
A Discrete-Event Simulation Framework
for the Validation of Agent-based and Multi-Agent Systems

Giancarlo Fortino, Alfredo Garro, Wilma Russo

DEIS – Università della Calabria, I-87036 Rende (CS), Italy
{g.fortino, garro, w.russo }@unical.it

Abstract

Simulation of agent-based systems is an inherent
requirement of the development process which provides
developers with a powerful means to validate both
agents’ dynamic behavior and the agent system as a
whole and investigate the implications of alternative
architectures and coordination strategies. In this paper,
we present a discrete-event simulation framework which
supports the validation activity of agent-based and multi-
agent systems which are modeled and programmed as a
set of event-driven agents by means of the Distilled
StateCharts formalism and related programming tools.
The simulation framework is equipped with a discrete-
event simulation engine which provides support for the
execution of agents by interleaving their events
processing, the exchange of events among agents, the
migration of agents, and the clustering of agents into
agent servers interconnected by a logical network. Using
this framework, an agent-based complex system can be
easily validated and evaluated by defining a simulator
program along with suitable test cases and performance
measurements.

1. Introduction

Agent-based and multi-agent systems (MAS), like
other complex software systems, must be tested and
evaluated before being deployed [10]. Simulation of
agent-based systems is an inherent requirement in all
phases of the development process. Modeling and
simulation help developers learn more about agents'
interactive behavior and investigate the implications of
alternative architectures and coordination strategies. In
particular, discrete-event simulators are highly required
for evaluating how complex agent-based systems work on
scales much larger than those achievable in real testbeds.

Currently few development processes for agent-based
systems which explicitly incorporate a simulation phase
have been proposed. In [13] an integrated development
environment for the engineering of MAS as Electronic
Institutions is presented. An Electronic Institution is a

performative structure of multi agent protocols (or scenes)
along with a collection of normative rules that can be
triggered off by agents’ actions. The development
environment is composed of a set of tools supporting the
design, validation through simulation, development,
deployment and the execution of MAS as Electronic
Institutions. Such a development environment is aimed at
facilitating the iterated and progressive refinement of the
development cycle of MAS. In particular, SIMDEI, a
simulation tool, allows for the animation and analysis of
the specification of the rules and protocols in an
Electronic Institution. In [12, 15] a modeling and
simulation framework (DynDEVS) for supporting the
development process of MAS from specification to
implementation is proposed. The authors advocate the use
of controlled experimentation in order to allow for the
incremental refinement of agents while providing rigorous
observation facilities. The benefits of using modeling and
simulation for the evaluation of cooperative agents is
illustrated through a simple example based on the
Contract Net Protocol. The exploited simulation
framework is JAMES, a Java Based Agent Modeling
Environment for Simulation, which aims at exploring the
integration of the agents paradigm within a general
modeling and simulation formalism for discrete-event
systems. JAMES follows a formal approach for discrete-
event simulation based on DEVS (Discrete Event Systems
Specification) which allows to specify (atomic and
coupled) models and execute them by sending typed
messages between simulator objects. In [11] a logic based
prototyping environment for multi-agent systems, CaseLP
(Complex Application Specification Environment Based
on Logic Programming) is presented. CaseLP integrates
simulation tools for visualizing the prototype execution
and for collecting the related statistics. The CaseLP
visualizer tool provides documentation about events that
happen at the agent level during the MAS execution.
Developers according to their needs can instrument the
code of some agents after it has been loaded by adding
probes to the code of agents. In this way, events related to
state changes and /or exchanged messages can be
recorded and collected for on-line and/or off-line
visualization. It is worth pointing out that from a

WOA 2005 75

simulation point of view CaseLP is a time-driven
centralized simulator with a global time known from all
the agents in the system.

In this paper, we present a Java-based discrete-event
simulation framework which supports the validation
activity of agent-based and multi-agent systems which are
modeled and programmed as a set of event-driven agents
by means of the Distilled StateCharts formalism and the
related programming tools [8]. The simulation framework
is organized in four layers: (i) low-level simulation
framework, which provides the basic mechanisms and
classes to simulate general purpose systems; (ii) agent
platform, which is built atop the low-level simulation
framework and provides a distributed infrastructure
formed by a network of interconnected agent servers; (iii)
ELA adapter, which allows to map event-driven DSC-
based lightweight agents onto the agent platform layer;
(iv) user, which provides abstractions representing
interacting users and users’ behaviors. Using this
framework, an agent-based complex system can be easily
validated and evaluated by defining a simulator program
along with suitable test cases and performance
measurements.

The remainder of the paper is structured as follows.
Section 2 overviews the Distilled StateCharts-based
approach for the modeling and validation of agent-based
system which adopts the proposed simulation framework
as validation tool. In section 3, the simulation framework
is described in detail whereas section 4 reports some
results concerning with the performance evaluation of an
agent-based e-Marketplace by means of the simulation
framework. Finally conclusions are drawn and directions
of future work delineated.

2. A Distilled StateCharts-based approach
for the modeling and validation of agent-
based systems: an overview

The Distilled StateCharts-based approach [5, 6], which
aims at supporting the modeling and validation of agent-
based and multi-agent systems, consists of the following
phases (Fig. 1): High-Level Modeling, Detailed Design,
Coding and Simulation.

High-Level
Modeling

AS

Detailed
Design Coding Simulation

Process Phase

Phase Workproduct

ASDSC C(ASDSC) ResultSet

Figure 1. Process schema of the DSC-based approach.

The High-Level Modeling phase can be supported by
well-established agent-oriented methodologies (such as
the Gaia methodology [17]) which cover the phases of
requirements capture, analysis and high-level design. The
product of this phase is the agent-based system model
(AS) defined as follows:

AS = <AT, LCL, act, serv, prot>,
where:

AT (Agent Types) is the set of types of agents
embodying activity, offering services and interacting with
each other;

LCL (Logical Communication Links) is the set of
logical communication channels among agent types which
embody interaction protocols;

act: AT → activity description is the activity relation
which associates one or more activities to an agent type;

serv: AT → service description is the service relation
which associates one or more services to an agent type;

prot: LCL → interaction description is the protocol
relation which associates an interaction protocol to a
logical communication channel.

The Detailed Design phase is enabled by a Statecharts-
based formalism, namely the Distilled StateCharts (DSC)
[8], which supports the specification of the behavior of the
agent types and the interaction protocols among the agent
types of AS. In particular DSC allow for the specification
of the behavior of lightweight agents (see §2.1) which are
event-driven, single-threaded entities capable of
transparent migration and executing chains of atomic
actions. The DSC-based specification of an AS, denoted
as ASDSC, can be expressed as follows:

ASDSC = {Beh(AT1), …, Beh(ATn)},

where Beh (ATi) = <SBeh(ATi), EBeh(ATi)> is the DSC-
based specification of the dynamic behavior of the i-th
agent type. In particular, SBeh(ATi) is a hierarchical state
machine incorporating the activity and the interaction
handling of the i-th agent type and EBeh(ATi) is the related
set of events to be handled triggering state transitions in
SBeh(ATi).

The Coding phase is carried out by using the Java-
based Mobile Active Object Framework (MAO
Framework) [8] and produces the work product C(ASDSC)
representing the code of ASDSC. In particular, Beh(ATi)
can be seamlessly translated into a composite object,
which is the object-based representation of SBeh(ATi), and
into a set of related event objects representing EBeh(ATi).

The Simulation phase is supported by MASSIMO, a
Java-based discrete-event simulation framework for multi-
agent systems (see §3). On the basis of the framework, a
simulator program can be implemented and executed to
obtain a ResultSet containing validation traces and
performance parameter values. The validation of agent
behaviors and interactions is carried out on execution

WOA 2005 76

traces automatically generated, whereas the performance
evaluation relies on the specific agent-based system to be
analyzed; the performance evaluation parameters are
therefore set ad-hoc. The ResultSet can also be used to
feed back the High-level Modeling and Detailed Design
phases.

2.1. The reference agent model

The agent model is based on the abstraction of event-
driven state-based lightweight agent [7] which can be
represented by the tuple:

<Id, Beh, DS, TC, EQ>,
where:
- Id is the unique identifier of the agent;
- Beh is the DSC-based dynamic agent behavior;
- DS is the data space hierarchically organized of the

agent;
- TC is the single thread of control supporting agent

execution;
- EQ is the event queue of the agent containing received

and to-be-processed events.
The event-driven state-based lightweight agent is

programmed by specifying its Beh through the FIPA-
compliant agent behavioral template [2], reported in
Figure 2, which is a Distilled StateChart [8] consisting of
a set of basic states (Initiated, Transit, Waiting,
Suspended, and Active) and transitions labeled by events.
In particular, the agent performs computations and
interactions in the Active Distilled StateChart (ADSC)
composite state, inside the Active state, which is to be
refined by the agent programmer. The presence of the
deep history connector (H*) inside the Active state allows
for a coarse-grained strong mobility-based agent
migration [9]. An event reaction can produce
computations, which can affect the DS, and/or the
generation of one or more events, or a migration. While
the reception of incoming events (or IN-events) is implicit
and decoupled by the EQ, the transmission of events is
explicitly carried out by means of the
generate(<event>(<parameters>)) primitive which
allows to asynchronously raise outcoming events (or
OUT-events). The execution semantics of the event-
driven state-based lightweight agent are defined in terms
of the Event Processing Cycle (EPC): the next available
event is cyclically fetched from EQ and is passed to the
Beh which can handle it so triggering one reaction. OUT-
and IN-events are classified in:
- internal events, which can be defined at programming

level for self-triggering active and/or proactive
behavior. In the case of internal events, IN and OUT
events coincide. In fact, an emitted internal event or

OUT-event is received as IN-event by the emitting
agent itself.

- management events, which include requests and
notifications of services at agent server level such as
agent lifecycle management, creation, cloning, and
migration.

- coordination events, which enable coordination acts
between agents according to a specific coordination
model. In this paper the considered coordination model
is the asynchronous Direct model, even though the
Tuple-based and the Publish/Subscribe event-based
models could also be exploited as shown in [7].

TOP STATE

INITIATED

Invoke

TRANSIT

Execute

Move

Quit Destroy

WAITING

Wake_UP

Wait

SUSPENDED

Resume

Suspend

ACTIVE

H*

Active Distilled
StateChart

Figure 2. The FIPA-based template of the event-driven
DSC-based lightweight agent.

In order to exemplify the DSC-based modeling of

agent behavior, the specification of the ADSC of a mobile
event-driven state-based lightweight agent is shown in
Figure 3; Table 1 reports state variables, methods and
events of the example agent specification. The agent
overall goal is that of moving across a set of agent servers
according to a predefined itinerary for monitoring a set of
remote processes. In order to fulfill its goal, the agent
alternates the following three phases:
- Data acquisition, which is performed by generating

DataRequest coordination events targeting N different
local agents which are controlling the local process. As
soon as the monitoring data are collected (after the
reception of all the DataReply coordination events), the
internal Reply event is generated.

- Data processing, which is performed upon reception of
the Reply event and carried out by means of the
process method. It can also occur upon reception of the
Process coordination event sent by another agent (e.g.
the owner agent) if data are enough (the guard g holds),
otherwise the agent returns in the substate of request
which abandoned most recently.

- Migration, which depends on the data processing
which, if successful, enables the agent to autonomously
migrate to another site according to its itinerary;
otherwise, the monitoring process is re-executed.

WOA 2005 77

|

REQUEST

DATA
REQUEST

H

/ ac1

Request
Process [g] / ac4

Process [!g]

Reply / ac5

DataReply / ac3Step / ac2

DATA
REPLY

PROCESS

DataReply / ac3

Step / ac2

|

Action expressions:
ac1:count=0;
 generate(new Step(0));
 generate(new DataRequest(recipients[0], 0));
ac2:i=((Step)e).getI();
 if (i<N-1) generate(new Step(i+1))
generate(new DataRequest(recipients[i+1], i+1));

ac3:i=((DataReply)e).getI();
 data[i]=((DataReply)e).getData();
 count++;
 if (count==N) generate(new Reply());
ac4:if (process()) {
 next=(next+1)%itinerary.length;
 generate(new Move(self(), itinerary[next]));}
 generate(new Request());
ac5:ac4;
Guards:
g:enough()

Figure 3. The Active Distilled StateChart
of the example agent.

VAR DESCRIPTION

N Number of requests the agent issues to the local monitoring
agents

itinerary List of agent servers to be visited
recipients List of identifiers of the interacting agents

data Collector of the data coming from the replying agents
next Index of the last visited agent server

count Number of replies received in a monitoring cycle
i Temporary integer variable
e Reference to the last received event instance

METHOD
process Specific method for processing data which returns true if the

processing was successful
enough Specific method for evaluating if there are enough data for

processing
self Method which returns the identifier of the agent

EVENT
Step Internal event pacing the generation of DataRequest

DataRequest Coordination event of the asynchronous Direct model sent by the
agent to the local monitoring agents for requesting data

DataReply Coordination event of the asynchronous Direct model sent by a
local monitoring agent for replying to DataRequest

Reply Internal event indicating data gathering completion
Process Coordination event enabling a forced processing
Request Internal event activating a monitoring cycle

Table 1. State variables, methods and events of the
example agent.

3. MASSIMO: a discrete-event simulation
framework for MAS

The Multi-Agent Systems SIMulation framewOrk
(MASSIMO) is a Java-based discrete-event simulation
framework which allows for the validation and evaluation
of:
- the dynamic behavior (computations, interactions, and

migrations) of individual and cooperating agents;
- the basic mechanisms of the distributed architectures

supporting agents, namely agent platforms;
- the functionalities of applications and systems based on

agents.
The architecture of MASSIMO (Fig. 4) is composed of

four basic layers:
(i) Low-level simulation framework, which provides

the basic mechanisms and classes to simulate general
purpose systems;

(ii) Agent platform, which is built atop the low-level
simulation framework and provides a distributed
infrastructure formed by a network of interconnected
agent servers;

(iii) ELA adapter, which extends the MAAF (Mobile
Agent Adaptation Framework) [8] and allows to map
event-driven DSC-based lightweight agents, provided by
the MAO Framework, onto the agent platform.

(iv) User, which provides abstractions representing
interacting users and users’ behaviors.

In the subsections 3.1-3.4 the four layers are described
in detail. In section 3.5, the basic structure of a MAS
simulator program is exemplified.

SimulationEngine

AgentMetaAgent Message Timer

*

1
*

1
*

1

1..2 * 1 1

VirtualNework AgentServer MSG

(i) Low-level Simulation
Framework

(ii) Agent Platform

(iii) ELA Adapter

ELA

*

1

1
1

11

(iv) User

UserAgent UserAgentGenerator

*

*

<<interface>>
IMobileAgentAdapter

(from MAAF)

1* Start Reporting

MAOBehavior
(from MAOFramewok)

MAOId
(from MAOFramewok)

Figure 4. The architecture of MASSIMO.

WOA 2005 78

3.1. The low-level simulation framework
The low-level simulation framework is composed of

the following base Java classes which support agent-based
programming and simulation of general-purpose systems:
- Agent, which represents a computational state-based

agent communicating through asynchronous messages.
- MetaAgent, which represents a meta-level agent able to

capture and constrain messages sent by computational
agents or by other meta-agents.

- Message, which represents a message sent by an agent
(source) to another agent (target).

- Timer, which is an object encapsulating a Message
instance and a timeout. The message is delivered to its
target at the timeout expiration.

The basic components of the simulation engine (Fig. 5)
are:
- Global System Message Queue (GSMQ), which stores

all the messages to be delivered.
- Global System Timer Queue (GSTQ), which stores all

the timers ranked by timeout value.
- Simulation Clock (SC), which represents the simulation

time. It is incremented every time that a timer expires.
- Filter (FT), which receives the messages generated by

the computational agents and insert them into GSMQ if
they are not subjected to the meta-level agent capture;
otherwise FT forwards the messages to their associated
meta-agents.

- Scheduler (SD), which cyclically extracts a message
from GSMQ and dispatches it to the target agent. If
there are not messages in GSMQ, SD forces a timer
(the one with the lowest timeout) to fire and dispatches
the associated message to its target.

GlobalSystemMessageQueue (GSMQ)

set(timer)

fire(timer)

dequeue(msg) enqueue(msg)

process(msg) send(msg)

Sim
Clock

FilterScheduler process(msg)

send(msg)

Simulation Engine

process(msg)

G
lo

ba
lS

ys
te

m
Ti

m
er

Q
ue

ue
(G

ST
Q

)

Agents

MetaAgents

Figure 5. The architecture of the simulation engine.

3.2. The agent platform
The agent platform layer, which is built atop the low-

level simulation framework, provides two basic
abstractions: the AgentServer, which represents the
infrastructure where event-driven lightweight DSC-based
agents (ELAs) run, and the VirtualNetwork, which
represents a network of hosts on which AgentServers can
be mapped.

The AgentServer, which is an extension of the Agent
class, provides the following functionalities:
- agent management lifecycle, which supports

(de)registration and execution of ELAs;
- agent migration, which supports the migration of an

ELA from one AgentServer to another;
- agent interaction, which supports the event-based

interaction among ELAs;
- inter-agent-server service signaling.

PROCESSOR

GENERAT OR

MSG

WHIT E PAGES (WP)

LookUp
Register
UnRegister

ELA SET (ES)

Event

MSG

Event

ELA MSG

ELA1 ELAN

ELAId ELARef

Figure 6. The architecture of the AgentServer.

The architecture of the AgentServer (Fig. 6) consists of
the following components:
- White Pages (WP), which keeps archived the ELAs

running in the AgentServer. It consists of pairs
<ELAId, ELARef>, where ELAId is the ELA identifier
and ELARef is either (i) the reference to the ELA
identified by ELAId and belonging to the set of ELAs
(ES) running in the AgentServer or (ii) the proxy of the
ELA identified by ELAId and migrated to another
AgentServer. A proxy is a triple <AS, MBX, active>,
where AS is the address of the AgentServer to which
the ELA migrated, MBX is the ELA mailbox
containing the events targeting the ELA during the
ELA migration transitory, and active is a boolean
variable indicating whether or not the forwarding
activity of the proxy is on.

- Processor, which receives and processes incoming
MSGs, extensions of the Message class, which can
contain one of the following objects:
(i) an Event targeting an ELA. The ELA target of the
Event is looked up and the Event passed to it if the
ELA is present in the AgentServer; otherwise, the ELA

WOA 2005 79

Proxy is returned and the Event is encapsulated in a
MSG and the resulting MSG redirected to the
AgentServer address contained in the proxy.
(ii) a created ELA. The created ELA is registered in
the WP.
(iii) an incoming migrating ELA. The incoming ELA is
registered in the WP. If it is not the first time that the
ELA is hosted by the AgentServer, the previously left
proxy is substituted by the incoming ELA.
(iv) an outcoming migrating ELA. The outcoming ELA
is encapsulated in a MSG and the resulting MSG is
transmitted to the target AgentServer. Finally, the
outcoming ELA is unregistered from the WP and its
associated Proxy is set.
(v) an inter-AgentServer service message. The basic
service messages are those for the management of the
MBX of the ELA proxy:
- GetMBX, which is a request issued by a remote

AgentServer to activate the proxy and obtain the
MBX of an ELA which migrated from the
AgentServer to the remote AgentServer. Upon
reception of GetMBX, the AgentServer first looks
up the proxy of the ELA whose identifier is
contained in the GetMBX; then, it retrieves the
MBX associated to the ELA and, if the MBX is not
empty, sends an MBX message containing the
MBX to the remote AgentServer. Finally, the
proxy forwarding is activated (active=true).

- MBX, which contains the mailbox of an ELA
previously requested from a remote AgentServer
by a GetMBX service request. Upon reception of
an MBX message, the AgentServer looks up the
ELA whose identifier is contained in the MBX
message and, if the ELA is present in the
AgentServer, encapsulates the events contained in
the MBX message in Messages targeting the
AgentServer itself and inserts them in the GSMQ.
If the ELA is not present in the AgentServer, MBX
is sent to the AgentServer where the ELA migrated
if the proxy is on; otherwise, the events contained
in the MBX message are inserted in the MBX of
the ELA proxy.

- Generator, which processes the following events
generated by the hosted ELAs:
(i) Internal self-triggering Event. The event is
encapsulated in a MSG whose target is the AgentServer
itself to which the MSG is then transmitted.
(ii) External Event. The event is encapsulated in a
MSG whose target is the AgentServer hosting the ELA
target of the event and the MSG is then transmitted to
the target AgentServer.
(iii) Creation Event. The event contains the identifier
and the dynamic behavior of an ELA created in the
AgentServer. These parameters are used to create a
new ELA agent which is then encapsulated in a MSG

whose target is the AgentServer itself to which the
MSG is then transmitted.
(iv) Timer Event. The event is encapsulated in a MSG
whose target is the AgentServer itself and the MSG
then is encapsulated in a Timer which is set to the
timeout contained in the timer event.

The VirtualNetwork, which is an extension of the
MetaAgent class, is able to set Timers on transmitted
MSGs. It relies on a graph-based network structure in
which a network link is completely reliable and based on
an end-to-end delay model by which the delay of
event/message transmissions [3] and agent migrations [14]
can be calculated. The calculated delay is used as timeout
value of a Timer containing a MSG.

3.3. ELA adapter

The ELA (Event-drive Lightweight Agent) adapter
(Fig. 7) allows to plug a MAOBehavior object
encapsulating the DSC-based behavior of an event-driven
lightweight agent into the simulation framework.

<<interface>>
IMobileAgentAdapter

+ void generate(MAOEvent)
+ void receive(MAOEvent)
+ MAOId getMAOId()
+ run()
+ onArrival()
+ onDeparture()

ELA

+ mbeh : MAOBehavior
+ mid : MAOId
+ as : AgentServer
+ setAgentServer(AgentServer)

MAOBehavior
(from MAOFramework)

+ mas : MAOActiveState
+ mid : MAOId
+ imaa : IMobileAgentAdapter
+ MAOBehavior(MAOActiveState)
+ generate(MAOEvent)
+ MAOId self()

MAOId
(from MAOFramework)

+ hlname : String
+ homeLocation : String
+ currentLocation : String

+ MAOId(String, String)
+ setCurrLocation(String)

Figure 7. The ELA adapter layer.

The ELA class is an extension of the MAAF (Mobile
Agent Adaptation Framework) [8] designed to provide the
basic support for the adaptation of a MAOBehavior to a
mobile agent class which is made available by a specific
Java-based mobile agent platform. The ELA class
implements the IMobileAgentAdapter interface and is
associated with a MAOBehavior and a MAOId
encapsulating the high-level agent identifier.
IMobileAgentAdapter declares the following methods for
adapting agent interaction, execution and migration:
- receive, which is invoked to pass MAOEvents to

agents;
- generate, which interprets the MAOEvents generated

within MAOBehavior and translates them into calls of
platform-dependent methods;

- run, which is the method supporting agent execution;
- onDeparture, which is invoked just before the

migration initiates;
- onArrival, which is invoked after the migration is

completed.

WOA 2005 80

To completely adapt an ELA to the agent platform layer
the ELA class needs only to implement the methods
receive and generate. The method receive is invoked by
the AgentServer to deliver MAOEvents to ELAs. The
method generate, which is invoked by the MAOBehavior,
passes a MAOEvent to the AgentServer.

3.4. User

The User level makes it available two abstract classes
UserAgent and UserAgentGenerator which are extensions
of Agent. UserAgent represents a user directly connected
to an AgentServer who can create, launch and interact
with ELAs. UserAgentGenerator models the generation
process of UserAgents. In particular, the
UserAgentGenerator is able to create and start UserAgents
according to a given logic (e.g. statistical distribution).
Moreover, the Start message allows for the activation of a
UserAgent or a UserAgentGenerator, whereas the
Reporting message which targets a UserAgent contains a
report sent from an ELA owned by the UserAgent.

3.5. Simulator programming

A MAS simulator can be programmed on the basis of
the simulation entities described in the previous
subsections: VirtualNetwork, AgentServer, ELA,
UserAgent and UserAgentGenerator. A general simulator
program can be constructed in the following steps:

1. creation of the VirtualNetwork;
2. creation of one or more AgentServers;
3. mapping of the created AgentServers onto distinct

nodes of the VirtualNetwork;
4. creation of the ELAs that will not be created,

directly or undirectly, by a UserAgent;
5. mapping of the created ELAs onto AgentServers;
6. creation of one or more UserAgentGenerators

and/or one or more UserAgents. In the latter case,
the created UserAgents are to be bounded to one
or more AgentServers;

7. generation of the Start messages targeting the
UserAgentGenerators and/or the UserAgents;

8. start of the simulation engine.
Figure 8 sketches the code of the simulator program of an
example MAS. The MAS is composed of N stationary
service agents (SA) distributed on N different
AgentServer, a UserAgent (UA) which creates and
launches a mobile agent (MA). MA travels along the N
different AgentServers, interacts with the N SAs and,
finally, comes back home by reporting to the UA.

//initialize the simulation engine
SimulationEngine.init();

//create an Homogeneous Small Network of N_AS+1 nodes
VirtualNetwork vn = new VirtualNetwork(N_AS+1, VirtualNetwork.HSN);

//add the VirtualNetwork to the set of MetaAgents
SimulatiomEngine.addMetaAgent(vn, MetaAgent.ALL_MSG);

//create N_AS agent servers
AgentServer [] ass = new AgentServer[N_AS];
String [] ass_url = new String[N_AS];
for (int i=0; i<N_AS; i++){
ass_url[i] = "agentserver"+i;
ass[i] = new AgentServer(ass_url[i], "typeX");
}

//map agent servers to network nodes
for (int i=0; i<N_AS; i++)
vn.map(ass[i], i);

//create the service agents and map them to the agent servers
for (int i=0; i<NUM_AS; i++)
ELA sa = new ELA(new MAOId(ass_url[i]+"#sa", null,

ass_url[i]), new MAOServiceActiveState(100));
Msg msg = new Msg(ass[i], ass_url[i], ass_url[i],

Msg.AGENT_CREATION, sa);
ass[i].process(msg);
}

//create the user agent and map it to the N_AS node
UserAgent ua = new UserItineraryAgent("useragentX", ass_url);
vn.map(ua, N_AS);

//send the Start message to the UserAgent
Agent.send(new Start(ua));

//start the simulation of a duration of 1000000
SimulationEngine.start(1000000);

Figure 8. An example MAS simulator program.

4. Performance evaluation of a consumer-
driven agent-based e-Marketplace

An Agent-based e-Marketplace (AEM) is a distributed
multi-agent system formed by both stationary and mobile
agents which provide e-Commerce services to end-users
within a business context. AEMs are distributed large-
scale complex systems which require tools which are able
to analyze not only the AEM at the micro level, i.e.
behaviors and interactions of their constituting agents, but
also the AEM at the macro level, i.e. the overall AEM
dynamics. Although useful insights about AEM micro and
macro levels can be acquired by playing e-Commerce
simulation games and, then, analyzing the obtained
results, or by evaluating real e-Commerce applications,
discrete-event simulators are essential for evaluating how
AEMs work on scales much larger than that achievable in
games or in applications which involve humans. This
section shows the application of the proposed discrete-
event simulation framework to the analysis of micro level
issues of a consumer-driven AEM, i.e. an e-Marketplace
in which the exchange of goods is driven by the
consumers that wish to buy a product.

4.1. An Agent-based Consumer Driven e-
Marketplace model

The modeled AEM, inspired by the systems presented
in [1] and [16], consists of a set of stationary and mobile
agents which provides basic services for the searching,
buying, selling, and payment of goods.

WOA 2005 81

The identified types of agents are:
- User Assistant Agent (UAA), which is associated

with users and assists them in: (i) looking for a
specific product that meets their needs; (ii) buying
the product according to a specific buying policy.

- Access Point Agent (APA), which represents the
entry point of the e-Marketplace. It accepts requests
for buying a product from a registered UUA.

- Mobile Consumer Agent (MCA), which is an
autonomous mobile agent dealing with the searching,
contracting, evaluation, and payment of goods.

- Vendor Agent (VA), which represents the vendor of
specific goods.

- Yellow Pages Agent (YPA), which represents the
contact point of the distributed Yellow Pages Service
(YPS) providing the location of agents selling a
given product. The organization of the YPS can be:
(i) Centralized (C), each YPA stores a complete list
of Vendor Agents; (ii) One Neighbor Federated
(1NF), each YPA stores a list of VAs and keeps a
reference to only another YPA; (iii) M-Neighbors
Federated (MNF), each YPA stores a list of VAs
and keeps a list of at most M YPAs.

- Bank Agent (BA), which represents a reference bank
supervising money transactions between MCAs and
VAs

The identified types of interactions between the agent
types are described below by relating them to the system
workflow triggered by a user’s request:

1. Request Input (UAA→APA): the UAA sends a
request to the APA containing a set of parameters
selected by the user for searching and buying the
desired product, i.e. the product description
(Prod_Desc), the maximum product price (PMAX) the
user is willing to pay, and the type of buying policy
(BP).

2. Service Instantiation (APA→MCA): the APA
creates a specific MCA and provides it with the set
of user’s parameters, the type of searching policy
(SP), and the location of the initial YPA to be
contacted. Upon creation, the MCA moves to the
initial YPA location.

3. Searching (MCA↔YPA): the MCA requests a
list of locations of VAs selling the desired product to
the YPA. The YPA replies with a list of VA
locations and, possibly, with a list of linked YPA
locations.

4. Contracting & Evaluation (MCA↔VA): the
MCA interacts with the found VAs to request an
offer (Poffer) for the desired product, evaluates the
received offers, and selects an offer, if any, for
which the price is acceptable (i.e., Poffer<=PMAX)
according to the type of BP.

5. Buying (MCA↔VA↔BA): the MCA moves to
the location of the selected VA and pays for the
desired product using a given amount of e-cash (or
bills) triggering the following money transaction: (i)
the MCA gives the bills to the VA; (ii) the VA sends
the bills to a BA; (iii) the BA validates the
authenticity of the bills, disables them for re-use,
and, finally, issues an amount of bills equal to that
previously received to the VA; (iv) the VA notifies
the MCA.

6. Result Report (MCA→UAA): the MCA reports
the buying result to the UUA.

4.2. Agent behaviors

A model of MCA is defined on the basis of the tuple:
<SP, BP, TEM>,

where:
- SP is a searching policy in {ALL, PA, OS}:

a. ALL: all YPAs are contacted;
b. Partial (PA): a subset of YPAs are contacted;
c. One-Shot (OS): only one YPA is contacted.

- BP is a buying policy in {MP, FS, FT, RT}:
a. Minimum Price (MP): the MCA first interacts

with all the VAs to look for the best price of the
desired product; then, it buys the product from
the VA offering the best acceptable price;

b. First Shot (FS): the MCA interacts with the VAs
until it obtains an offer for the product at an
acceptable price; then, it buys the product;

c. Fixed Trials (FT): the MCA interacts with a
given number of VAs and buys the product from
the VA which offers the best acceptable price;

d. Random Trials (RT): the MCA interacts with a
random number of VAs and buys the product
from the VA which offers the best acceptable
price.

- TEM is a task execution model in {ITIN, PAR}:
a. Itinerary (ITIN): the Searching and Contracting

& Evaluation phases are performed by a single
MCA which fulfils its task by sequentially
moving from one location to another;

b. Parallel (PAR): the Searching and Contracting
& Evaluation phases are performed by a set of
mobile agents in a parallel mode. In particular,
the MCA is able to generate a set of children
(generically called workers) and to dispatch them
to different locations; the workers can, in turn,
spawn other workers.

Thus, each one of the defined models implements the
product buying service differently.

An MCA task execution model is chosen by the Access
Point Agent (APA) when it accepts a user input request;
the choice can depend on the <SP, BP> pair selected by
the user and on the e-Marketplace characteristics. If the

WOA 2005 82

chosen task execution model is of the Parallel type then
the MCA is named PCA (Parallel Consumer Agent)
otherwise if the chosen task execution model is of the
Itinerary type then the MCA is named ICA (Itinerary
Consumer Agent). Therefore, a PCA model is defined by
a triple <SP, BP, PAR> whereas an ICA model is defined
by a triple <SP, BP, ITIN>.

The DSC-based behavior of the PCA models is
reported in [4] whereas the DSC-based behavior of the
ICA models, that can be seen as a particular case of the
PCA behaviour, is described in detail in [6].

4.3. Simulation parameters and results

The goal for which the simulation phase was
performed is twofold:
- to validate the behavior of each type of agent, the

different models of MCA agents on the basis of the
different YPS organizations, and the agent interactions.

- to gain a better understanding of the effectiveness of
the simulation for evaluating MAS performances.
In order to analyze and compare the MCA models, the

Task Completion Time (TTC) parameter was defined as
follows: TTC=TCREATION-TREPORT where, TCREATION is the
creation time of the MCA and TREPORT is the reception
time of the MCA report. The simulation scenario was set
up as follows:
- each stationary agent (UAA, APA, YPA, VA, BA)

executes in a different agent server;
- agent servers are mapped onto different network nodes

which are completely connected through links having
the same characteristics. The communication delay (δ)
on a network link is modeled as a lognormally
distributed random variable with a mean, µ, and, a
standard deviation, σ [3];

- each UAA is connected to only one APA;
- the price of a product, which is uniformly distributed

between a minimum (PPMIN) and a maximum (PPMAX)
price, is set in each VA at initialization time and is
never changed; thus the VAs adopt a fixed-pricing
policy to sell products;

- each YPA manages a list of locations of VAs selling
available products.

- an UAA searches for a desired product, which always
exists in the e-Marketplace, and is willing to pay a
price PMAX for the desired product which can be any
value uniformly distributed between PPMAX and
(PPMAX+PPMIN)/2.

Simulations were run by varying the organization of the
Yellow Pages (C, 1NF and 2NF organized as a binary tree
or 2NFBT), the number of YPA agents in the range
[10..1000] and the number of VA agents in the range
[10..10000]. These ranges were chosen for
accommodating small as well as large e-Marketplaces.
The duration of the performed simulations were set so as

to allow for the completion of the buying task carried out
by the MCA. The results obtained from the simulations
made it possible to:

(a) evaluate which task execution model is more
appropriate with respect to SP and BP policies (see §4.2)
and for the characteristics of the e-Marketplace;

(b) validate the analytical model proposed in [16]
regarding the sequential and parallel dispatching of
mobile agents.

With respect to point (a), the ICA performs better than
the PCA in the following cases:

- SP ={ALL, PA, OS}, BP =FS, YPS ={C, 1NF};
- SP ={PA, OS}, BP =FS, YPS =2NF.
Thus, the APA can choose the itinerary task execution

model if such cases occur.
With respect to point (b), the performance evaluation

focused on <ALL, MP, TEM> models (see §4.2) as these
are the only models of MCA which guarantee both a
successful purchase and the best purchase since they are
successful at identifying the VA selling the desired
product at the minimum price. In order to compare the
performances of PCA and ICA models, the results

1

10

100

1000

10000

100000

10 100 1000 10000

N VA

Tc
[t

.u
.]

ICA with N YPA=100
PCA with N YPA=100
ICA with N YPA=10
PCA with N YPA=10

1

10

100

1000

10000

10 100 1000

N YPA

Tc
[t

.u
.]

ICA with N VA=1000
PCA with N VA=1000
ICA with N VA=100
PCA with N VA=100

Figure 10. Performance evaluation of the <ALL,
MP, TEM > models for an e-Marketplace with

YPS=2NFBT, NVA ={100, 1000} and variable NYPA.

Figure 9. Performance evaluation of the <ALL,
MP, TEM> models for an e-Marketplace with

YPS=2NFBT, NYPA ={10, 100} and variable NVA.

WOA 2005 83

obtained for the <ALL, MP, TEM> MCA models
adopting a YPA organization of the 2NFBT type are
reported in Figures 9 and 10. The results shown in Figure
9 were obtained with NYPA={10, 100} and varying NVA,
whereas the results shown in Figure 10 were obtained with
NVA={100, 1000} and varying NYPA. In agreement with
the analytical model reported in [16], the PCA, due to its
parallel dispatching mechanism, outperforms the ICA
when NVA and NYPA are increased.

5. Conclusions

Validation tools for agent-based and multi-agent
systems are highly required before such systems get
completely deployed on distributed execution platforms.
In order to support the validation phase of agent-based
systems at different levels of granularity, from agent
behaviors, protocols and services (micro-level) to global
system behavior (macro-level), flexible and robust agent-
oriented, discrete-event simulation frameworks should be
carefully designed and developed. This paper has
proposed a Java-based discrete-event simulation
framework (MASSIMO – Multi-Agent Systems
SIMulation framewOrk) which aims at supporting the
validation activity of agent-based and multi-agent systems
modeled and programmed by using an integrated
approach based on the Distilled StateCharts formalism
and the related programming tools. In particular,
MASSIMO allows for the validation and the performance
evaluation of the dynamic behavior (computations,
interactions, and migrations) of individual and
cooperating agents, the basic mechanisms of the
distributed architectures supporting agents, namely agent
platforms, and the functionalities of applications and
systems based on agents. Finally, some results about the
exploitation of MASSIMO for the validation of a
consumer-driven agent-based e-Marketplace have been
reported. Current efforts are being devoted to applying
MASSIMO for the validation and performance evaluation
of workflow instances enacted by agent-based enactment
engines in the context of agent-based workflow
management systems.

Acknowledgements
The work reported in this paper was partially supported
by the M.I.U.R. (Italian Ministry of Instruction,
University and Research) in the framework of the
M.ENTE (Management of integrated ENTErprise)
research project PON (N°12970-Mis.1.3).

References
[1] D.J. Bredin, D. Kotz, and D. Rus. Market-based Resource
Control for Mobile Agents. Proc. of ACM Autonomous Agents,
May 1998.

[2] FIPA Agent Management Support for Mobility Specification,
DC00087C, 2002/05/10. http://www.fipa.org.
[3] S. Floyd, V. Paxson, Difficulties in simulating the Internet.
IEEE/ACM Transactions on Networking, 9(4), pp. 392-403,
2001.
[4] G. Fortino, A. Garro, and W. Russo. An Integrated Approach
for the Development and Validation of Multi Agent Systems.
Computer Systems Science & Engineering, 20(4), pp.259-271,
Jul. 2005.
[5] G. Fortino, A. Garro, W. Russo. Modelling and Analysis of
Agent-Based Electronic Marketplaces. IPSI Transactions on
Internet Research, 1(1), pp. 24-33, Jan. 2005.
[6] G. Fortino, A. Garro, W. Russo. E-commerce Services based
on Mobile Agents. in Mehdi Khosrow-Pour, editor,
Encyclopedia of E-Commerce, E-Government and Mobile
Commerce, Idea Publishing Group, Hershey (PA), USA, 2006,
to appear.
[7] G. Fortino, W. Russo. Multi-coordination of Mobile Agents:
a Model and a Component-based Architecture. Proc. of the ACM
Symposium on Applied Computing, Special Track on
Coordination Models, Languages and Applications, Santa Fe,
New Mexico, USA, 13-17 Mar, 2005.
[8] G. Fortino, W. Russo, and E. Zimeo. A Statecharts-based
Software Development Process for Mobile Agents. Information
and Software Technology, 46(13), pp. 907-921, Oct. 2004.
[9] N.M. Karnik and A.R. Tripathi. Design Issues in Mobile-
Agent Programming Systems. IEEE Concurrency, 6(3), 52-61,
1998.
[10] M. Luck, P. McBurney, and C. Preist. A Manifesto for
Agent technology: Towards Next Generation Computing.
Autonomous Agents and Multi-Agent Systems, 9(3), pp. 203-
252, 2004.
[11] M. Martelli, V. Mascardi, and F. Zini. Specification and
Simulation of Multi-Agent Systems in CaseLP. Proc. of Appia-
Gulp-Prode Joint Conf. on Declarative Programming, L'Aquila,
Italy. M.C. Meo and M. Vilares-Ferro (eds), pp. 13-28, 1999.
[12] M. Röhl, A. M. Uhrmacher. Controlled Experimentation
with Agents - Models and Implementations. Proc. of the 5th
International Workshop “Engineering Societies in the Agents
World”, 20-22 October 2004, Toulouse, France.
[13] C. Sierra, J. A. Rodríguez-Aguilar, P. Noriega, M. Esteva,
and J. L. Arcos. Engineering Multi-agent Systems as Electronic
Institutions. Novática, 170, July-August 2004.
[14] M. Strasser and M. Schwehm, A Performance Model for
Mobile Agent Systems, Proc. of the Int’l Conf. on Parallel and
Distributed Processing Techniques and Applications
(PDPTA’97), June 1997, 1132-1140.
[15] A.M. Uhrmacher, M. Röhl, and B. Kullick. The Role of
Reflection in Simulating and Testing Agents: An Exploration
Based on the Simulation System James. Applied Artificial
Intelligence, (9-10):795-811, October-December, 2002.
[16] Y. Wang, K-L. Tan, and J. Ren. A Study of Building
Internet Marketplaces on the Basis of Mobile Agents for Parallel
Processing. World Wide Web: Internet and Web Information
Systems, 5(1): 41-66, 2002.
[17] M. Wooldridge, N. R. Jennings, and D. Kinny. The Gaia
methodology for agent-oriented analysis and design. Journal of
Autonomous Agents and Multi-Agent Systems, 3(3):285–312,
2000.

WOA 2005 84

