 37(7):31.40, 1994

[20] A. Di Stefano, G. Pappalardo, C. Santoro, E. Tramontana. “SHARK, a
Multi-Agent System to Support Document Sharing and Promote
Collaboration”. In Proceedings IEEE Hot P2P Workshop. Volendam,
Holland. October, 2004.

[21] WWW. www.agentcities.net, 2005.
[22] H. Lieberman. Letizia: An Agent That Assists Web Browsing. In

International Joint Conference on Artificial Intelligence, Montreal,
August 1995.

[23] H. Lieberman, P. Maes, and N. Van Dyke. Butterfly: A Conversation-
Finding Agent for Internet Relay Chat. In International Conference on
Intelligent User Interfaces, Los Angeles, January 1999.

[24] L. Lazzari, M. Mari, A. Negri, A. Poggi: Support Remote Software
Development in an Open Distributed Community. In AAMAS05
workshop Agent-Based System for Human Learning (ABSHL), Utrecht,
2005.

[25] Salton, G.: Automatic Text Processing. (1989), Addison-Wesley.

WOA 2005 126

