
On the Role of Simulation
in the Engineering of Self-Organising Systems:

Detecting Abnormal Behaviour in MAS
Luca Gardelli Mirko Viroli Andrea Omicini

DEIS, Alma Mater Studiorum–Università di Bologna,
via Venezia 52, 47023 Cesena, Italy

Email: {luca.gardelli, mirko.viroli, andrea.omicini}@unibo.it

Abstract— The intrinsic complexity of self-organising multi-
agent systems calls for the use of formal methods to predict
global system evolutions at early stages of the design process.
In particular, we evaluate the use of simulations of high-level
system models to analyse properties of a design, which can
anticipate the detection of wrong design choices and the tuning
of system parameters, so as to rapidly converge to given overall
requirements and performance factors.

We take abnormal behaviour detection as a case, and devise
an architecture inspired by principles from human immune
systems. This is based on theTuCSoN infrastructure, which
provides agents with an environment of artefacts—most notably
coordination artefacts and agent coordination contexts. We then
use stochasticπ-calculus for specifying and running quantita-
tive, large-scale simulations, which allow us to verify the basic
applicability of our ID and obtain a preliminary set of its main
working parameters.

I. I NTRODUCTION

The trend in today information systems engineering is
toward an increasing degree of complexity and openness,
leading to rapidly changing requirements and highly dynamic
environments. Since the cost of system management is be-
coming comparable to the cost of the system itself [1] we
need new engineering methodologies and tools. In that sense
social and natural sciences are recognised as rich sources of
inspiration: e.g. the Autonomic Computing initiative tries to
face complexity applying self-regulating mechanisms typical
of biological processes [1], [2].

Self-organisation is a promising theoretical framework to
reduce complexity of systems engineering. A system if said
to beself-organisingif it is able to re-organise itself upon envi-
ronmental changes, by local interaction of its parts without any
explicit pressure from the outside [3]. A system built according
to this principle is usually able to perform complex tasks even
though its components are far simpler when compared to a
monolithic solution.

In this paper we continue along the line discussed in [4] in
order to explore methodological aspects of the engineering of
self-organising MASs. Because of the complexity inherent in
these systems, and the difficulties in predicting their behaviour
and properties, we find it crucial to exploit formal tools for
simulating systems dynamics at the early stages of design.
In the case of self-organising MASs, in fact, this approach
appears to be almost unavoidable in order to nurture evolving

ideas and design choices, and to effectively tune parameters
of the final system.

Among the various formal models to specify quantitative
aspects of MASs we promote the use of the stochasticπ-
calculus process algebra [5]—see [4] for more details on that
decision. This language is basically unexplored in the context
of self-organising MASs: on the one hand, its simulation
tools are relatively recent (see e.g. [6]), and on the other,
it was primarily inspired by the need to model biological
systems [7]. However, we show it can be fruitfully applied
to the MAS paradigm as well: as far as stochastic aspects are
concerned, the typical complexity of agent internal machinery
can be suitably abstracted away, focussing instead on agent
interactions and high-level activity changes.

For this purpose tools like SpiM (Stochastic PI-calculus
Machine [6]) can be effectively used to track the dynamics of
global system properties in stochastic simulations, validating
design directions, inspiring new solutions, and determining
suitable system parameters.

In this paper, we apply these ideas to the study of an intru-
sion detection (ID) infrastructure for open MASs. In particular
our focus is on detecting anomalies in agents behaviour: the
solution we describe here is inspired by principles of human
immune system [8]. The infrastructure we devise is based on
the TuCSoN technology [9]1. This allows us to structure a
MAS not only in terms of agents, but also withtuple centres
[10] as coordination artefacts[11] and agent coordination
contexts[12](ACC) asboundary artefacts[13]. Coordination
artefacts are used to model resources in the environment on
which agents act upon. ACCs specify and enact the access
policies which each agent is subject to, and can be used to
both (i) reify relevant information about the agent/artefacts
interaction, and(ii) to deny malicious agents to access the
MAS environment.

To evaluate the impact of different design choices and pa-
rameters of the ID infrastructure—such as inspection/detection
rates, number of inspectors, and the like—we simulate the
behaviour of different scenarios using SpiM specifications.

The rest of the article is structured as follows. In Section
II we briefly highlight the main mechanisms and properties of
intrusion detection and the human immune system. In Section

1http://tucson.sourceforge.net

WOA 2005 85

III we describe our general architecture for a MAS based on
TuCSoN, and show how to develop an anomaly detection
application. Section IV motivates the use ofπ-calculus and its
stochastic extension, providing a simulation related to our ID
domain using SpiM. Finally, Section V concludes by providing
final remarks, and by listing some of the main directions for
our future research.

II. I NTRUSION DETECTION AND IMMUNE SYSTEM

In this section we first depict the main aspects of intrusion
detection systems (IDSs), and then describe the structure and
main principles regulating the human immune system. We
are not concerned about accurately modelling or mimicking
an immune system, instead we gather from there inspiration
and principles for the engineering of secure self-organising
applications.

A. Security and IDSs in Information Systems

There are several mechanisms used to protect information
systems, but usually only the basic ones are implemented:(i)
authentication, the identity is proved by the knowledge of
a secret (e.g. password) or a physical unique property (e.g.
fingerprint, retina, voice);(ii) authorisation: user actions on
the system are constrained by its role and the policy linked to
that role.

However, applications flaws typically cause these methods
not to be sufficient alone [8]. For instance, protection at
the host level is achieved using additional software such as
firewalls, antivirus and many other specific tools. Further-
more authorisation policies cannot account for all possible
sequences of actions, and a specific sequence might exhibit
unexpected side-effects. In particular, it is in general too
expensive and impractical (or even unfeasible) to intercept all
emergent harmful paths at design-time.

Hence automated tools are a very useful support for the
detection of malicious behaviour. In this direction, many
efforts have already been spent in developing IDSs. An IDS
tries to detect intruders and misuse of a target software system
by observing users behaviour and deciding wether actions
performed are symptomatic of an attack.

Efficiency of an IDS is evaluated by three parameters:
accuracy (rate of false-alarms),performance(rate of audit
processing), andcompleteness(rate of missed detection).
Misuse-based IDSstry to detect intruders matching the actual
user behaviour with known signatures of malicious behaviour.
Anomaly-based IDSstry to detect behaviours that are different
from what it is considered to be the normal activity. There has
been already a lot of work for both approaches to deal with
security issues either at the application, host and network level
[8], [14], [15]. We are more concerned about the neat impact
of such techniques, expressed in a stochastic manner, and how
they can influence the design of a protection layer for a multi-
agent system.

B. Human Immune System Overview

The human immune system protects the body against anti-
gens, i.e. foreign molecules that trigger an immune response.

It is composed by reactive non-specific barriers such as the
skin, and by active mechanisms, i.e. theinnate and the
acquiredimmune system. The innate immune system protects
the body against known antigens, i.e. it is not adaptive,
while the acquired immune system improves during individual
life, discovering and memorising new antigens. The acquired
immune system is composed of different types of cells: here
we consider onlylymphocytessince they are responsible for
the main form of immune response. The mix of lymphocytes,
which changes over time, defines the set of detectable antigens:
this let the immune system cover a larger space of antigens—
a phenomenon calleddynamic coverage. Lymphocytes can
become a “memory” if they bind to several antigens: this
mechanism allow for a faster response if an antigen is met
again.

It is easy to notice that we can define a parallel be-
tween human immune system and security for electronics
systems. Static non-specific barriers are realised by authenti-
cation mechanism, firewalls etc. The innate immune system is
mapped into authorisation policies, antivirus, trojan removers,
and misuse-detection. The acquired immune system instead
is mapped into anomaly-detection systems, which are able to
discover new threats.

III. SECURITY IN MAS

In the following we describe our reference architecture for
MASs, and discuss how to devise a security layer drawing
useful concepts and techniques from previous works on IDS,
as well as principles from the human immune system.

A. A General Architecture for MASs

In this section we describe a general architecture for MASs
based on theTuCSoN coordination infrastructure [9], showing
an approach to ensure security applying principles of the
immune system.

We consider a system that provides agents with services
encoded in terms of coordination artefacts, i.e. runtime ab-
stractions encapsulating and providing a coordination service,
to be exploited by agents in social contexts expressed by coor-
dination rules and norms [11]. Following the general model for
artefacts [16], a coordination artefact could be characterised
by a usage interface, a set of operating instructions, and a
coordination behaviour specification, which can be exploited
by cognitive agents to rationally use a coordination artefact.

Accesses of agents to these resources is restricted by an
authentication procedure. When an agent enters the system an
authorisation policy limits its actions allowing the exploitation
of a limited set of services and resources—e.g. those it has
payed for. This is accomplished by the notion of Agent
Coordination Context (ACC) [12], [13]. An ACC works as
agent interface towards the environment: it is like a control
room providing e.g. buttons and displays to an human, which
are the only means by which he/she can interact with the
environment. Thus, the ACC enables and rules the interaction
between the agent and the environment [12], and it is then
able to capture security and organisation aspects in MASs.
In particular, the ACC is the right place to put authorisation

WOA 2005 86

Fig. 1. A general architecture for a multi-agent system.

Fig. 2. The statistical approach for anomaly detection relies on the fact
that the abnormal behaviour is distinguishable from the normal one. This can
be restated inthe behaviour distribution of abnormal agents (right) is very
different—at least for the critical actions—from the distribution of normal
ones (left).

policies, typically specified using a Role Based Access Control
model (RBAC) [17]. The whole architecture is depicted in
Figure 1.

Usually the two mechanisms of authentication and autho-
risation are considered to guarantee a sufficient degree of
protection. However we promote the idea—as pointed out in
the intrusion detection community—that a dynamic system is
better protected by additional dynamic mechanisms. Corre-
spondingly, we introduce a layer aimed at detecting anomalies
in agents behaviour inspired by the immune system as well as
by previous works on IDSs [8], [14].

B. Anomaly Detection in MASs

Let us consider agents willing to exploit a specific artefact:
we can trace their behaviour “for a while” and then create
an average distribution of actions over that resource. We
can consider that distribution to be the “normal” way for
agents to interact with a particular artefact (Figure 2 left).
From now on it is possible to observe an agent in order to
build its particular distribution of actions: the deviation from
the average distribution might be a symptom of intrusion or
abnormal activity. For instance, if the action C is critical then
the agent X (Figure 2 right) should be inspected to decide
wether he is acting properly or might cause problems.

In order to support the process described above, a mecha-
nism to observe the agent behaviour is needed, e.g. by using
logging tools. This approach is valid under two hypotheses:

1) the number of traces is such that the data is statistically
significant

2) the percentage of agents exhibiting abnormal behaviour
is sufficiently low during the initial observation stage

The former hypothesis is quite straightforward and must hold
true every time dealing with statistical data. The latter is very
difficult to prove because one would have to check every action
and in most situations this might be unfeasible or simply not
affordable without automated tools. But we can reasonably
argue that most of users of a system are interested in exploiting
a resource rather than to hack it. Furthermore the second
hypothesis affects the threshold value used to decide wether
an agent is dangerous or not: this value is as reliable and
accurate as the number of anomalies is low during the initial
stage. Since we are performing the detection task on-line, the
actions distribution might changes over time, so we should
also consider some tolerance ranges.

Referring to section III-A we describe now how the secu-
rity layer fits into the general architecture. First we need a
way to provide observability of the interaction agent-artefact:
basically we have two choices:

• providing inspectors with access to ACCs
• reifying the action in a specific artefact for logging

Since we need two kinds of information, the average behaviour
and the individual one, we can exploit both mechanisms: e.g.
we can log the individual behaviour in the ACC while the
average behaviour can be handled by another shared artefact.
If agents privacy is not a main concern we can also reify both
information using another artefact, which aggregates actions
to define the average and individual signature.

Since observability mechanisms have been provided, now
we need a set of agents whose goal is to observe periodically
the use of resources. The actualnumber of agents inspecting
and the rate of inspectionare parameters of the security
systems that should be dynamically tunable. When an agent
detects abnormal behaviour, it should report it to the proper
authority, which then decides wether to invalidate the ACC or
not: invalidating the ACC means denying any further access to
resources. This authority might be a human or artificial agent
depending on the complexity and criticality of the decision
process.

C. An Artefact for Logging Purpose

After we described the scenario, the architecture and the
principles, we aim now at actually designing the artefact that
could support the anomaly-detection task. For the sake of
simplicity, our hypothesis is that there are no concerns of
privacy for agents, i.e. it is not a problem to publish all agent
actions: thus, in order to adopt the second approach described
in section III-B, we only need to worry about the artefact
design.

We use TuCSoN infrastructure [9] as our main source
for artefacts: in particular, artefacts for logging are suitably-
programmedReSpecT tuple centres [10]. Hence what we
need for a complete description of such an artefact are the
templates for all the tuples used for the representation, and
the ReSpecT specifications for handling the log tuples.

In particular, we only need three templates, respectively (i)
for actions logging, (ii) for the individual behaviour signature,
and (iii) for average behaviour signature.

WOA 2005 87

%1) This reaction is executed only the first time the
% action identified by ActionID is performed for the
% first time over a specific artifact
reaction(out_r(action(AgentID, ActionID)), (

in_r(action(AgentID, ActionID)),
no_r(average_signature(ActionID, Count)),
out_r(average_signature(ActionID, 1)),
out_r(individual_signature(AgentID, ActionID, 1))

)).

%2) This reaction is triggered by an action identified by
% ActionID has already been performed the agent
% identified by AgentID
reaction(out_r(action(AgentID, ActionID)), (

in_r(average_signature(ActionID, Count)),
in_r(individual_signature(AgentID, ActionID, Counti)),
in_r(action(AgentID, ActionID)),
Count1 is Count + 1,
Counti1 is Counti + 1,
out_r(average_signature(ActionID, Count1)),
out_r(individual_signature(AgentID, ActionID, Counti1))

)).

%3) This reaction is triggered by an action identified
% by ActionID has already been performed from other
% agents, but it’s the first time for the agent
% identified by AgentID
reaction(out_r(action(AgentID, ActionID)), (

in_r(action(AgentID, ActionID)),
in_r(average_signature(ActionID, Count)),
no_r(individual_signature(AgentID, ActionID, Counti)),
Count1 is Count + 1,
out_r(average_signature(ActionID, Count1)),
out_r(individual_signature(AgentID, ActionID, 1))

)).

%4) This reaction should never be triggered in normal
% situation but it’s useful to recover from inconsistencies
reaction(out_r(action(AgentID, ActionID)), (

in_r(action(AgentID, ActionID)),
no_r(average_signature(ActionID, Count)),
in_r(individual_signature(AgentID, ActionID, Counti)),
Counti1 is Counti + 1,
out_r(average_signature(ActionID, 1)),
out_r(individual_signature(AgentID, ActionID, Counti1))

)).

Fig. 3. ReSpecT specification for the logging artefact behaviour.

1) action(agentID, actionID)
2) individual_signature(agentID,actionID, count)
3) average_signature(actionID, count)

The system provides the first tuple each time an action
is performed: this tuple triggersReSpecT reactions which
update signature tuples, then it is discarded. Each signature
tuple is a counter for an action, which is incremented each
time that action is performed by an agent: recording such
information for each action makes is possible for an agent
to build the actual signature.

Each time an artefact is introduced in the environment the
signature of normal behaviour it is automatically built, which
becomes significant only when the number of request exceeds
a certain threshold. Figure 3 includes the whole specification2.

Now that we have the anomaly detection support we must
decide the parameters of the security systems: number of
inspecting agents and rate of inspection—see section III-B
for details. Given the computational cost of inspection and
assuming a certain percentage of abnormally-behaving agents,
we can simulate the system in order to predict the good
values for system parameters. In the next section we describe
Stochasticπ-Calculus and how to exploit it for such purpose.

IV. SIMULATIONS IN π-CALCULUS

In this section we briefly introduceπ-calculus [18] and its
stochastic extension [5]. Then we present the results obtained
by simulating a Stochastic Pi-Calculus specification using the
Stochastic Pi Machine (SpiM) [6].

2The source code for the experiments in this paper can be downloaded from
http://www.alice.unibo.it/download/spim/woa2005.zip .

A. Theπ-Calculus

Theπ-calculus is a formal model developed to reason about
concurrency [18]: it is a language for describing and analysing
systems consisting of agents (or processes) which interact
with each other. The basic entity is aname, which is used
as an unstructured reference to a synchronous channel where
messages can be sent and received. In its simpler version, a
process is built from names according to the syntax:

P ::= 0 |
∑
iεI

πi.Pi | (P |Q) | !P | (νx)P (1)

0 is the empty process. The summation
∑

iεI πi.Pi means
that an agent might perform any prefix actionπi, and cor-
respondingly continues asPi behaviour: prefix formsπi are
of the kind ȳx (send the namex at channely), y(x) (wait for
a name at channely and rename it asx), and τ (perform
a silent action). A compositionP |Q representsP and Q
executed in interleaved concurrency. A replication!P means
that (infinitely) many copies ofP can be executed concurrently
(like P |P |....). Restriction (νx)P creates the new namex
and bounds its use inP . The semantics ofπ-calculus can be
described by a transition system, where the transition relation
P −→ P ′—a processP moving to P ′ by the occurrence of
an inner interaction—is defined by operational rules [18].

B. On Stochastic Models

In general, each formal model whose semantics is given by
a transition system can be extended to a stochastic version,
resorting to the idea of Markov transition system. There, each
transitionP

r−→ P ′ is labelled with arate r, a non-negative real
value which describes how the transition probability between
P and P ′ increases with time. Stochastic models allow for
quantitative simulations, for rates can be used to express
aspects such as probability, speed, delays, and so on.

However, from an engineering perspective the choice of
which language is used for describing processes is a crucial
one, for the system to be simulated is to be effectively
represented in the language.

Three basic options are available:(i) automata, like finite-
state ones, where the system is described by state changes and
by supporting data structures (such as stacks);(ii) nets, like
Petri Net, where the system is described by a marking of to-
kens spread over a graph; and finally(iii) process algebras, like
π-calculus, where the system is described by a composition of
interacting entities. We find the third approach to be the best
suited for describing quantitative aspects of complex MASs—
such as self-organising ones. On the one hand, differently
from automata, process algebras allow to express concurrent
activities (agents in this case). On the other hand, differently
from nets, process algebras allow for full compositionality: this
property is a particularly relevant one, as it allows to express
agents (and artefacts) with different roles separately, and then
simply reuse such definitions to express the whole system
model by composition (parallel composition, summation and
replication).

WOA 2005 88

C. Stochasticπ-Calculus andπ-Machine

Priami [5] introduced a stochastic extension toπ-calculus.
Each channel name is associated with an activity rater: the
delay of an interaction through that channel (representing the
use of a resource [5]) is then a random variable with an
exponential distribution defined byr. Exponential distributions
are used because they enjoy the memoryless property, i.e.
each transition is independent from the previous one. Given a
channel namex, the probabilitypi of a transitionP

ri−→ Pi

representing an interaction throughx is the ratio between its
rate ri and the sum of rates of then transitions throughx
enabled by P:

pi =
ri∑

j=1..n rj
, 1 ≤ i ≤ n . (2)

In the following, we consider the SpiM [6] implementation
for the stochasticπ-calculus interpreter.

D. Simulating Anomaly Detection

In this section we discuss how to exploit Pi-Calculus for
simulating the previously described security system. We are
not going to describe here how to write stochastic pi-calculus
specifications since it has already been widely covered by
the literature, e.g. see [7], [6]. In order to give an insight
of the specification process, we have mapped an agent to a
set of concurrent processes which are able to send/receive
signal to/from other agents: a more detailed description of our
approach is available in [4].

We consider an environment in which agents can enter
and leave after being authenticated and authorised: since we
want to keep the average number of agents constant we set
the entering and leaving rates to be equal. The simulation
parameters are(i) the number of agents within the system
at t = 0, (ii) the “concentration” of normal vs. abnormal
agents,(iii) the rates at which normal behaving agents enter
the system,(iv) the rates at which abnormally-behaving agents
enter the system,(v) the duration of the simulation.

Then we add inspector agents to the system, which observe
the behaviour of external agents: each inspector performs the
same task but independently from the others. The anomaly
detection system parameters are

• the number of inspectors
• the rate of inspections

Both parameters should be dynamically adjustable, e.g. if the
system is under attack it can raise its defences: for the whole
duration of the simulation we consider them to be constant.

The results are plotted in Figure 4. With the chosen values
for the parameters, this chart let us observe that the system is
able to exclude agents behaving abnormally within about 400
time units. If that is acceptable—i.e. the system still working
at the target quality level—we can choose those parameters
value for tuning the actual system. Since these results have
been obtained by simulation they must be validated by the
actual system: this last step is going to be addressed soon in
the future.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 200 400 600 800 1000 1200

nu
m

b.
 o

f a
ge

nt
s

time

Normal agents
Abnormal agents
Excluded agents

Fig. 4. A simulation of a simple system where normally- and abnormally-
behaving agents can enter and leave. Inspectors limit the activity of abnormal
agents.

V. CONCLUSION AND FUTURE WORKS

This paper is based on a previous work [4] where we started
putting together the elements of a framework for engineering
self-organising applications. While in [4] we focused on the
applicability of stochastic pi-calculus, in this paper have given
more details on domain specific issues, programming artefacts
to support anomaly detection for MAS and targeting the
simulations to the specific case. We consider MASs composed
by agents and artefacts [13], [11], and we build simulations
in a stochastic process algebra setting able to tune system
parameters at design time. We are developing an anomaly
detection system forTuCSoN and in parallel we consider this
application as a case to assess the impact of simulation in
engineering self-organising system.

The system depicted is based on theTuCSoN coordination
infrastructure, it features the remarkable notion of ACCs,
which enable to control agent actions, reify information on
action sequences (to be read by the infrastructure and/or other
agents), prevent agent actions from a given point in time.
For the architecture and general principles we took inspiration
from the human immune system and previous works on IDSs.
For the methodology, we relied on formal simulation and
modelling via stochasticπ-calculus, which—even though is a
quite new language in the context of the MAS community—
showed its effectiveness as a design tool.

Whereas our experiments need to be further detailed, we
believe they generally emphasise the ability of the proposed
approach to help the MASs developers to anticipate design
decisions and strategies at the early stages of design—before
actually developing prototypes and testing them.

We have a basic prototype of anomaly detection systems
on top ofTuCSoN-based MASs, but we need to further detail
and test it in order to validate simulation results. Other than
testing security at the artefact level, we also plan to explore
the implications of extending this approach to a network of
nodes hosting the same sort of artefacts.

Finally, in this paper we have only been concerned with

WOA 2005 89

self-organisation mechanisms. In future works we intend to
explore the dynamics that causes system properties to emerge.
For example, the uniqueness of the human immune system
provide the human species with a greater probability to survive
to a specific antigen: this emergent property could be very
important for distributed system.

REFERENCES

[1] P. Horn, “Autonomic computing: IBM’s perspective on the state
of information technology,” IBM Corporation, Tech. Rep., 15 Oct.
2001. [Online]. Available: http://www.research.ibm.com/autonomic/
manifesto/autonomiccomputing.pdf

[2] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, Jan. 2003. [Online]. Available:
http://portal.acm.org/citation.cfm?id=642200

[3] F. Heylighen, “The science of self-organization and adaptivity,” in
Knowledge Management, Organizational Intelligence and Learning, and
Complexity, ser. The Encyclopedia of Life Support Systems. EOLSS
Publishers, 2003.

[4] L. Gardelli, M. Viroli, and A. Omicini, “On the role of simula-
tions in engineering self-organizing MAS: the case of an intrusion
detection system inTuCSoN,” in 3rd International Workshop “En-
gineering Self-Organising Applications” (ESOA 2005), S. Brueckner,
G. Di Marzo Serugendo, D. Hales, and F. Zambonelli, Eds., AAMAS
2005, Utrecht, The Netherlands, 26 July 2005, pp. 161–175.

[5] C. Priami, “Stochastic pi-calculus,”Computer Journal, vol. 38, no. 7,
pp. 578–589, 1995.

[6] A. Phillips, “The stochastic Pi machine (SPiM),” 2005. [Online].
Available: http://www.doc.ic.ac.uk/˜anp/spim/

[7] A. Phillips and L. Cardelli, “Simulating biological systems in the
stochastic pi-calculus,” Microsoft Research, Cambridge, UK, Tech. Rep.,
July 2004.

[8] S. Forrest, S. A. Hofmeyr, and A. Somayaji, “Computer immunology,”
Commun. ACM, vol. 40, no. 10, pp. 88–96, 1997.

[9] A. Omicini and F. Zambonelli, “Coordination for internet application
development,”Autonomous Agents and Multi-Agent Systems, vol. 2,
no. 3, pp. 251–269, 1999.

[10] A. Omicini and E. Denti, “From tuple spaces to tuple centres,”Science
of Computer Programming, vol. 41, no. 3, pp. 277–294, Nov. 2001.

[11] A. Omicini, A. Ricci, M. Viroli, C. Castelfranchi, and L. Tummolini,
“Coordination artifacts: Environment-based coordination for intelligent
agents,” in 3rd international Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2004), N. R. Jennings,
C. Sierra, L. Sonenberg, and M. Tambe, Eds., vol. 1. New York,
USA: ACM, 19–23 July 2004, pp. 286–293. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1018409.1018752

[12] A. Omicini, “Towards a notion of agent coordination context,” inProcess
Coordination and Ubiquitous Computing, D. C. Marinescu and C. Lee,
Eds. CRC Press, Oct. 2002, ch. 12, pp. 187–200.

[13] A. Ricci, M. Viroli, and A. Omicini, “Agent coordination context: From
theory to practice,” inCybernetics and Systems 2004, R. Trappl, Ed.,
vol. 2. Vienna, Austria: Austrian Society for Cybernetic Studies, 2004,
pp. 618–623, 17th European Meeting on Cybernetics and Systems Re-
search (EMCSR 2004), Vienna, Austria, 13–16 Apr.2004. Proceedings.

[14] A. Somayaji, S. Hofmeyr, and S. Forrest, “Principles of a computer
immune system,” in1997 Workshop on New Security Paradigms (NSPW
’97), T. Haigh, B. Blakley, M. E. Zurbo, and C. Meodaws, Eds. New
York, NY, USA: ACM Press, 23–26 Sept. 1997, pp. 75–82. [Online].
Available: http://portal.acm.org/citation.cfm?id=283699.283742

[15] H. Inoue and S. Forrest, “Anomaly intrusion detection in dynamic
execution environments,” in2002 Workshop on New Security Paradigms
(NSPW ’02), C. Serban, C. Marceau, and S. Foley, Eds. New York,
NY, USA: ACM Press, 23–26 Sept. 2002, pp. 52–60. [Online].
Available: http://portal.acm.org/citation.cfm?id=844112

[16] M. Viroli, A. Omicini, and A. Ricci, “Engineering MAS environment
with artifacts,” in2nd International Workshop “Environments for Multi-
Agent Systems” (E4MAS 2005), D. Weyns, H. V. D. Parunak, and
F. Michel, Eds., AAMAS 2005, Utrecht, The Netherlands, 26 July 2005,
pp. 62–77.

[17] A. Omicini, A. Ricci, and M. Viroli, “RBAC for organisation and
security in an agent coordination infrastructure,”Electronic Notes in
Theoretical Computer Science, vol. 128, no. 5, pp. 65–85, 3 May 2005,
2nd International Workshop on Security Issues in Coordination Models,
Languages and Systems (SecCo’04), 30 Aug. 2004. Proceedings.

[18] R. Milner, J. Parrow, and D. Walker, “A calculus of mobile processes,
part I/II,” Information and Computation, vol. 100, no. 1, 1992.

WOA 2005 90

