
Learning by Knowledge Exchange
in Logical Agents

Stefania Costantini
Universit̀a degli Studi di L’Aquila

Dipartimento di Informatica
Via Vetoio, Loc. Coppito, I-67010 L’Aquila - Italy

Email: stefcost@di.univaq.it

Arianna Tocchio
Universit̀a degli Studi di L’Aquila

Dipartimento di Informatica
Via Vetoio, Loc. Coppito, I-67010 L’Aquila - Italy

Email: tocchio@di.univaq.it

Abstract— In this paper we introduce a form of cooperation
among agents based on exchanging sets of rules. In principle,
the approach extends to agent societies a feature which is proper
of human societies, i.e., the cultural transmission of abilities.
However, acquiring knowledge from untrustworthy agents should
be avoided, and the new knowledge should be evaluated according
to its usefulness. After discussing the general principles of our
approach, we present a prototypical implementation.

I. I NTRODUCTION

Adaptive autonomous agents are capable of adapting their
behavior according to changes in the environment. Then,
adaptive agents must take profit of past experiences using some
learning approach. As it is widely acknowledged, the effects
of learning should include at least one of the following:

• The range of behaviors is expanded: the agent can do
more.

• The accuracy on tasks is improved: the agent can do
things better.

• The speed is improved: the agent can do things faster.

According to [16] [2], three learning techniques are usable
to develop adaptive autonomous agents: reinforcement learn-
ing, models learning and classifier systems.

In reinforcement learning, the mechanism consists in as-
signing rewards (weights) to actions that contribute to the
resolution of a problem. This approach has been used for
instance to improve coordination between autonomous agents
[17]. In models learning, agents try to find causal relations
between their actions and the events occurring in the en-
vironment. In general, they use either probabilistic models
or logical models. The original ideas by [16] have then
been widely developed in various approaches. Induction (and
also inductive logic programming) is often considered as a
particular form of models learning. Classification is the most
common form of automatic learning. In the agent context, an
agent can try to classify applicable rules by setting priorities
and then updating these priorities according to the results
achieved [12]. Memory-based reasoning (MBR) is based on
the idea that if a given action took place in the past in a
given situations and gave good results, it will be useful in a
new situations′ similar to s. Incremental learning techniques

have been recently introduced for improving MBR in dynamic
applications where data arrive continuously [9].

In a multi-agent setting however, other forms of learning
can be introduced that, though related to the classical ones,
are specifically tailored to multi-agent systems (MAS) topics
and issues. For instance in [10], in order to recall practical
solutions to coordination problems, agents learn coordinated
procedures from execution traces and store them into a case-
base that is organized around expectations about other agents.
Agents also learn better estimates for how likely individual
actions are to succeed in order to improve the quality of
decisions when planning, communicating, and adapting plans.

In this paper we discuss a learning approach useful to
improve adaptive behavior in computational logic agents. We
assume that whatever the formalism, these agents have a
rule-based knowledge base. The approach is centered on the
possibility of exchanging sets of rules between agents. These
sets of rules can either define a procedure, or constitute a
module for coping with some sort of situation, or be just a
segment of a knowledge base. However, agents should then
be able to evaluate how useful the new knowledge is. To this
extent, we propose two techniques.

The first technique associates to the acquired knowledge a
specific objective, meaning that the new rules should help the
agent to reach that objective. After a while, the agent will
evaluate whether (or to which extent) the objective has been
reached. If the evaluation is unsatisfactory, the new knowledge
can be discarded. There is a clear similarity with reinforcement
learning, where here the action that is to be evaluated is the
use of the new knowledge.

The second technique consists in acquiring the same knowl-
edge from several other agents, and then comparing the results.
The comparison is made based on a meta-specification, i.e.,
based for instance on efficiency, or on a measure of similarity
of the results. The comparison will state which versions pass
a given threshold, and which don’t. The unsatisfactory ones
will be discarded.

In a real application, a directory agent can be employed so
as to inform agents of where to find the required knowledge.
This directory agent may in principle be notified of the
updates of the level of trust performed by agents that have

WOA 2005 1

acquired a piece of knowledge from a certain agent, and thus
compute and exhibit a value that represent thereputation
of that agent. To this aim, the directory agent will employ
suitable algorithms (for instance those presented in [19])to
assess the past behavior of agents, so as to allow avoidance
of untrustworthy agents in future.

In Section 2 we discuss the proposed approach at some
length. In Section 4 we present a prototypical implementation
of the approach in the agent-oriented programming language
DALI [3] [6], after shortly summarizing the main DALI fea-
tures (Section 3). In DALI, all the above can take profit from
the DALI communication architecture, that allows the agent
to filter incoming and out-coming messages according to any
kind of constraint, including trust [5]. Then for instance,new
knowledge will be learned by trusted agents only; successful
evaluation of the acquired knowledge can lead to an increase
of the level of trust of the sending agent, while a decision to
discard that knowledge can also result in a decrease of the
level of trust. Moreover, the trial of different version of the
same knowledge can be made in parallel, by exploiting the
DALI children generation capability [7] that allows the agent
to create sub-agents on specific tasks.

II. L EARNING BY RULE EXCHANGE

Learning may allow agents to survive and reach their goals
in environments where a static knowledge is insufficient. The
environmental context changes, cooperative or competitive
agents can appear or disappear, ask for information, require
resources, propose unknown goals and actions. Then, agents
may try to improve their potentiality by interacting with other
entities so as to perform unknown or difficult tasks.

One of the key features of MAS is the ability of “sub-
contracting” computations to agents that may possess the
ability to perform them. More generally, agents can try to
achieve a goal by means of cooperative distributed problem-
solving. However, on the one hand not all tasks can be
delegated and on the other hand agents may need or may
want to acquire new abilities to cope with unknown situations.
In our view, an improvement in the effectiveness of MAS
may consist in introducing a key feature of human societies,
i.e., cultural transmission of abilities. Without this possibility,
agents are limited under two important respects:

• they are unable to expand the set of perceptions they can
recognize, elaborate and react to;

• they are unable to expand their range of expertise.

Indeed, the flexibility and thus the “intelligence” of agents
will increase if they become able not only to refine but also
to enlarge their own capabilities. The need of acquiring new
knowledge can be recognized by an agent at least in relation
to the following situations:

1) There is an objective that the agent has been unable
to reach: it has been unable to relate a plan (in the
KGP perspective [13]) or intention (in a BDI perspective
[18]) to that objective (or desire) and it has to acquire

new knowledge (beliefs). As a particular case, there is a
situation the agent is unable to cope with; for instance,
there is an exogenuos event that the agent does not
recognize.

2) There is some kind of computation that the agent is
unable to perform.

Assuming that the agent establishes that it cannot resort
to cooperation to get its task performed, it can still resort
to cooperation in order to try to acquire the necessary piece
of knowledge from another agent. The problems involved in
this issue are at least the following: how to ask for what
the agent needs; how to evaluate the actual usefulness of
the new knowledge; and, how this kind of acquisition can be
semantically justified in a logical agent.

In this context, we make the simplifying assumption that
agents speak the same language, and thus we overlook the
problem of ontologies that in an actual implementation would
of course arise. We also assume that, whatever the underlying
formalism, agents have a rule-based knowledge base. Two
feasible ways of asking other agents can be:

• Ask by keyword, assuming that other agents have a way
of matching the keyword with a piece of knowledge.
Some kind of pattern-matching will have to be used by
an agent in order to establish whether it can answer a
request.

• Ask by predicate name.

An agent that would accept to give the requested knowl-
edge, should answer by providing, together with the piece of
knowledge, some kind of “control” information that should
include at least:

• A specification of the way of using that knowledge, that
specifies whether the rules apply automatically, e.g., in
the case of reactive rules, or if there is either a predicate
or a procedure to be invoked.

• In the former case, specify the format of the external
event that triggers the rules; in the latter, specifying the
invocation pattern of the predicate/procedure.

The details of the above are left to the specific implemen-
tation, related to the language/formalism in which the agents
are expressed. Notice that it is not required that the involved
agents be based on the same inference mechanism. However,
they should be somehow “compatible”, i.e., a prolog-based
agent might acquire an Answer-Set program [21] and then
use it, assuming that it is able to invoke an Answer-Set solver.
Clearly, the exchanged piece of knowledge should include all
the relevant rules, i.e., all the rules which are needed (directly
or indirectly [8]) for actually exploiting that knowledge.

At this stage, the receiver agent has to face two problems:

(a) Establish whether the new knowledge is consistent, or
at least compatible, with its knowledge base. This is
a topic which has long been studied in belief revision
[1]. However, we assume that the new knowledge is not
directly incorporated to the existing knowledge base.
On the contrary, in the first stage the new knowledge

WOA 2005 2

is distinct from the existing well-established knowledge
base, as it must be evaluated before being accepted.

(b) Establish whether the new knowledge is actually useful
to the purposes for which it has been acquired. If
so, it can possibly be asserted in the knowledge base.
Otherwise, it can possibly be discarded.

Then, agents should be able to evaluate how useful the new
knowledge is. Similarly to reinforcement learning, techniques
must be identified so as to make this evaluation feasible with
reasonable efficiency. Simple techniques to cope with this
problem can be the following.

1) The new knowledge had been acquired in order to reach
an objective: the agent can confirm/discharge the new
knowledge according to its reaching/not reaching the
objective. This evaluation can be related to additional
parameters, like e.g. time, amount of resources needed,
quality of results.

2) The new knowledge has been acquired for performing a
computation: the agent can acquire the same knowledge
by several sources, and compare the results. Results
which are not “sufficiently good” (given some sort of
evaluation) lead to the elimination of the related piece
of knowledge. The others are used (compared/combined)
to produce the accepted result.

A. Semantics of Learning by Rule Exchange

The semantics of Computational Logic agent languages may
in principle be expressed as outlined in [3] for the DALI
language. I.e., given programPAg, the semantics is based on
the following.

1) An initialization stepwherePAg is transformed into a
corresponding programP0 by means of some sort of
knowledge compilation (which can be understood as a
rewriting of the program in an intermediate language).

2) A sequence of evolution steps, where reception of each
event is understood as a transformation ofPi into Pi+1,
where the transformation specifies how the event affects
the agent program (e.g., it is recorded).

Then, one has a Program Evolution SequencePE =
[P0, ..., Pn] and a corresponding Semantic Evolution Sequence
[M0, ...,Mn] whereMi is the semantic account ofPi (in [3]
Mi is the model ofPi).

This semantic account can be adapted by transforming the
initialization step into a more general knowledge compilation
step, to be performed:

(i) At the initialization stage, as before.
(ii) Upon reception of new knowledge.

(iii) In consequence to the decision to accept/reject the new
knowledge.

III. DALI IN A NUTSHELL

DALI [3] [6] [20] is an Active Logic Programming lan-
guage designed in the line of [14] for executable specification
of logical agents. The Horn-clause language is a subset of

DALI, which however includes the following agent-oriented
features. The reactive and proactive behavior of the DALI
agent is triggered by several kinds of events: external events,
internal, present and past events. All the events and actions
are timestamped, so as to record when they occurred.

An external event is a particular stimulus perceived by the
agent from the environment. In fact, we define the set of
external events perceived by the agent from timet1 to time
tn as a setE = {e1 : t1, ..., en : tn} whereE ⊆ S, and S

is the set of the external stimuli that the agent can possibly
perceive.

A single external eventei is an atom indicated with a
particular postfix in order to be distinguished from other DALI
language events. More precisely:

Definition 1 (External Event):An external event is syntac-
tically indicated by postfixE and it is defined as:
ExtEvent ::=<< AtomE >> |seq << AtomE >>

where anAtom is a predicate symbol applied to a sequence of
termsand aterm is either a constant or a variable or a function
symbol applied in turn to a sequence of terms.

External events allow an agent to react through a particular
kind of rules, reactive rules, aimed at interacting with the
external environment. When an event comes into the agent
from its “external world”, the agent can perceive it and decide
to react. The reaction is defined by a reactive rule which has
in its head that external event. The special token:>, used
instead of: −, indicates that reactive rules performs forward
reasoning.

Definition 2 (Reactive rule):A reactive rule has the form:
ExtEventE :> Body or
ExtEvent1E , ..., ExtEventnE :> Body

The agent remembers to have reacted by converting the
external event into apast event(time-stamped). Operationally,
if an incoming external event is recognized, i.e., corresponds
to the head of a reactive rule, it is added into a list calledEV

and consumed according to the arrival order, unless priorities
are specified.

The internal events define a kind of “individuality” of a
DALI agent, making it proactive independently of the envi-
ronment, of the user and of the other agents, and allowing it
to manipulate and revise its knowledge. More precisely:

Definition 3 (Internal Event):An internal event is syntac-
tically indicated by postfixI:
InternalEvent ::=<< AtomI >>

The internal event mechanism implies the definition of two
rules. The first one contains the conditions (knowledge, past
events, procedures, etc.) that must be true so that the reaction
(in the second rule) may happen:
IntEvent : −Conditions

IntEventI :> Body

The goal defined in the first rule is automatically attempted
with a default frequency customizable by means of directives
in the initialization file. Whenever it succeeds, the internal
event “has happened”, and the reaction (second rule) is trig-

WOA 2005 3

gered as if it were an external one. A DALI agent is able to
build a plan in order to reach an objective, by using internal
events of a particular kind, calledplanning goals.

Actions are the agent’s way of affecting the environment,
possibly in reaction to either an external or internal event. An
action in DALI can be also a message sent by an agent to
another one.

Definition 4 (Action): An action is syntactically indicated
by postfixA:
Action ::=

<< AtomA >> |messageA << Atom,Atom >>

Actions take place in the body of rules.

If an action has preconditions, they are defined by action
rules, emphasized by a new token:

Definition 5 (Action rule):An action rule has the form:
Action :< Preconditions.

Similarly to external and internal events, actions are
recorded as past actions.

Past events represent the agent’s “memory”, that makes it
capable to perform future activities while having experience
of previous events, and of its own previous conclusions. Past
events are kept for a certain default amount of time, that can
be modified by the user through a suitable directive in the
initialization file. A past event is syntactically indicated by
the postfixP .

Procedurally, DALI is based on an Extended Resolution
Procedure that interleaves different activities, and can be tuned
by the user via directives.

The operational semantics of DALI is based on Dialogue
Games Theory [4] [20]: the DALI Interpreter is modeled as a
set of cooperating players. By means of this approach one is
able to prove formal properies of the language in the form of
properties that the game will necessarily fulfil.

A. DALI Communication Architecture

The DALI communication architecture consists of four
levels. The first and last levels implement the DALI/FIPA
communication protocol and a filter on communication, i.e. a
set of rules that decide whether or not receive (told check level)
or send a message (tell check level). The DALI communication
filter is specified by means of meta-level rules defining the
distinguished predicatestell and told. Whenever a message
is received, with content partprimitive(Content,Sender)the
DALI interpreter automatically looks for a correspondingtold
rule. If such a rule is found, the interpreter attempts to prove
told(Sender, primitive(Content)). If this goal succeeds,
then the message is accepted, andprimitive(Content)) is
added to the set of the external events incoming into the
receiver agent. Otherwise, the message is discarded. Sym-
metrically, the messages that an agent sends are subjected
to a check viatell rules. The second level includes a meta-
reasoning layer, that tries to understand message contents,
possibly based on ontologies and/or on forms of commonsense
reasoning. The third level consists of the DALI interpreter.

Environment

META layer

TOLD layer

Reactive module

Learning module

TELL module

Proactive module

Planning module

Action module

module
Past

sensing

cycle

DALI internal interpreter

Agent

Fig. 1. DALI communication architecture

B. Children generation capability

We have introduced in the DALI framework the ability to
generate children agents [7]. An important motivation for this
improvement has been the need for our agents to face not-
trivial planning problems by means of the invocation of a
performant planner, such as for instance an Answer Set Solver.
[11] [15] [21]. As a planning process can require a significant
amount of time, the possibility for an agent to assign this
time-expensive activity to its children can constitute a real
advantage.

Another motivation for generating children is, more gen-
erally, that of splitting an agent goal into subgoals to be
delegated to children. This possibly with the aim of obtaining
different results by means of different strategies, and then
comparing the various alternatives and choosing the best ones.
The father provides the child with all the information useful
to find the solution and, optionally, with an amount of time
within which to resolve the assigned problem.

IV. BASIC LEARNING MECHANISMS

Agents that adopt forms of learning to improve their be-
havior can in perspective deal with more complex jobs, but
expose themselves to some risks. The learned information
could be either intentionally or accidentally wrong or simply
not consistent with the agent specialization. Agents knowledge
is generally divided into a set of facts and rules: the former
represent the agent “beliefs” about itself and the world, while
the latter determine the entity behavior. If learning one ormore
beliefs (plain facts) implies a certain degree of risk, adding
rules coming from other agents to the knowledge base can

WOA 2005 4

very dangerous. Thus, in our view it is necessary to elaborate
different learning strategies for beliefs and rules, reserving to
the latter case a more sophisticated acquisition process. In the
following subsections we will first propose an approach to
manage the exchange of facts and then we will discuss the
more general problem of rules learning.

A. Beliefs learning

The belief base of DALI agents is composed of the facts
which are present in the agent logic program, dynamically
augmented by past events. Past events keep trace of what the
agent has done/observed before: external and internal events,
performed actions, reached internal conclusions and pursued
planning activities.

Past events also represent external world knowledge.
In fact, a DALI agent can ask for some facts
by using the primitives is a fact(Fact, Ag) and
query ref(Fact,Match number,Ag) where: Fact is
the desired information,Match number represents the
number of matches that the agent intends to receive andAg

is the name of the agent asking for the fact. While the first
primitive allows the entity to require a ground fact, the second
one supports the requests of non-ground information. Then,
if for instance agentdavewants to know who is the lover of
susy, it can send the following message to, e.g.,susy’s friend
kate:

messageA(kate, query ref(love(Y, susy), 1, dave)).

If the beliefs base of kate contains only the fact
love(susy, peter), no matching is directly found. This prob-
lem has been overcome in DALI via a meta-level support
that, by using both ontologies and properties of relations,tries
to “understand” message contents (namely, message contents
are automatically subjected to a proceduremeta which is
predefined though user-customizable). In this case, if the
ontology of kate contains information on the symmetry of
the predicate ’love’,loves(Y, susy) can be matched with
love(susy, peter) and the agentkatewill return the result:

send message to(dave,

inform(query ref(loves(Y, susy), 1),
values([loves(susy, peter)]), kate),
italian, [])

Once received the desired information, the agentdavewill
update its beliefs by adding, as a past event, the fact:

past event(loves(susy, peter), 479379, kate).

where first value is the information aboutsusyandpeter, the
second value is the acquisition time and the third value keeps
track of the information source. The sender agent name is
relevant: if trust in this agent reliability will be reducedunder
a certain threshold by negative cooperation experiences, all
partial beliefs coming from it could be eliminated. At the same
time, thetold filter will get rid of at priori each communication
act sent by the unreliable agent:

told(Sender, query ref(Fact,Match number)) : −
not(unreliableP (Sender agent)).

Another direct acquisition beliefs method in DALI agent is
based on theconfirm primitive. This method allows an agent
to send a fact to another one. Also in this case, the fact will be
added to the agent beliefs only if the message will overcome
the told filter. For example, if the agentdave intends to send
to peter the informationbought(car, red), it will send the
message:

messageA(peter, confirm(bought(car, red), dave)).

and the peter beliefs will contain the past event:
past event(bought(car, red), 479379, dave).

A fact can be eliminated from the agent knowledge base by
using thedisconfirmprimitive.

B. Rules learning

The rule-exchange approach to learning proposed in this
paper is a first step into the complex world of learning rules.
For instance, a DALI agent, when receiving a stimulus whose
reaction is unknown, can ask other agents for acquiring rules
capable of suggesting the right behavior to adopt. While
retrieving and adding rules to the knowledge base is not
difficult, the relevant problem of learning a correct information
remains.

Intelligent agents can have different specializations for
different contexts and a learning rules process cannot ignore
this. Moreover, even agents having the same specializations
can adopt behavioral rules which are mutually inconsistent.
What could the solution be?

In the prototypical implementation that we present here,
the learning rules process includes several steps starting
from a verification of the source reliability. The solution is
based on the introduction of amediator agentthat we call
yellow rules agent, keeping track of the agents specializa-
tion and reliability. When an entity needs to learn something,
it asks theyellow rules agent for the names agents having
the same specialization and being more reliable.

Once obtained this information, the agent may acquire the
desired knowledge by some of them. If the agent will finally
decide to incorporate the learned rules in its program because
they work correctly, it will also send toyellow rules agent

a message indicating satisfaction. This will result in an incre-
ment of the reliability of the agent that has provided the rules.
A negative experience will imply an unfavorable dispatch. In
the present implementation agents return a numeric value in-
dicating the “level of trust”. We mean to add also the objective
that the receiver agent meant to reach via the new knowledge,
so as to conditionally rate agents with respect to this point.
This in order to avoid a low reliability esteem for agents which
are actually reliable in their own area of expertise. In fact, it
may happen that an agent has a very specialized (and accurate)
rule set which is mistakenly matched against some requests.
In updating the level of trust theyellow rules agent should

WOA 2005 5

adopt a model that updates trust only when the information is
sufficient, i.e., after a certain number of reports which arein
accordance, sent by reliable agents.

The learned rules will be added to the agent knowledge base
in the form of past events. A preliminary check will verify
some properties such as, for example, the syntactic correctness
or consistency. Rules that “survive” this check will be usedby
the agent in its activities, and their usefulness and efficiency
will be recorded. After a certain time, according to resultsthe
acquired rules will be either definitely learned or eliminated.
Below we describe in more detail all steps involved in our
cooperative rules learning approach.

1) New knowledge is needed.A DALI agent behavior
is described by: (i) a set of rules determining what
reaction to apply in response to external stimuli; (ii) a
set of rules useful to draw internal conclusions or to
reach goals via planning strategies; (iii) a set of rules
containing conditions for reacting external events or for
performing actions; (iv) a set of horn-clauses. The need
to acquire new knowledge arises whenever an agent
receives a communication act whose content is unknown
and the meta-level does not succeed in searching for a
semantically equivalent content recognized by the entity.
The communication act could be an external event, a
proposed action, a request of information and so on.
Having no internal means to cope with this situation, the
agent activates the learning rules process. This process is
risky enough, so the agent must try to search a suitable
information source.

2) Looking for information sources. Our learning archi-
tecture allows a particular agent,yellow rules agent,
to maintain the information useful to identify the de-
sired rules source or sources. Each agent living in the
environment is identified by the tuple:

source(Ai, Si,KRi, Qi)

where the first parameter represents the agent identi-
fication and the second one is a string synthesizing
the agent role in the environment. The third one is
a list of rules keys that the agentAi is willing to
transfer to other agents. The fourth one is the reliability
value, computed byyellow rules agent according to
positive and negative feedbacks. In fact, agents that
receive rules fromagenti, at the end of the verification
phase send a message toyellow rules agent rating
that knowledge. According to current and past val-
ues average, theyellow rules agent computesagenti
reliability by means of some kind of eveluation.
For example, if the agentdave is a barman and
is available to give to others the rules useful to
serve a drink, the tuplesourcemight be for instance:
source(dave, barman, [serve drink], 0.6).

Whenever an agentAk having the specializationSk

needs some rules, it will send toyellow rules agent

the message:

messageA(yellow rules agent,

search sources(Ak, Sk,Keyk))

whereKeyk is meant to indicate the desired rules. More
precisely, this parameter allowsyellow rules agent to
identify agents having the right information by finding a
correspondence betweenKeyk and the elements of the
rules keys listKRi.
If one or more agents fulfill the correspondence, the
agentAk will receive as a response the list of reliable
agents corresponding to the expected specializationSk

and the keyKeyk:

Ls = [(A1, Q1), ..., (An, Qn)]

If no agents are available, the response will be the empty
list.
Having chosen the names of one or more agents to
which one can ask missing rules according to the
yellow rules agent and personal reliability evaluation,
the agent will then contact them.

A _agent

A _agent

search_sources

Ls list

yellow_rules_agent

learner_agent

A _agent

ask_rules_head

confirm([R1,...,Rn], A1) no specialization

has matching rules

no matching rules

where Ls=[(A , 6), (A , 5)]

1

s

n

1 0. s0.

Fig. 2. A cooperative learning scenario

3) Asking for missing rules. In order to get the needed
piece of knowledge, the agent can choose one of two
techniques: the first one allows an agent to learn all
required rules by specifying their heads. This implies
that there be a strict correspondence between the heads
of rules in two or more agents in order to be able to
activate the learning process. But, agents often came
from different platforms and technologies, so this cor-
respondence could hardly be found. This limit can be
overcome by adopting ontologies capable of matching
rule heads which though looking syntactically different
are semantically equivalent. If we consider the agentAk

having selected the couple(As, Qs) and the headHl,
the following message will propose to the receiver agent
the exchange of rules having the headHl:

messageA(As, ask rules head(Hl, Ak))

The second technique allows an agent to ask for a
specific key that can match with either the head or the

WOA 2005 6

body of rules in the agent program. We may notice that
in this manner the probability of finding corresponding
rules will be higher, though the rules appropriateness
and usefulness could be more in question. In this case,
the message syntax will be:

messageA(As, ask rules key(Key,Ak))

Agents accepting the proposal to exchange rules that
match with either theHead or the Key will pack all
retrieved rules and will send them back to theAk entity.

messageA(Ak, sent rules([R1, ..., Rn], Ch,As))

The parameterCh represents the goal that must be
invoked in order to activate the rules. In particular, if
the agentbob receives from the agentdavethe rules:

[dangerE :> call policeA,

call police :< have a phone]

the parameterCh will correspond todangerE .

As soon as these rules will be received by the
learner agent, they will be unpacked and asserted
as past events in its knowledge base with the suf-
fix learnP (Rule, T ime, Sender,Objective). Each rule
will be re-asserted in a second version, where more
information is associated to it, and in particular: the
current time; the sender agent name; a parameterObjec-
tive, useful to remember what was the goal for which
the request had been issued. For example, if the agent
was in a dangerous situation when it requested the rule
with the keyhelp, it will memorize that theObjectiveof
this learning rule process was to get safe. The objective
introduction will allow the agent, after learning the rules,
to check their effectiveness with respect to the associated
goal.

4) Add learned rules. Rules added as past events
are managed by a specific internal event,
gest learning(Rule), that implements the first
filter level. This internal event filters one rule at the
time. In order not to slow down the agent, this operation
is performed in suitable time slots, i.e., when the agent
is not performing complex tasks and the events queues
have few items to be processed. Each rule is taken into
account in order to be added to the knowledge base, and
must fulfill two conditions (expressed in the first rule
of the internal event):learn if(Rule, T ime, Sender)
and properties true(Rule). The first condition,
learn if(Rules, T ime, Sender), is similar to a told
one: the user can define in the same file of tell/told
rules a set of constraints that the consideredRules, the
Time and theSender agent must respect:

learn if(Rules, T ime, Sender) : −
constraint1, ..., constraintn.

Constraints can avoid adding an incoming rule from an
agent that was reliable foryellow rules agent, but is
considered instead unreliable by the receiver agent under
some different perspective.Time can be used to either

gest learning(Rule) : −
learnP (Rule, T ime, Sender,) ,
learn if(Rule, T ime, Sender),
properties true(Rule).

gest learningI(Rule) :>
accept at presentA(Rule).

Fig. 3. First learning process filter

force or delay the assertion of theRules. Other domain-
or situation-dependent constraints can be expressed.
The second condition,properties true(Rule), takes
more specific properties of theRules into account, e.g.:

- the syntactic correctness according to prolog and DALI
language;
- the absence of procedure calls without a corresponding
procedure;
- the overlap of rules originating from different agents;
- the rule consistence with respect to previously learned
clauses.

If certified by the internal event, the rules are added to
the agent program with a label indicating that they are
to be submitted to second filter. A particular label will
emphasize that the rules have been learned provisionally.
Final learning will take place only if the rules will
overcome the second filter level, based on usefulness
and efficiency. Some rules discarded by the first filter
can remain for some time in the agent knowledge
base, waiting for a successive integration. In fact, the
learning process can generate new contexts where some
previously false properties become true.
In order to avoid a rule that cannot be learned to be kept
for too long in the agent memory, we have introduced
a particular internal event that eliminates all past events
learnP (Rule, T ime, Sender,Objective) that has been
kept for an amount of time that exceeds a threshold.

C. Exploiting basic mechanisms

Rules added to the agent program in order to be evaluated
wait for the moment in which the agent will be in need of
them. The estimate of their usefulness depends strictly on the
kind of learned rules. Some, expressing a set of actions that
the agent needs to perform, can be evaluated by examining the
correspondence between the entity objective and the exhibited
behavior. Some, useful to execute complex operations, can
be evaluated by examining for instance the time spent in the
calculation and the result quality. Here we propose two sample
methods to estimate partially learned rules.

• On Objectives Once introduced in the agent program,
each piece of knowledge is used by the entity during its
life, keeping always track of its performance with respect
to the corresponding objective. This testing phase can
be performed in two modalities. The first one is based
on the correspondence between the expressedObjective
in learnP (Rule, T ime, Sender,Objective) and the ef-
fective rule application result. For example, ifObjective

WOA 2005 7

check objective(Rules, V alue) : −
learnP (Rules, T ime, Sender, Objective),
expired time(Time, T),
evaluate(Rules, Objective, V alue).

check objectiveI(Rules, V alue) :>
evaluate rule(Rules, V alue).

evaluate rule(Rules, V alue) : −
accept definitelyA(Rules, V alue).

accept definitely rule(Rules, V alue) :<
V alue > Threshold.

evallreject ruleA(Rules, V alue).
reject ruleA(Rules, V alue) :<

V alue < Threshold.

Fig. 4. Second learning process filter

expresses the agent safety, we would expect that the agent
be safe or at least having made some progress in this
direction. The utility and efficiency test is implemented
by an internal event that, whenever a learned rule is
invoked, checks from time to time its effect.
The evaluation is performed by the function
evaluate(Rules,Objective, V alue) that considers:

- the degree of correspondence between theObjectiveand
past events generated by theRulesapplication;
- given the state snapshot of the program execution, the
degree of correspondence between the saved state and the
declaredObjective.

For each usage ofRules, the returnedV alue incre-
ments/decrements the average calculated on the past
evaluations. After some time, a negative result implies the
rule elimination while a positive one determines a final
learning. However, the agent maintains information on
the Rulessources, so that also in future what is learned
can be eliminated if, for example, the source becomes
unreliable.

• On comparison If the learned rules are aimed at some
kind of complex computation that returns a result, a
suitable testing method can be adopted. The agent can
generate children, and can assign each child a different
set of rules acquired by different sources for the same
calculation. The results, together with performance, time
and resources spent, will be returned to the father that
can decide which set of rules is better to adopt.

V. CONCLUSIONS

We have proposed a form of cooperation among agents that
consists in improving each agent’s skills by acquiring new
knowledge form the others. The approach aims at extending
to agent societies a feature which is proper of human societies,
i.e., the cultural transmission of abilities. We have outlined the
problems and advantages of this approach, and have discussed
a prototype implementation in DALI. More experimental work
is needed for proving the effectiveness of the approach, and
for putting various methods of verification of the usefulness of
learning at work. Indeed, the mechanisms for matching needs
against rule sets of other agents (keywords or rule heads) is

quite preliminary and must be checked in real applications,as
it might result in low “precision”, i.e., too many matches are
found and “recall”, i.e., too many matches are discarded.

REFERENCES

[1] G. Antoniou (with contributions by M.-A. Williams).Nonmonotonic
Reasoning, The MIT Press, Cambridge, Massachusetts, 1997, ISBN
0-262-01157-3.

[2] W. Brenner, R. Zarnekow and H. Wittig.Intelligent Software Agents,
Foundations and Applications, Springer Verlag, Berlin, Germany, 1998.

[3] S. Costantini and A. Tocchio.A Logic Programming Language for
Multi-agent Systems, In: Logics in Artificial Intelligence, Proc. of the
8th Europ. Conf., JELIA 2002, LNAI 2424, Springer-Verlag, 2002.

[4] S. Costantini, A. Tocchio and A. Verticchio.A Game-Theoretic Op-
erational Semantics for the DALI Communication Architecture, In:
Proc. of WOA04, Pitagora Editrice Bologna, ISBN: 88-371-1533-4, Also
available on-line, at the URL: http://woa04.unito.it/Pages/atti.html

[5] S. Costantini, A. Tocchio and A. Verticchio.Communication and Trust
in the DALI Logic Programming Agent-Oriented Language, In: Proc.
of the Italian Conference on Intelligent Systems AI*IA’04, 2004.

[6] S. Costantini and A. Tocchio.The DALI Logic Programming Agent-
Oriented Language, In: Proceedings of the 9th European Conference,
Jelia 2004, Lisbon, September 2004. LNAI 3229, Springer-Verlag,
Germany, 2004.

[7] S. Costantini and A. Tocchio. Enhancing Computational power:
DALI child agents generation, In: Electronic proceedings of CILC’05,
Italian Conf. on Comp. Logic, Roma, 21-22 giugno 2005, URL
http://www.disp.uniroma2.it/CILC2005/Programma.html.

[8] J. Dix. A Classification Theory of Semantics of Normal Logic Programs:
I. Strong Properties, Fundamenta Informaticae 22(3), 1995.

[9] F. Enembreck and J.-P. Barths.ELA - A new Approach for Learning
Agents, Journal of Autonomous Agents and Multi-Agent Systems, 3(10):
215-248, 2005.

[10] A. Garland and R. Alterman.Autonomous Agents that Learn to Better
Coordinate, J. Autonoumous Agents and Multi-agent Systems, 2004.

[11] M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic
Programming, In: Proc. of the Fifth Joint International Conference and
Symposium. The MIT Press, 1988, 1070–1080.

[12] J. H. Holland.Escaping brittleness: The possibility of general-purpose
learning algorithms applied to parallel rule-based systems, In: Machine
Learning, an Artificial Intelligence Approach, Morgan-Kauffman, vol.
2, 1986.

[13] A. Kakas, P. Mancarella, K. Stathis, F. Sadri and F. Toni. The KGP
Model of Agency, In: ECAI 04, Proc. of the 16th European Conf. on
Artificial Intelligence, 2004.

[14] R. A. Kowalski. How to be Artificially Intelligent - the Logical Way,
Draft, revised February 2004, Available on line, URL
http://www-lp.doc.ic.ac.uk/UserPages/staff/rak/rak.html.

[15] V. Lifschitz. Answer Set Programming and Plan Generation.Artif.
Intelligence 138 (1-2), Elsevier Science Publishers, 2002, 39-54.

[16] P. Maes.Modeling Adaptive Autonomuos Agents, Artificial Life Journal,
1(1-2): 135-162, MIT Press, 1994.

[17] Oliveira E. Agent, advanced features for negotiation and coordination,
In M. Luck (ed.), ACAI 2001, LNAI 2086: 173–186, Speringer-Verlag,
2001.

[18] A. S. Rao and M. Georgeff.Modeling rational agents within a BDI-
architecture, In: Proc. of the Second Int. Conf. on Principles of
Knowledge Representation and Reasoning (KR’91). Morgan Kaufmann,
1991: 473-484.

[19] J. Sabater and C. Sierra.Reputation and social network analysis in
multi-agent systems, In: Proceedings of the First Int. Joint Conf. on
Autonomous Agents and Multi-agent Systems: 475482. ACM Press,
2002.

[20] A. Tocchio. Multi-Agent Systems in computational logic, Ph.D. Thesis,
Dipartimento di Informatica, Universitá degli Studi di L’Aquila, 2005.

[21] Material about Answer Set Programming (ASP) and web location of
ASP solvers. http://tinfpc2.vub.ac.be/wasp/bin/view/Wasp/WebHome.

WOA 2005 8

Languages for Programming BDI-style Agents:
an Overview

Viviana Mascardi, Daniela Demergasso, Davide Ancona
DISI, Università di Genova, Via Dodecaneso 35, 16146, Genova, Italy

mascardi@disi.unige.it, 1996s165@educ.disi.unige.it, davide@disi.unige.it

Abstract— The notion of an intelligent agent as an entity which
appears to be the subject of mental attitudes like beliefs, desires
and intentions (hence, the BDI acronym) is well known and
accepted by many researchers. Besides the definition of various
BDI logics, many languages and integrated environments for
programming BDI-style agents have been proposed since the
early nineties. In this reasoned bibliography, nine languages and
implemented systems, namely PRS, dMARS, JACK, JAM, Jadex,
AgentSpeak(L), 3APL, Dribble, and Coo-BDI, are discussed and
compared. References to other systems and languages based on
the BDI model are also provided, as well as pointers to surveys
dealing with related topics.

I. INTRODUCTION

The notion of an intelligent agent as an entity which
appears to be the subject of beliefs, desires, commitments, and
other mental attitudes, is well known and accepted by many
researchers [1]. The philosopher Dennett has coined the term
intentional system to denote systems of this kind [2].

In order to formalise intentional systems, different logics
have been developed, among which Cohen and Levesque’s
theory of intentions [3], and Rao and Georgeff’s Belief-Desire-
Intention logic [4], [5], [6]. However, intelligent software
agents cannot just be formalised using ad-hoc logical lan-
guages: they must be programmed using executable languages,
as any other piece of software. Hence, there is a pressing need
of programming languages which can fill the gap between the
logical theory and the practical issues concerned with software
agents’ development.

One of the computational models that gained more con-
sensus as a candidate to fill this gap is the Belief-Desire-
Intention (BDI) one [7], which, as the acronym itself suggests,
is characterized by the following concepts:

– Beliefs: the agent’s knowledge about the world.
– Desires: the objectives to be accomplished.
– Intentions: the courses of actions currently under execu-

tion to achieve the agent’s desires.
Besides these components, the BDI model includes a plan

library, namely a set of “recipes” representing the procedural
knowledge of the agent, and an event queue where both events
(either perceived from the environment or generated by the
agent itself to notify an update of its belief base) and internal
subgoals (generated by the agent itself while trying to achieve
a desire) are stored.

The typical BDI execution cycle is characterised by the
following steps:

1. observe the world and the agent’s internal state, and
update the event queue consequently;

2. generate possible new plan instances whose trigger event
matches an event in the event queue (relevant plan instances)
and whose precondition is satisfied (applicable plan instances);

3. select for execution one instance from the set of appli-
cable plan instances;

4. push the selected instance onto an existing or new
intention stack, according to whether or not the event is a
(sub)goal;

5. select an intention stack, take the topmost plan instance
and execute the next step of this current instance: if the step
is an action, perform it, otherwise, if it is a subgoal, insert it
on the event queue.
Usually, BDI-style agents do no adopt first principles planning
at all, as all plans must be generated by the agent programmer
at design time. The planning done by agents consists entirely
of context-sensitive subgoal expansion, which is deferred until
a point in time at which the subgoal is selected for execution.

This paper provides an overview of languages and imple-
mented systems for programming BDI-style agents. In Section
II, nine systems based on the BDI model are surveyed, and
in Section III they are compared along seven dimensions.
Our knowledge about these nine systems, comes both from
our own readings and experience, and from talks with most
of the authors of the systems themselves, in particular with
R. Bordini (AgentSpeak), M. Dastani (3APL), M. J. Huber
(JAM), A. Pokahr (Jadex), M. B. van Riemsdijk (Dribble),
and M. Winikoff (AgentTalk). All of them have been asked to
check the content of Section III before submission1. Section
III also contains pointers to other existing systems, together
with references to related work.

II. BDI-STYLE LANGUAGES AND SYSTEMS

The choice of the nine languages and systems that we
briefly introduce in this section is motivated either by their
historical relevance (PRS, dMARS, AgentSpeak(L)) or by
their current significance and with adoption (the remaining
six ones). Clearly, there are many more BDI-based languages
besides these ones, most of which are cited in Section III.

1Despite to the precious advices given by these researchers, the paper might
contain inaccuracies, whose responsibility is only ours!

WOA 2005 9

Although we could not treat all the existing languages and
systems in depth, our choice does not mean, in any way, that
the languages surveyed in this section are “better” (according
to whatever criterion) than those cited in Section III.

A. PRS

The SRI’s procedural reasoning system, PRS [8], [9], was
developed for representing and using an expert’s procedural
knowledge for accomplishing goals and tasks, based on the
research of procedural reasoning carried out at the Artificial
Intelligence Center, SRI International. It can be considered
the ancestor of all the languages and architectures for prac-
tical reasoning discussed in this paper. Procedural knowledge
amounts to descriptions of collections of structured actions for
use in specific situations. PRS supports the definition of real-
time, continuously-active, intelligent systems that make use
of procedural knowledge, such as diagnostic programs and
system controllers.

Main components of the language: PRS architecture
consists of (1) a database containing current facts and beliefs,
(2) a set of goals to be achieved, (3) a set of plans, called
Acts, describing how sequences of conditional tests and actions
may be performed to achieve certain goals or to react to
certain situations, and (4) an interpreter that manipulates
these components to select and execute appropriate plans for
achieving the system’s goals.

Agent operation: The PRS interpreter runs the entire
system. At any particular time, certain goals are established
and certain events occur that alter the beliefs held in the system
database. These changes in the system’s goals and beliefs
trigger (invoke) various Acts. One or more of these applicable
Acts will then be chosen and placed on the intention graph.
Finally, PRS selects a task (intention) from the root of the
intention graph and executes one step of that task. This will
result either in the performance of a primitive action in the
world, the establishment of a new subgoal or the conclusion
of some new belief, or a modification to the intention graph
itself.

Semantics: We were not able to find documents describ-
ing the formal semantics of the original PRS system; our
understanding is that the work on giving a formal semantics
to PRS started only with the research on dMARS (see Section
II-B).

Implementation: A list of implemented PRS systems can
be retrieved from M. Wooldridge’s page on BDI software,
http://www.csc.liv.ac.uk/˜mjw/pubs/rara/

resources.html. The list includes for example PRS-CL
(http://www.ai.sri.com/˜prs/) and UMPRS (http:
//ai.eecs.umich.edu/people/durfee/UMPRS.html).

Industrial-strength applications: The PRS has been eval-
uated in a simulation of maintenance procedures for the space
shuttle, as well as other domains [10].

B. dMARS

dMARS was implemented at the Australian AI Institute,
under the direction of M. Georgeff. It was a kind of “second

generation PRS”, implemented in C++ and used for commer-
cial agent development projects.

Main components of the language: An agent in dMars is
characterised by a plan library, three main selection functions
which select the intention to execute, the plan to adopt, and
the event to manage respectively, and two auxiliary selection
functions that are used during the agent’s functioning.

A plan is in turn constituted by an invocation condition, an
optional context and a mandatory maintainance condition, a
body – that is a tree representing the possible flows of actions;
arcs are labelled with either an internal or an external action, or
a subgoal, while nodes are labelled with states – two sequences
of internal actions (updates to the belief base), to be executed
if the plan succeeds or fails.

The state of an agent includes the current belief base, the
set of current intentions (namely, plan instances which contain
information about the current state of execution of the plans
they originate from), and the event queue.

Agent operation: The dMARS operation cycle respects
the basic cycle depicted in the introduction:
– If the event queue is not empty, an event is selected from
it and relevant plans and, in turn, applicable plans are deter-
mined. An applicable plan is selected and used to generate
a plan instance. With an external event, a new intention
containing just the plan instance as a singleton sequence is
created. With an internal event, the plan instance is pushed
onto the intention stack which generated that (subgoal) event.
– If the event queue is empty, an intention is chosen and the
action labelling the current branch in the body of its topmost
plan is executed.

A plan fails if all its branches have been attempted, and
all of them failed. In this case, the failure actions must be
executed. Otherwise, a plan succeeds and the success actions
must be executed.

Implementation: The first implementation of dMARS
has been developed by the Australian Artificial Intelligence
Institute (AAII) - Melbourne, Australia - in 1995. AAII imple-
mented the dMARS platform for distributed reasoning agents
consisting of graphical editors, a compiler and an interpreter
for a logic goal-oriented programming language, a number
of run-time libraries (including an in-memory knowledge
database, a multi-threading package and a communication
subsystem). dMARS was developed in C++ and ran on a
variety of Unix platforms. At the end of 1997, dMARS was
being ported to Windows/NT.

Semantics: In [11], an operational semantics of dMARS
described using Z [12].

Industrial-strength applications: The dMARS system has
been used for both research and production in factory au-
tomation, simulation, business and air traffic control systems.
Among the customers of dMARS, there are NASA (space
shuttle malfunction handling), AirServices, Thomson Airsys
(air traffic control), Daimler Chrysler (supply chain manage-
ment, resource & logistics management), Hazelwood Power
(process control). A survey of the applications developed with
dMARS can be found in [13].

WOA 2005 10

C. JACK

JACK Intelligent Agents [14], [15] incorporates the BDI
model and allows developers to create new reasoning models
to suit their customers particular requirements. It is imple-
mented in Java, and the JACK Agent Language extends Java
with constructs for agent characteristics such as plans and
events. JACK has been built by a team of experts who have
worked on PRS and dMARS, and is a commercial product.

Main components of the language: The JACK Agent
Language extends the regular Java syntax. It allows the pro-
grammers to develop the components that are necessary to
define BDI agents and their behaviour, namely:

• Agents - which have methods and data members just like
objects, but also contain capabilities that an agent has,
namely belief bases (beliefsets), descriptions of events
that they can handle, and plans that they can use to handle
them.

• Capabilities - which serve to encapsulate and aggregate
functional components of the JACK Agent Language for
use by agents.

• Beliefsets - which are used to store beliefs and data that
the agent has acquired.

• Views - which provide a way of modelling any data in a
way easily manipulated by JACK.

• Events - which identify the circumstances and messages
that it can respond to.

• Plans - which are executed in response to these events.
Agent operation: When an agent is instantiated in a

system, it will wait until it is given a goal or it experiences
an event to which it must respond. When it receives an event
(or goal), the agent initiates activity to handle the event. If
it does not believe that the goal or event has already been
handled, it will look for the appropriate plan(s) to handle it.
The agent then executes the plan or plans depending on the
event type. The handling of the event may be synchronous
or asynchronous relative to the posting. The plan execution
may involve interaction with an agent’s beliefset relations or
other Java data structures. The plan being executed can in
turn initiate other subtasks, which may in turn initiate further
subtasks (and so on). Plans can succeed or fail. Under certain
circumstances, if the plan fails, the agent may try another plan.

Implementation: JACK is implemented entirely in Java
and should run on any Java-based platform. JACK stores
all program files and data as normal text, allowing standard
configuration management and versioning tools to be used.

Semantics: We did not find any formal semantics of
JACK.

Industrial-strength applications: One of the most signif-
icant applications of JACK was an unmanned aerial vehicle
(UAV) that was guided by an on-board JACK intelligent
software agent that directed the aircraft’s autopilot during the
course of the mission.

D. JAM

JAM is an intelligent agent architecture that grew out of
academic research and extended during the last five years of

use, development, and application. JAM combines ideas drawn
from the BDI theories, the PRS system and its UMPRS and
PRS-CL implementations, the SRI International’s ACT plan
interlingua [16], and the Structured Circuit Semantics (SCS)
representation [17]. It also addresses mobility aspects from
Agent Tcl [18], Agents for Remote Action (ARA) [19], Aglets
[20] and others.

Main components of the language: Each JAM agent is
composed of five primary components: a world model, a plan
library, an interpreter, an intention structure, and an observer.
The world model is a database that represents the beliefs of
the agent. The plan library, interpreter, and intention structure
has the same purpose of the corresponding components in
dMARS. The observer is a user-specified lightweight declara-
tive procedure that the agent interleaves between plan steps (in
addition to the reasoning performed by the JAM interpreter) in
order to perform functionality outside of the scope of JAM’s
normal goal/plan-based reasoning (e.g., to buffer incoming
messages).

Note that, like in Coo-BDI (discussed in Section II-I), the
set of plans available to the agent in the plan library can
be augmented during execution through communication with
other agents, generated from internal reasoning or by many
other means.

Agent operation: The JAM interpreter is responsible for
selecting and executing plans based upon the intentions, plans,
goals, and beliefs about the current situation. The agent checks
all the plans that can be applied to a goal to make sure they are
relevant to the current situation. Those plans that are applicable
are collected into what is called the Applicable Plan List (or
APL). An utility value is determined for each instantiated
plan in the APL and, if no meta-level plans are available to
select between the APL elements, the JAM interpreter selects
the highest utility instantiated plan (called an intention) and
intends it to the goal. Note that neither the original PRS
specification nor prior PRS-based implementations (such as
PRC-CL) support utility-based reasoning.

Implementation: JAM is distributed freely for non-
commercial use and can be downloaded from http://www.

marcush.net/IRS/download_jam.html

Semantics: We are not aware of any formal semantics of
JAM.

Industrial-strength applications: We could not find any
information on industrial-strength applications developed us-
ing JAM.

E. Jadex

The Jadex research project is conducted by the Distributed
Systems and Information Systems Group at the University
of Hamburg. The developed software framework is currently
in a beta-stage. A basic set of features already supports
the development of rational agents on top of the the FIPA-
compliant JADE platform [21]. The main purposes of Jadex
are both to bring together BDI-style reasoning and FIPA-
compliant communication [22], and to extend the traditional
BDI-model (e.g. with explicit goals).

WOA 2005 11

Main components of the language: Jadex agents have
beliefs, which can be any kind of Java object and are stored
in a belief base, goals, that are implicit or explicit descriptions
of states to be achieved, and plans, that are procedural recipes
coded in Java.

Agent operation: After initialisation, the Jadex runtime
engine executes the agent by keeping track of its goals while
continuously selecting and executing plan steps, based on
internal events and messages from other agents. Jadex is
supplied with some predefined functionalities and can integrate
third party tools like the “beangenerator” plug-in for the
ontology design tool Protégé [23].

Implementation: Jadex is implemented on top of JADE.
To easily integrate the Jadex engine (implemented in Java)
into JADE agents, a wrapper agent class is provided, which
creates and initialises an instance of the Jadex engine with the
beliefs, goals and plans from an agent definition file.

Semantics: For the basic operation of the Jadex inter-
preter, as well as for some specific aspects such as goal
deliberation, an operational semantics has been sketched in
[24].

Industrial-strength applications: From the Jadex
home page (http://vsis-www.informatik.
uni-hamburg.de/projects/jadex/), the pointers to
three applications developed using Jadex, namely MedPAge,
Dynatech, and Blackjack, can be found.

F. AgentSpeak(L)

AgentSpeak(L) [25] takes as its starting point PRS and
dMARS and formalizes its operational semantics. It can be
viewed as a simplified, textual language of PRS or dMARS.

Main components of the language: AgentSpeak(L) is
based on a restricted first-order language with events and
actions. The beliefs, desires and intentions of the agent are
not represented as modal formulas, but they are ascribed to
agents, in an implicit way, at design time. The current state
of the agent can be viewed as its current belief base; states
that the agent wants to bring about can be viewed as desires;
and the adoption of programs to satisfy such stimuli can be
viewed as intentions.

Agent operation: Like in PRS and dMARS, at every in-
terpretation cycle of an agent program, AgentSpeak(L) updates
a list of events, which may be generated from perception of
the environment, or from the execution of intentions (when
subgoals are specified in the body of plan). In [26], R.
Machado and R. H. Bordini have introduced a Belief Revision
Function (BRF) in the architecture which is implicit in Rao’s
interpreter, and in [27] R. H. Bordini, et al., enhance the
interpreter with an efficient intention selection in BDI agents
via decision-theoretic task scheduling.

Implementation: There are many implementations of the
AgentSpeak(L) language, among which:

• SIM Speak [26] (the first working AgentSpeak(L) inter-
preter), which runs on Sloman’s SIM AGENT toolkit, a
testbed for cognitively rich agent architectures [28], and

• Jason [29], which provides an interpreter for a version
of AgentSpeak(L) extended with speech-acts [30]; Jason
supports the distribution of the agents by means of SACI
[31].

• AgentTalk [32], an interpreter for a simplified version of
AgentSpeak(L) implemented by M. Winikoff.
Semantics: The agent operation described above is for-

malised in [25], [33], and [34].
Industrial-strength applications: AgentSpeak(L) has

been used to program animated embodied agents in virtual
environments.

G. 3APL

3APL [35] supports the design and construction of intelli-
gent agents for the development of complex systems through
a set of intuitive concepts like beliefs, goals and plans.

Although the 3APL architecture has many similarities with
other cognitive architectures such as PRS, it departs from
them in many ways. For example, the PRS architecture is
designed to plan agents’ goals (desires) while the 3APL
architecture is designed to control and revise agents’ to-do-
goals. Moreover, there is no ingredient in the PRS architecture
that corresponds to the practical reasoning rules, which are a
powerful mechanism to revise mental attitudes. Finally, the
deliberation cycle in 3APL is supposed to be a programmable
component while the deliberation cycle in PRS is integrated.

Main components of the language: An agent in 3APL is
characterised by two sets: the expertise of the agent, which is
a set of actions, and the agent’s rule base, which is a set of
rules.

A rule is formed by:
• an optional head and an optional body (both of which

are goals, namely either basic actions, or queries, or
achievement, or sequences of goals, or nondeterministic
choices of goals, or goal variables);

• a guard, that is a belief;
• a type, that may be either reactive, or failure, or
plan, or optimisation.

In 3APL goals represent both the target of the agent and the
way to achieve this target, thus 3APL goals are similar both
to dMARS achieve goals and to dMARS plans.

The state of a 3APL agent is constituted by its belief base
and its goal base.

Agent operation: The architecture for 3APL is based on
the think-act cycle, which is divided into two parts. The first
part corresponds to a phase of practical reasoning by using
practical reasoning rules, and the second corresponds to an
execution phase in which the agent performs some action.

Think stage. The application of a rule to a goal results in
the replacement of a subgoal which matches with the head of
the rule by the body of the rule in case the head of the rule
is non-empty. If the body of the rule is empty, the subgoal is
simply dropped. In case the head of a rule is empty only the
guard of the rule needs to be derivable from the beliefs of the
agent, and a new goal (the body of the rule) is added to the
goal base of the agent.

WOA 2005 12

Act stage. The execution of a goal is specified through
the computation steps an agent can perform on a goal. A
computation step corresponds to a simple action of the agent,
which is either a basic action or else a query on the beliefs of
the agent.

Implementation: Both a Java version and an Haskell
version of 3APL can be downloaded from http://www.cs.

uu.nl/3apl/download.html.
Semantics: Originally, the operational semantics of 3APL

was specified by means of Plotkin-style transition semantics
[36], while in [37] 3APL has been re-specified in Z. In [38],
the specification of a programming language for implementing
the deliberation cycle of cognitive agents is shown, and 3APL
has been used as the object language.

Industrial-strength applications: We are not aware of real
applications developed using 3APL.

H. Dribble

Dribble [39] is a propositional language that constitutes
a synthesis between the declarative features of the language
GOAL [40], and the procedural features of 3APL.

Some attention should be devoted to the terminology used.
In the original paper on 3APL [35], 3APL is defined to
have beliefs and goals (no plans). These goals are however
procedural (basically sequences of actions) and are actually
the same as the plans of Dribble (modulo some details).
The important feature of Dribble compared with the original
version of 3APL, is the addition of declarative goals (based on
GOAL). In the Dribble paper, the term “goal” has been used
for declarative goals (in the sense of propositional formulas
describing a situation that is to be achieved), and “plans” for
the procedural part of the agent (which was termed “goals” in
[35]). Further, the ideas of Dribble have been incorporated in
the latest version of 3APL, as discussed in [41]. That paper
presents a first order version of Dribble, with some minor
extensions. It uses the Dribble terminology of “goals” for
declarative goals and “plans” for the procedural part.

Main components of the language: The language Dribble
incorporates beliefs, declarative goals, and plans (i.e., proce-
dural goals, following 3APL terminology).

Agent operation: Dribble basically adopts a Think-Act
cycle like 3APL.

Implementation: We were not able to find documents
describing a working implementation of the Dribble language.

Semantics: In [39], an operational semantics of the pos-
sible mental state changes is defined using transition systems.
A dynamic logic is also sketched in which one can reason
about actions defined in that logic. These actions transform the
mental state of the agent. In [42], a demonstration that mental
state transitions defined by actions in the logic, correspond to
the mental state transitions defined by the transition system is
provided.

Industrial-strength applications: We are not aware of
applications developed using Dribble.

I. Coo-BDI

Coo-BDI (Cooperative BDI) [43] is based on the dMARS
specification and extends it by introducing cooperations
among agents to retrieve external plans for achieving desires.

Main components of the language: The cooperation
strategy of an agent A includes the set of agents with which
is expected to cooperate (a set of agent names), the plan
retrieval policy (always, noLocal) and the plan acquisition
policy (discard, add, replace).

Coo-BDI plans are classified in specific and default ones;
besides the standard components, they also have an access
specifier which determines the set of agents the plan can be
shared with (private, public and only(TrustedAgents)).

Coo-BDI intentions are characterized by “standard” com-
ponents plus components introduced to manage the external
plan retrieval mechanism.

Agent operation: The operation of a Coo-BDI agent is
based on a three steps cycle:

1) process the event queue;
2) process suspended intentions;
3) process active intentions.

The mechanism for retrieving relevant plans involves coopera-
tion with the trusted agents, in order to retrieve external plans,
besides the local ones.

Implementation: An integration of the ideas underlying
Coo-BDI into the Jason programming language has been
designed [44], and its implementation is under way [45].

Semantics: No formal semantics of Coo-BDI has been
defined. In [43] the Coo-BDI interpreter is fully described
in Prolog, which gives an operational specification of its
operation.

Industrial-strength applications: No applications have
been developed using Coo-BDI.

III. COMPARISON AND RELATED WORK

In Tables 1 and 2, we summarise the analysis of the nine
surveyed systems along seven dimensions. In particular, in
Table 2 we take the ability of the agents to easily integrate
ontologies (Ont) and to update the plan library at runtime
(Dyn) into account. In Table 2, references are given if the
analysed feature is not supported by the original system, but
by some of its extensions. Instead, a “Yes” in the cell means
that the original version of the system natively supports the
corresponding feature.

Many resources on BDI-style languages are available to the
research community, although, to the best of our knowledge,
no exhaustive roadmap on this topic exists. An introduction
to the BDI logics, architecture, and to some languages based
on BDI concepts can be found both in [54] and in [1]. The
paper [55] discusses and compares five MAS development
toolkits, namely AgentBuilder [56], CaseLP [57], DESIRE
[58], IMPACT [59], and ZEUS [60], that support the definition
of agents in terms of mental attitudes.

Among the on-line resources, http://www.csc.liv.ac.uk/
˜mjw/pubs/rara/resources.html provides pointers to some

WOA 2005 13

Implementations Formal semantics Industrial-strength applic.
PRS UMPRS [46], PRS-CL [47], others [48] No [10]

dMARS In 1995, AAII implemented a C++ platform running on
Unix; in 1997 dMARS was ported to Windows/NT Operational [11] [13]

JACK Java [49] No Unmanned vehicle
JAM Java [50] No No
Jadex Java [51] Operational (sketched in [24]) [51]
AS(L) SIM Speak [26], AgentTalk [32], Jason [29] Operational [33], [25], [34] Virtual environments
3APL Java and Prolog [52] Operational [37], [36]; meta-level [38] No
Dribble No Operational [39], dynamic logic-based [42] No
Coo-BDI Coo-AgentSpeak [44], [45] Operational [43] No

TABLE I
IMPLEMENTATIONS, SEMANTICS, APPLICATIONS OF THE SURVEYED SYSTEMS

Basic components Operation cycle Ont Dyn
PRS Standard Standard No No
dMARS Standard Standard No No

JACK Standard + capabilities (that aggregate functional components) + views (to easily
model data) Standard No No

JAM Standard + observer (user-specified declarative procedure that the agent interleaves
between plan steps) + utility of plans Utility-based No Yes

Jadex Beliefs + goals + plans + capabilities (that aggregate functional components) Standard Yes No
AS(L) Standard Standard; efficient [27] Yes [53] Yes [44]
3APL Beliefs, plans, practical reasoning rules, basic action specifications Think-act No Yes

Dribble Beliefs, plans, declarative goals, practical reasoning rules, goal rules, basic action
specifications Think-act No Yes

Coo-BDI Standard + cooperation strategy (trusted agents + plan retrieval and acquisition
policies) + plans’ access specifiers Perceive-cooperate-act No Yes

TABLE II
OTHER FEATURES OF THE SURVEYED LANGUAGES AND SYSTEMS

implemented BDI systems, while http://www.cs.rmit.edu.

au/agents/SAC/survey.html surveys systems based on the
concepts of action, event, plan, belief, goal, decision and
choice.

Besides the BDI-based languages and integrated environ-
ments that we have not discussed in Section II, we can cite:
MYWORLD [61], in which agents are directly programmed in
terms of beliefs and intentions; ViP [62], a visual programming
language for plan execution systems with a formal semantics
based upon an agent process algebra; CAN [63], a conceptual
notation for agents with procedural and declarative goals;
NUIN [64], a Java framework for building BDI agents, with
strong emphasis on Semantic Web aspects; SPARK [65], that
builds on PRS and supports the construction of large-scale,
practical agent systems; and Jason [29], that supports many
extensions to the AgentSpeak language and is a BDI system
in the spirit of Jadex, JAM, JACK, but with much better formal
basis.

When we move from BDI-style languages to the more
general class of agent programming languages based on
computational logics (which, however, includes the BDI-style
languages), we can find two surveys that complement each
other in many ways. The first one, [66], discusses different
formalisms with the aim of putting in evidence the contribution
of logic to knowledge representation formalisms and to basic
mechanisms and languages for agents and MAS modeling.

The second one, [67], analyses a subset of logic-based exe-
cutable languages whose main features are their suitability for
specifying agents and MASs and their possible integration into
an existing conceptual framework for agent-oriented software
engineering based on computational logic.

ACKNOWLEDGEMENTS

The authors acknowledge Rafael Bordini, Mehdi Dastani,
Marcus J. Huber, Alexander Pokahr, M. Birna van Riemsdijk,
and Michael Winikoff for their precious advices.

This work was partially funded by the MIUR project
“Sviluppo e verifica di sistemi multi-agente basati sulla log-
ica”, 2004-2005, coordinated by A. Martelli.

REFERENCES

[1] M. Wooldridge and N. R. Jennings, “Intelligent agents: Theory and
practice,” The Knowledge Engineering Review, vol. 10, no. 2, pp. 115–
152, 1995.

[2] D. C. Dennett, The Intentional Stance. The MIT Press, 1987.
[3] P. R. Cohen and H. J. Levesque, “Intention is choice with commitment,”

Artificial Intelligence, vol. 42, 1990.
[4] A. S. Rao and M. P. Georgeff, “Modeling rational agents within a BDI–

architecture,” in Proc. of KR’91, 1991, pp. 473–484.
[5] ——, “Asymmetry thesis and side-effect problems in linear-time and

branching-time intention logics.” in Proc. of IJCAI’91, 1991, pp. 498–
504.

[6] ——, “A model-theoretic approach to the verification of situated rea-
soning systems,” in Proc. of IJCAI’93, 1993, pp. 318–324.

[7] ——, “BDI agents: from theory to practice,” in Proc. of ICMAS’95,
1995, pp. 312–319.

WOA 2005 14

[8] M. P. Georgeff and A. L. Lansky, “Reactive reasoning and planning,”
in Proc. of AAAI’87, 1987, pp. 677–682.

[9] K. L. Myers, “User guide for the procedural reasoning system,” Artificial
Intelligence Center, SRI International, Menlo Park, CA, Tech. Rep.,
1997.

[10] M. P. Georgeff and F. F. Ingrand, “Decision-making in an embedded
reasoning system,” in Proc. of IJCAI’89, 1989, pp. 972–978.

[11] M. d’Inverno, D. Kinny, M. Luck, and M. Wooldridge, “A formal
specification of dMARS,” in Proc. of ATAL’97, 1997, pp. 155–176.

[12] M. Spivey, The Z Notation: A Reference Manual, 2nd edition. Prentice
Hall International Series in Computer Science, 1992.

[13] M. P. Georgeff and A. S. Rao, “A profile of the Australian AI institute,”
IEEE Expert, vol. 11, no. 6, pp. 89–92, 1996.

[14] P. Busetta, R. Ronnquist, A. Hodgson, and A. Lucas, “JACK intelligent
agents – components for intelligent agents in Java,” AgentLink News
Letter, vol. 2, 1999.

[15] Agent Oriented Software Group, “What is JACK?” http://www.
agent-software.com/shared/products/index.html.

[16] K. L. Myers and D. E. Wilkins, “The Act Formalism, Version 2.2,”
SRI International AI Center Technical Report, SRI International, Menlo
Park, CA, Tech. Rep., 1997.

[17] J. Lee and E. H. Durfee, “Structured circuit semantics for reactive plan
execution systems,” in Proc. of AAAI’94, 1994, pp. 1232–1237.

[18] R. S. Gray, D. Kotz, G. Cybenko, and D. Rus, “Agent Tcl,” in Mobile
Agents: Explanations and Examples. Manning Publishing, 1997.

[19] H. Peine, “ARA - Agents for Remote Action,” in Mobile Agents.
Manning Publishing, 1997.

[20] D. Lange and O. Mitsuru, Programming and Deploying Java Mobile
Agents with Aglets, 1998.

[21] JADE Home Page, http://jade.tilab.com/.
[22] FIPA Home Page, http://www.fipa.org/.
[23] Protégé Home Page, http://protege.stanford.edu/.
[24] A. Pokahr, L. Braubach, and W. Lamersdorf, “A flexible BDI architec-

ture supporting extensibility,” in Proc. of IAT-2005, 2005, pp. 379–385.
[25] A. S. Rao, “AgentSpeak(L): BDI agents speak out in a logical com-

putable language,” in Proc. of MAAMAW’96, 1996, pp. 42–55.
[26] R. Machado and R. H. Bordini, “Running AgentSpeak(L) agents on

SIM AGENT,” in Proc. of ATAL’01, 2001, pp. 158–174.
[27] R. H. Bordini, A. L. C. Bazzan, R. de O. Jannone, D. M. Basso,

R. M. Vicari, and V. R. Lesser, “AgentSpeak(XL): efficient intention
selection in BDI agents via decision-theoretic task scheduling,” in Proc.
of AAMAS’02, 2002, pp. 1294–1302.

[28] A. Sloman and R. Poli, “SIM AGENT: A toolkit for exploring agent
design,” in Proc. of ATAL’95. Springer-Verlag, 1995, pp. 392–407.

[29] R. H. Bordini, J. F. Hübner, et al., Jason: A Java-based AgentSpeak
interpreter used with SACI for multi-agent distribution over the net,
Manual, release 0.5 ed., 2004.

[30] A. F. Moreira, R. Vieira, and R. H. Bordini, “Extending the Opera-
tional Semantics of a BDI Agent-Oriented Programming Language for
Introducing Speech-Act Based Communication,” in Proc. of DALT’03.
Springer-Verlag, 2003, pp. 135–154.

[31] J. F. Hübner and J. S. Sichman, SACI — Simple Agent
Communication Infrastructure, 2003, sACI Home Page:
http://www.lti.pcs.usp.br/saci/.

[32] M. Winikoff, “The AgentTalk home page,” http://goanna.cs.rmit.edu.au/
∼winikoff/agenttalk/.

[33] M. d’Inverno and M. Luck, “Engineering AgentSpeak(L): A formal
computational model,” Logic and Computation Journal, vol. 8, no. 3,
pp. 1–27, 1998.

[34] R. H. Bordini and A. F. Moreira, “Proving BDI properties of agent-
oriented programming languages: The asymmetry thesis principles in
AgentSpeak(L),” Annals of Math. and AI, vol. 42, no. 1–3, pp. 197–
226, 2004.

[35] K. V. Hindriks, F. S. D. Boer, W. V. der Hoek, and J.-J. C. Meyer, “Agent
programming in 3APL,” AAMAS Journal, vol. 2, no. 4, pp. 357–401,
1999.

[36] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. C. Meyer,
“Formal semantics for an abstract agent programming language,” in
Proc. of ATAL’97, 1997, pp. 215–229.

[37] M. d’Inverno, K. V. Hindriks, and M. Luck, “A formal architecture for
the 3APL agent programming language,” in Proc. of ZB’00, 2000, pp.
168–187.

[38] M. Dastani, F. S. de Boer, F. Dignum, and J.-J. C. Meyer, “Programming
agent deliberation – an approach illustrated using the 3APL language,”
in Proc. of AAMAS’03, 2003.

[39] B. van Riemsdijk, W. van der Hoek, and J.-J. C. Meyer, “Agent
programming in Dribble: from beliefs to goals using plans,” in Proc.
of AAMAS’03, 2003, pp. 393–400.

[40] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. C. Meyer,
“Agent programming with declarative goals,” in Proc. of ATAL’00, 2000,
pp. 228–243.

[41] M. Dastani, M. B. van Riemsdijk, F. Dignum, and J.-J. C. Meyer, “A
programming language for cognitive agents: goal directed 3APL,” in
Proc. of ProMAS’03, ser. LNAI. Springer, 2004, vol. 3067, pp. 111–
130.

[42] M. B. van Riemsdijk, “Agent programming in Dribble: from beliefs to
goals with plans,” Master’s thesis, Utrecht University, 2002.

[43] D. Ancona and V. Mascardi, “Coo-BDI: Extending the BDI model with
cooperativity,” in Post-proc. of DALT’03, 2004, pp. 109–134.

[44] D. Ancona, V. Mascardi, J. F. Hübner, and R. H. Bordini, “Coo-
AgentSpeak: Cooperation in AgentSpeak through Plan Exchange,” in
Proc. of AAMAS’04, 2004, pp. 698–705.

[45] D. Demergasso, “Coo-AgentSpeak: un linguaggio per agenti deliberativi
e cooperativi,” Master’s thesis, DISI – Università di Genova, 2005, in
Italian.

[46] J. Lee, M. J. Huber, P. G. Kenny, and E. H. Durfee, “UM-PRS: An
Implementation of the Procedural Reasoning System for Multirobot
Applications,” in Proc. of CIRFFSS’94, 1994, pp. 842–849.

[47] PRS-CL Home Page, http://www.ai.sri.com/∼prs/.
[48] M. Wooldridge’s List of PRS Implementations, http://www.csc.liv.

ac.uk/∼mjw/pubs/rara/resources.html.
[49] JACK Home Page, http://www.agent-software.com/shared/products/

index.html.
[50] JAM Home Page, http://www.marcush.net/IRS/irs downloads.html.
[51] Jadex Home Page, http://vsis-www.informatik.uni-hamburg.de/

projects/jadex/.
[52] 3APL Home Page, http://www.cs.uu.nl/3apl/.
[53] A. F. Moreira, R. Vieira, R. H. Bordini, and J. Hübner, “Agent-

oriented programming with underlying ontological reasoning,” in Proc.
of DALT’05, 2005.

[54] M. Wooldridge and N. R. Jennings, “Agent theories, architectures, and
languages: A survey,” in Proc of. ECAI ATAL Workshop, 1994, pp. 1–39.

[55] T. Eiter and V. Mascardi, “Comparing Environments for Developing
Software Agents,” AI Communications, vol. 15, no. 4, pp. 169–197,
2002.

[56] AgentBuilder Home Page, http://www.agentbuilder.com/.
[57] M. Bozzano, G. Delzanno, M. Martelli, V. Mascardi, and F. Zini, “Multi-

agent systems development as a software engineering enterprise,” in
Proc. of PADL’99, 1999, pp. 46–60.

[58] DESIRE Home Page, http://www.cs.vu.nl/vakgroepen/ai/projects/
desire/desire.html.

[59] T. Eiter, V. S. Subrahmanian, and G. Pick, “Heterogeneous active agents,
I: Semantics,” Artificial Intelligence, vol. 108, no. 1-2, pp. 179–255,
1999.

[60] H. S. Nwana, D. T. Ndumu, L. C. Lee, and J. C. Collis, “ZEUS: A
tool-kit for building distributed multi-agent systems,” Applied Artifical
Intelligence Journal, vol. 13, no. 1, pp. 129–185, 1999.

[61] M. Wooldridge, “This is MYWORLD: The logic of an agent-oriented
testbed for DAI,” in Proc. of ECAI ATAL Workshop, 1994, pp. 160–178.

[62] D. Kinny, “ViP: a visual programming language for plan execution
systems,” in Proc. of AAMAS’02, 2002, pp. 721–728.

[63] M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah, “Declarative
& procedural goals in intelligent agent systems,” in Proc. of KR’02,
2002, pp. 470–481.

[64] I. Dickinson and M. Wooldridge, “Towards practical reasoning agents
for the semantic web,” in Proc. of AAMAS’03, 2003, pp. 827–834.

[65] D. Morley and K. Myers, “The SPARK agent framework,” in Proc. of
AAMAS’04, 2004, pp. 714–721.

[66] F. Sadri and F. Toni, “Computational Logic and Multi-Agent Systems: a
Roadmap,” Department of Computing, Imperial College, London, Tech.
Rep., 1999.

[67] V. Mascardi, M. Martelli, and L. Sterling, “Logic-based specification
languages for intelligent software agents,” TPLP Journal, vol. 4, no. 4,
pp. 429–494, 2004.

WOA 2005 15

An Ontology-Based Similarity
between Sets of Concepts

Valentina Cordı̀, Paolo Lombardi, Maurizio Martelli and Viviana Mascardi
Dipartimento di Informatica e Scienze dell’Informazione – DISI,
Università di Genova, Via Dodecaneso 35, 16146, Genova, Italy.

Email: cordi@disi.unige.it, 2001s003@educ.disi.unige.it, martelli@disi.unige.it, mascardi@disi.unige.it

Abstract— To help sharing knowledge in those contexts where
documents and services are annotated with semantic information,
such as the Semantic Web, defining and implementing the
similarity between sets of concepts belonging to a common
ontology may prove very useful. In fact, if both the required and
the provided pieces of information (be they textual documents,
services, images, or whatever) are annotated with sets of concepts
taken from a reference ontology O, the evaluation of how good
a piece of information P is, w.r.t. the required one R, may be
based on the similarity between the two sets of concepts that
describe P and R.

One of the first applications of the agent technology, aimed
at “reducing work and information overload”, was that of
retrieving and filtering information in an automatic way. Thus,
the possibility to calculate the semantic distance between two
sets of concepts finds a natural application in the agent field, in
particular for improving those agents that act as “digital butlers”
for their human owners, by exploring the Semantic Web and
looking for useful documents and/or services.

Unfortunately, the metrics for calculating the semantic distance
between two sets of concepts that can be found in the literature,
are often very simple and do not meet some requirements that,
up to us, make the metric closer to the common sense reasoning.
For this reason, we have designed and implemented two new
algorithms for computing the similarity between sets of concepts
belonging to the same ontology.

I. INTRODUCTION

According to the Wikipedia encyclopedia (http://en.
wikipedia.org/wiki/),

The Semantic Web is a project that intends to create
a universal medium for information exchange by
giving meaning (semantics), in a manner under-
standable by machines, to the content of documents
on the Web.

The intent of the Semantic Web is thus to enhance
the usability and usefulness of the Web by means
of common metadata vocabularies (ontologies [7]) and
standard languages suitable for defining them, such as XML
(http://www.w3.org/TR/2004/REC-xml-20040204/),
XML Schema (http://http://www.w3.org/TR/2004/
REC-xmlschema-1-20041028/), RDF [6], RDF Schema
[2], and OWL [17].

In order to share knowledge within the Semantic Web, two
problems must be addressed:

1) The similarity between sets of concepts belonging to the
same ontology O must be defined, in order to allow a
user (be it a human or a software agent) interested in

documents dealing with topics in the set S1, to retrieve
also documents dealing with topics in the set S2, if S1

and S2 are “close enough” with respect to O.
2) Since it is not always possible to have a unique ontology

O to use as a reference for comparing sets of concepts,
documents are often tagged not only with a set of
concepts, but also with the ontology from which the
tagging concepts come from. In this case, maps between
different ontologies must also be provided.

These two problems, although typical of the Semantic Web
context, can be found in many other application scenarios, like
Multiagent, Peer-to-Peer and Grid systems, where the com-
parison of set of concepts is required to provide more precise
answers to the user’ requests. For example, [8] describes a
multiagent system for semantic-driven information retrieval,
based on the peer-to-peer model, where routing of requests
is performed by computing the similarity between the set of
concepts advertised by each agent (the concepts that are dealt
with by the agent’s documents) and the set of concepts that
characterise the documents looked for by the requesting peer.
The similarity is evaluated by referring to a unique ontology
that describes the system’s domain, and from which concepts
appearing both inside advertisements and requests are taken.

More in general, all the application scenarios where an
“intelligent” information retrieval and filtering is required,
may take advantage of programs and instruments that allow
to compare two sets of concepts w.r.t. an ontology. In fact,
all the “agents that reduce work and information overload”
[15] usually need to compare the meta-information extracted
from the retrieved document, with the meta-information that
describes the user’s interests. Very often, this meta-information
consists either of a set of keywords whose similarity can be
computed by using lexical ontologies such as WordNet, or of
a set of concepts taken from a reference ontology.

In this paper, we address the problem of defining a similarity
metric between sets of concepts belonging to the same ontol-
ogy. In Section II we review some existing metrics defined in
the literature to measure the similarity between two concepts
(and, very rarely, between two sets of concepts) in either a
taxonomy or an ontology. In Section III, we describe our
algorithms and provide motivations for the choice we made
in their design, and in Section IV we discuss our algorithms
and we conclude the paper with the future directions of our
work.

WOA 2005 16

II. AN OVERVIEW OF EXISTING METRICS

There are several techniques used to measure the similarity
of two concepts belonging to the same taxonomy, and these
techniques can be also applied to ontologies.

In particular the three main techniques are either 1) based
on the distance between concepts, or 2) based on information
content, or 3) based on a glossary. In this paper we take into
account only the first one.

A. Bouquet, Kuper, Scoz and Zanobini’s metric

In [1], Bouquet, Kuper, Scoz and Zanobini introduce two
kinds of distances, one between simple concepts, and one
between sets of simple concepts.
– Ontological Distance between simple concepts. The Onto-
logical Distance between c and c′, written Ds(c, c′), is the
length of the minimal path between the nodes corresponding
to c and c′ in the ontology O, if such a path exists, and is 0
otherwise. The ontology is defined in the usual way, as a graph
where nodes are labelled with concepts and arcs are labelled
with relations between couples of concepts.
– Ontological Distance between sets of simple concepts. Let A
and B be two sets of simple concepts. The ontological distance
between the sets A and B, Dc(A,B), is the sum of D(c, c′)
for each c in A and c′ in B.

Since this definition involves some redundancy, the notion
of normalized set of simple concepts is introduced:
– Normalized set of simple concepts. Let K be the set of simple
concepts occurring in a complex concept, namely a concept
that is built from simple concepts defined in some ontology O
and organized in a classification structure. A normalized set
of simple concepts K ′ contained in K is defined as the set of
all c belonging to K such that there is no path from c′ to c
in O for some c′ belonging to K.

The ontological distance between complex concepts CA and
CB is then defined as Dc(A′, B′), where A′ and B′ are the
normalized sets of simple concepts for A and B respectively,
and A and B are the sets of simple concepts occurring in CA
and CB, respectively.

B. Haase, Siebes, and van Harmelen’s metric

In [9], the similarity between two concepts belonging to
the same ontology, where a SubTopic relation is defined, is
evaluated as

S(t1, t2) =

{
e−αl · eβh−e−βh

eβh+e−βh if t1 6= t2
1 otherwise

where l is the length of the shortest path between topic
t1 and t2 according to the SubTopic relation, h is the level
in the tree of the direct common subsumer from t1 and
t2, and α >= 0 and β >= 0 are parameters scaling the
contribution of shortest path length l and depth h, respectively.
The intuition behind using the depth of the direct common
subsumer in the definition of the similarity is that topics at
upper layers of hierarchical semantic nets are more general
and are semantically less similar than topics at lower levels.

Given the function for calculating the similarity between
two individual topics, it is possible to define the distance
between two sets of concepts as

SF (s, e) =
1
|s|

·
∑
ti∈s

max
tj∈e

S(t1, tj)

C. Castano, Ferrara, Montanelli, and Racca’s metric

In [5], a term affinity function A(t, t′) is defined to evaluate
the affinity between two terms t and t′ with respect to a
thesaurus Th of terms and terminological relationships among
them.

A(t, t′) is equal to the value of the highest-strength path
of terminological relationships between t and t′ in Th if at
least one path exists, and is 0 otherwise. A path strength is
computed by multiplying the weights associated with each
terminological relationship involved in the path, that is:

A(t, t′) =
{

maxi=1..k {Wt→n
i t′} if k > 1

0 otherwise

where: k is the number of paths between t and t′ in Th;
t →n

i t′ denotes the ith path of length n ≥ 1; Wt→n
i t′ =

W1tr ·W2tr · · · · ·Wntr is the weight associated with the ith
path, where Wjtr such that j = 1, 2, ..., n denotes the weight
associated with the jth terminological relationship in the path.

In [3], Bulskov, Knappe, and Andreasen use basically the
same measure, namely the maximal multiplicative weighted
path length, on ontologies expressed in ONTOLOG [16].

D. Rada, Mili, Bicknell, and Blettner’s metric

In [18] the conceptual distance between any two concepts is
defined as the shortest path through a semantic network. The
semantic network taken into account is MeSH, a hierarchical
network of biomedical concepts that (at the time the paper was
published, namely in 1989) consisted of about 15,000 terms
organized into a nine-level hierarchy, with concepts related
by a broader-than relationships, which includes both is-a and
part-of relationships.

E. Leacock and Chodorow’s metric

The measure presented in [13] is similar to that defined by
Rada, Mili, Bicknell, and Blettner, since it is based on the
length of the shortest paths between noun concepts in a is-a
hierarchy. Leacock and Chodorow’s measure of similarity is
thus defined as follows:

simLeaCho(c1, c2) = max
[
− log

(
length(c1, c2)

(2D)

)]
where length(c1, c2) is the shortest path length between the

two concepts and D is the maximum depth of the taxonomy.
As we can see, the value of the shortest path length is scaled

by the depth D of the hierarchy, where depth is defined as the
length of the longest path from a leaf node to the root node
of the hierarchy.

WOA 2005 17

F. Wu and Palmer’s metric

Wu and Palmer [20] define a measure of similarity that is
also based on path lengths, however, they focus on the distance
between a concept to the root node.

Resnik [19] reformulates their measure slightly. This mea-
sure finds the distance to the root of the most specific node that
intersects the path of the two concepts in the is-a hierarchy.
This intersecting concept is the most specific concept that the
two concepts have in common, and is known as the “lowest
common subsumer” (lcs). The distance of the lcs is then scaled
by the sum of the distances of the individual concepts to the
node.

The measure is formulated as follows:

simWuPal(c1, c2) =
2 · depth(lcs(c1, c2))

depth(c1) + depth(c2)

where depth is the distance from the concept node to the
root of the hierarchy.

G. Hirst and St.Onge’s metric

Hirst and St.Onge [10] introduce a measure of relatedness
that considers many other relations beyond the is-a one, and
that is used for lexical ontologies. This measure classifies
relations as: horizontal, upward, or downward.

• Upward relations connect more specific concepts to more
general ones (i.e., is-a)

• Downward relations connect more general concepts to
more specific ones (i.e., is-a-kind-of)

• Horizontal relations maintain the same level of speci-
ficity.

The measure defined by Hirst and St.Onge has three levels
of relatedness: extra strong, strong and medium strong. An
extra strong relation is based on the syntactic form of the
words, while two words representing the same concept (i.e.,
synonyms) have a strong relation between them. The medium-
strong relation is determined by a set of allowable paths
between concepts. If a path that is neither too long nor too
winding exists, then there is a medium-strong relation between
the concepts. The score given to a medium-strong relation
considers the path length between the concepts and the number
of changes in direction of the path:
path weight =
C − path length− (k ×#changes in direction)

III. COMPUTING THE SIMILARITY OF TWO SETS OF
CONCEPTS: A NEW PROPOSAL

The two algorithms we have designed and implemented
to compute the similarity of two sets of concepts, work on
ontologies represented in OWL, RDF and DAML+OIL [11].
Both algorithms are based on the definition of the “sim c”
function for calculating the similarity of a concept w.r.t. a set
of concepts. Thus, we first introduce “sim c” in Section III-A,
and then we introduce the two algorithms in Section III-B.

A. Computing the similarity between a concept and a set of
concepts

Our algorithm for computing the similarity between a
concept and a set of concepts is an extension of Dijkstra’s
algorithm (shown in Algorithm 1), where there may be more
than one destination node.

Algorithm 1: Dijkstra(G, w, s)

foreach vertex v ∈ V [G] do
d[v] := ∞;
previous[v] := nil;

end
d[s] := 0;
S := ∅;
Q := V ;
while Q 6= ∅ do

u := extract min(Q);
S := S ∪ {u};
foreach edge (u, v) outgoing from u do

if d[v] > d[u] + w(u, v) /* Relax(u,v) */
then

d[v] := d[u] + w(u, v);
previous[v] := u;
Q := update(Q);

end
end

end

Initialisation: The difference in the initialisation phase w.r.t.
Dijkstra’s algorithm is that in ours, the value of a path is
evaluated as the product of the weights of the path’s edges
(kept in a w[,] matrix), and we prefer paths with a higher
value1. Thus, we must initialise the similarity (kept in a d[]
array) of the source concept s from itself as if it were the best
possible similarity (1), and the other similarities as if they
were the worst possible ones (0).

In our algorithm for calculating the “sim c” function we
use the pi[] array that, for each concept in the ontology,
keeps track of its predecessor (if any) in the current best
estimated path towards the destination node(s). The pi data
structure allows us to store a spanning tree of the ontology,
characterised by the nodes pi[j] for 1 ≤ j ≤ |O| (where |O|
is the number of concepts belonging to the ontology) and by
the edges (pi[j], j), for 1 ≤ j ≤ |O|.

1The weights between couples of concepts kept in the w[,] matrix,
representing the similarity of pairs of adjacent concepts, are decided at design
time by the ontology developer who is supposed to be an expert of the
ontology domain.

WOA 2005 18

Algorithm 2: initialise single source(Ontology o,
Concept s)

foreach concept c in Concepts(o) do
d[c] := 0 ;
pi[c] := nil ;

end
d[s] := 1;

Relaxation: The relaxation procedure checks whether the
current best estimate of the similarity between s and v (d[v])
can be improved by going through u (i.e. by making u the
predecessor of v). With respect to Dijkstra’s algorithm, here
we changed a > with a < in the condition of the if statement,
and a + with a ∗ in the evaluation of the path’s total weight.

Algorithm 3: relax(Concept u, Concept v,
double w[][])

if d[v] < d[u] ∗ w[u, v] then
d[v] := d[u] ∗ w[u, v] ;
pi[v] := u ;

end

Implementation of the sim c function: The sim c algo-
rithm, whose pseudo-code is shown in Algorithm 4, evaluates
the similarity between a concept s and a set of concepts
target.

The algorithm returns a value in [0, 1]. If s belongs to
target, 1 is returned and the algorithm stops, otherwise the
algorithm starts by exploring the paths from s to the nodes in
target. The lower bound parameter is the value under which
results are considered no longer relevant, and may range in
[0, 1].

Post processing phase: All the paths with a bet-
ter value than lower bound have been explored; the
current highest similarity array contains 0 for those nodes
in the local ontology whose similarity with s is not rele-
vant; they contain a value different from 0 (and surely >
lower bound) for the other ones. Now, we only need to
combine these values in order to obtain a final value in [0, 1].
The mathematical function used to combine these values is
the following:

combine final value(x1 . . . xn) = f(x1)

where the sequence (x1 . . . xn) is ordered and

f(xi) =
{

xi + (1− xi) ∗ f(x1) if i < n
xi if i = n

This function, when applied to the ordered sequence of
values is in the [0, 1] range representing the similarity of the
source concept with all the other concepts of the matrix (when
this similarity is different from 0), allows us to obtain a value
which is in the [0, 1] range, and that gives more weight to the
higher values, but still allowing the lower values to contribute
to the final outcome.

Algorithm 4: double sim c(Ontology o, Concept s,
set(Concept) target, [0..1] lower bound)

if s ∈ target then
return 1

else
initialise single source(o, s);
foreach concept c ∈ target do
current highest similarity[c] := 0;
go on := true;
/* Make S equal to the source

concept */
S := s;
/* the current concept is the source

concept */
u := s;
C := Concepts(o);
/* while there are still concepts to

explore, and the paths through
these concepts may prove to be
better than the current path to
one of the concepts in target */

while C 6= S and go on do
foreach concept c ∈ Adjacent(u) do

/* the path’s weights going
through "v" are evaluated
and updated */

relax(u, c, w);
end
/* the most promising concept to

reach one of the concepts in
Loc namely the one such that
d[u] is higher is found */

u := extract most similar(C \ S);
if d[u] > lower bound then

S := S ∪ {u};
/* if the path leads to the

destination, we wonder if
this path is better than the
previous one found, leading
to the destination (if any),
and we eventually update the
value of the current best
path */

if u ∈ target then
if d[u] > current highest similarity[u]
then

current highest similarity[u] :=
d[u];

end
end

else
/* if all the paths that still

remain to be considered, are
worst than the lower bound,
the algorithm stops */

go on := false;
end

end
odered val := order(current highest similarity);
return combine final value(ordered val);

end

WOA 2005 19

B. Computing the similarity between two sets of concepts

In the following we present two different algorithms for
computing the similarity between two sets of concepts. The
first is based on a mathematical formula while the second
is based on a recursive approach. There are some conditions
that, in our opinion, an algorithm for computing the similarity
between two sets of concepts should meet :

1) It is not sufficient that a concept in the source set matches
a concept in the target set to obtain 1 as result.

2) To obtain 1 as result, all the concepts in the source set
should have a related concept in the target set.

3) If there are many concepts with high similarity in the two
sets, we would like to “prize” them by having a similarity
function that respects the inequality:

similarity(o, target, source, lower bound) >P
s∈source sim c(o,target,source,lower bound)

|source|
On the other hand, if there are many concepts with low
similarity in the two sets of concepts, we would like
to “punish” them by having a similarity function that
respects the inequality:

similarity(o, target, source, lower bound) <P
s∈source sim c(o,target,source,lower bound)

|source|

1) Algorithm similarity by m th root.: The first algo-
rithm is based on the following formula:

m

√Pn
k=0(ak)m

n where ai ∈ Z

The algorithm that uses this formula is described below in
pseudo-code; it takes as input five parameters: the ontology,
the target set, the source set, a coefficient representing the
value of m in the previous formula and the lower bound under
which results are considered no longer relevant.

Algorithm 5: double similarity by m th root(Ontology o,
set(Concept) target, set(Concept) source, int m,
[0..1] lower bound)

result := 0;
foreach concept c ∈ source do

result :=
result + sim c(o, c, target, lower bound)m;

end
return

m√
result

|source| ;

2) Algorithm similarity by recursive eval.: The second
algorithm is also based on the sim c algorithm for comput-
ing the similarity between a concept and a set of concepts
illustrated previously, but the different idea is to evaluate the
similarity between the target set and the elements of the source
set, and to use a recursive function to calculate the similarity.
The entire pseudo-code is illustrated below.

Algorithm 6: double similarity by recursive eval(
Ontology o, set(Concept) target, set(Concept) source,
[0..1] lower bound)

similarity := nil;
foreach concept c ∈ source do

similarity.add(sim c(o, c, target, lower bound));
end
return calculate(similarity);

Algorithm 7: double calculate(set(Double) similarity)

if similarity.isEmpty() then
return 0

else
value = max(similarity);
similarity.remove(value);
return (value+(1−value)∗calculate(similarity));

end

IV. DISCUSSION AND FUTURE WORK

The similarity by m th root algorithm meets the require-
ments specified in Section III-B. It defines a means where high
values have an higher impact in computing the final result than
low values. The m parameter allows us to specify how much
the higher values should be “prized” with respect to lower
ones.

The similarity by recursive eval, instead, does not sat-
isfy the third requirement: in fact, if one (and only one)
concept belongs both to the source set and to the target
set, the result of the algorithm is 1, and thus the first
condition specified in Section III-B is not met. How-
ever our experiments, discussed in [14], demonstrated that
similarity by recursive eval has a better performance than
similarity by m th root.

Although many techniques for computing the similarity
between concepts belonging to the same ontology or taxonomy
exist, the use of that based on the path length is very common
in the scientific community. Our definition of the similarity
between concepts is also very common, and thus it is not a
novelty w.r.t. the existing literature. However, we have also
defined the similarity between a single concept and a set of
concepts, and between two sets of concepts, establishing some
criteria that our definitions should meet. Up to our knowledge,
the only metrics for defining the similarity between two sets
of concepts are those defined in [1] and [9], but none of
them meets our requirements, that, instead, are met by our
similarity by m th root definition.

Our algorithms have been implemented using the Jena
framework (http://jena.sourceforge.net), and can be
downloaded from http://www.disi.unige.it/person/

MascardiV/Software/SoftwarePaoloLombardi.html.
The main direction of our work consists of integrating our
implemented metrics into the P2P system described in [8], that
is being developed using JXTA (http://www.jxta.org).
Since both Jena and JXTA are based on Java, the integration
should be easy to implement.

WOA 2005 20

Although this system was born as a pure P2P system, we
can easily see it as a MAS. In fact, peers are autonomous (they
actively push their expertise to the other peers in the system,
as discussed below), reactive (they react to incoming requests),
proactive (they have a long term goal of retrieving as many
relevant documents as possible), and social (communication
is asynchronous and uses a structured, XML-based commu-
nication language). Finally, peers are aware of the features,
the topology and the inhabitants of the P2P system where
they live, so they are in some sense situated in they software
environment. Since peers respect the well-known definition of
agent given in [12], in the following we will use the term
agent instead of the term peer.

In the system under consideration, agents may register to
one or more thematic groups. Relevant information retrieval
is achieved through the use of a thematic global ontology
(TGO) for each theme dealt with by the system; the TGO
associates a semantics with the resources to be shared within
the thematic group. All the agents that register to a thematic
group share the TGO of the group. Each arc between two
concepts belonging to the TGO is weighted with a value in
[0, 1] that represents the similarity between the two concepts.
Each agent A is characterised by a set of concepts of interest
CoIA such that CoIA ⊆ V , where V are the concepts in the
TGO. Agents actively and autonomously push their expertises
by sending advertisements, containing the concepts of the
TGO that better describe the resources they share, so each
agent A is also characterised by the sets of advertised concepts
that it pushes towards the system, AdvAi

, for i ∈ 1, .., n such
that AdvAi

⊆ V .
In order to allow an agent A to understand if an agent

B sending an advertisement AdvBj
, shares resources

that may be of interest for A, the similarity between
AdvBj and CoIA w.r.t. the TGO should be evaluated.
By integrating our similarity by nth root algorithm
in the system, we would allow agent A to evaluate
similarity by nth root(TGO,CoIA, AdvBj

, lower bound)
thus obtaining the required similarity.

REFERENCES

[1] P. Bouquet, G. Kuper, M. Scoz and S. Zanobini. Asking and answering
semantic queries. In Proc. of Meaning Coordination and Negotiation
Workshop (MCNW-04) in conjunction with International Semantic Web
Conference (ISWC-04), 2004

[2] J. Broekstra,M. Klein, S. Decker, D. Fensel, F. van Harmelen and I. Hor-
rocks. Enabling knowledge representation on the Web by extending RDF
schema, In Proc. of the 10th international conference on World Wide
Web, pp. 467–478, 2001

[3] H. Bulskov, R. Knappe and T. Andreasen. On Measuring Similarity
for Conceptual Querying. In Proc. of the 5th International Conference
on Flexible Query Answering Systems, Springer-Verlag publisher, pp.
100–111, 2002.

[4] S. Castano, A. Ferrara, S. Montanelli, E. Pagani, and G. P. Rossi.
Ontology-addressable contents in P2P networks. In Proc. of the 1st
SemPGRID Workshop, 2003.

[5] S. Castano, A. Ferrara, S. Montanelli, G. Racca. Semantic Information
Interoperability in Open Networked Systems. In Proc. of the Int. Con-
ference on Semantics of a Networked World (ICSNW), in cooperation
with ACM SIGMOD 2004, pp. 215–230, 2004.

[6] S. Decker, S. Melnik, F. van Harmelen, D. Fensel, M. C. A. Klein,
J. Broekstra, M. Erdmann and I. Horrocks. The Semantic Web: The
Roles of XML and RDF, IEEE Internet Computing, 4(5), pp. 63–74,
2000

[7] T. R. Gruber. A translation approach to portable ontology specifications.
Knowledge Acquisition, 5:199–220, 1993.

[8] G. Guerrini, V. Mascardi, M. Mesiti. A Semantic Information Retrieval
Advertisement and Policy Based System for a P2P Network. In Proc.
of the DBISP2P Conference, 2005.

[9] P. Haase, R. Siebes, F. van Harmelen. Peer Selection in Peer-to-
Peer Networks with Semantic Topologies. In Proc. of International
Conference on Semantics of a Networked World: Semantics for Grid
Databases, 2004.

[10] G. Hirst, D. St. Onge. Lexical chains as representations of context for
the detection and correction of malapropisms, In Fellbaum MIT Press,
pp. 305–332, 1998.

[11] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. Reviewing
the design of DAML+oil: an ontology language for the semantic web.
In Proc. of the 18th National Conference on Artificial Intelligence, pp.
427–428, 2002.

[12] N. R. Jennings and K. Sycara and M. Wooldridge. A Roadmap of
Agent Research and Development. Autonomous Agents and Multi-
Agent Systems, 1:7–38, 1998.

[13] C. Leacock, M. Chodorow. Combining local context and WordNet
similarity for word sense identification, In Fellbaum MIT Press, pp.
265–283, 1998.

[14] P. Lombardi. Progettazione ed implementazione di una nuova metrica
sulle ontologie. Master Thesis, DISI, Università degli Studi di Gen-
ova, 2005. In Italian. http://www.disi.unige.it/person/
MascardiV/Download/Lombardi.zip.

[15] P. Maes. Agents that Reduce Work and Information Overload. Com-
munications of the ACM, 37(7), 1994.

[16] J. F. Nilsson. A Logico-algebraic Framework for Ontologies ON-
TOLOG. In Proc. of the First International OntoQueryWorkshop
Ontology-based interpretation of NP s, 2001.

[17] P. F. Patel-Schneider, P. Hayes, and I. Horrocks. Web Ontology
Language (OWL) Abstract Syntax and Semantics. Technical report,
W3C.

[18] R. Rada, H. Mili, E. Bicknell, M. Blettner. Development and application
of a metricon semantic nets. IEEE Transaction on Systems, Man and
Cybernetics 19(1), pp. 17–30, 1989.

[19] P. Resnik. Semantic similarity in a taxonomy: An information-based
measure and its application to problems of ambiguity in natural languag,
Journal of Artificial Intelligence Research 11, pp. 95–130, 1998.

[20] Z. Wu, M. Palmer. Verb semantics and lexical selection, In 32nd Annual
Meeting of the Association for Computational Linguistics, Las Cruces,
New Mexico, pp. 133–138, 1994.

WOA 2005 21

Asking and answering queries semantically
P. Bouquet, G. Kuper, S. Zanobini

Department of Information and Communication Technology
University of Trento
Via Sommarive, 14
38050 Trento (Italy)�

bouquet,kuper,zanobini�@dit.unitn.it

Abstract— In this paper we propose a new method, called
SEMQUERY, for querying information sources whose data are
organized according to different schemata. The method is based
on the idea ofsemantic elicitation, namely a process which takes
in input the structural part of a query (e.g. the XPath part of an
XQuery) and returns an expression in a logical language which
represent the meaning of the query in a form which ideally is
independent from its original syntactic formulation. Since the
same process of elicitation can be performed on any path of
schemata used to organize data, the decision on whether there is
any logical relation between a query and a path in the schema
is made via logical reasoning.

I. I NTRODUCTION

The distribution of knowledge across a large number of
different and autonomous providers raises the problem of re-
trieving information from semantically heterogeneous sources.
A crucial issue is how to allow users to query heterogeneous
information sources without assuming that they know their
conceptual structure. The problem, of course, is not new. It
has been studied for a long time in the database community, in
the form of querying distributed and heterogeneous databases
(e.g. [3]). However, the proposed solutions either cannot be
straightforwardly extended to other domains (e.g. querying
document repositories based on a classification schema, or
according to a hierarchy of web directories), or are based
on assumptions which limit their applicability (e.g. assuming
that mappings across schemata are available from the start).
In this paper, we propose a new approach, which builds on
our experience in the Semantic Web, but can be generalized
to any information source which is structured according to
some explicit schema, such as databases, product and service
catalogs, document directories (e.g. web directories in search
engines like Google or Yahoo), file systems (e.g. in peer-to-
peer file sharing applications). As a concrete example, and
without any loss of generality, we will discuss the problem,
and present our results, using XMLSchema [8], [9] as a syntax
for schemata, and XQuery [10] as a query language (more
precisely, the XPath [7] fragment of an XQuery).

The main contribution of the paper is a method, called
SEMQUERY, which, given a query containing an XPath ex-
pression� and a collection of XMLSchema specifications�,
computes the set ofsemantically equivalentrewritings of �
with respect to each� � �. SEMQUERY is based on the
concept ofsemantic elicitation, which is a process that takes

an XPath expression and encodes its meaning in a logical lan-
guage�1. This encoding, which in SEMQUERY is performed
fully automatically, makes explicit the meaning of an XPath
expression in a form which is (relatively) independent from
its original syntactic form, and ideally is logically equivalent
to any other semantically equivalent XPath expression. To
achieve this result, we assume that the names of elements
and attributes in a schema are meaningful noun phrases of
some natural language (e.g. English). As we argued in [1],
this assumption is crucial, as it allows us to exploit lexical
and domain knowledge to construct a deep interpretation of
XPath expressions.

Semantic elicitation can be applied both to XPath expres-
sions occurring in a query and to XPath expressions which
describe a path in a XMLSchema. Therefore, the way a query
� is processed against a schema is the following: the meaning
of the XPath part of the query is elicited, the meaning of
each path in the schema is elicited as well, and then the
decision on whether there is any logical relation between
the query� and a path in the schema is made via logical
reasoning (in the paper, we check for concept equivalence
or subsumption, but of course this is only a special case).
As we shall show, SEMQUERY can be implemented quite
efficiently, as the semantic elicitation of a schema’s pathscan
be performed at design time and stored with the schema (this
enriched version of a schema is what we call acontext). At
execution time, we only need to elicit the meaning of the
query and match it against the concepts (already) availablein
a schema.

The structure of the paper is as follows: Section II defines
the problem, and Section III describes our method, SEM-
QUERY, for solving the problem. Finally, Section IV provides
a detailed description of the semantic elicitation phase.

II. T HE PROBLEM

Imagine that we have two schemata�� and �� such as
those depicted in Figure 1, and suppose they are used to
structure two multimedia document repositories. Considerthe
paths which lead to the node	
���
�� in the schema on
the left hand side and to the node���� in schema on the
right hand side. Despite their syntactical difference, they seem

1In this paper we use Description Logic, as we deal mostly withconcepts
and attributes. However, in previous work on semantic coordination, a much
simpler encoding in propositional logic was used [1].

WOA 2005 22

ITALY

SICILYTUSCANY

LANDSCAPES

PICTURES

EUROPE

LANDSCAPES

TUSCANY

COUNTRIES
AND CITIES

BRITAIN
GREAT

IMAGES [format = JPEG]

JPEGGIF

Fig. 1. Two simple schemata

to have the same meaning, something likeimages of Tuscan
landscapes in JPEG format. For classification schemata, the
intuition behind the notion of “having the same meaning” is
that a human user would classify the same documents under
the two nodes. However, XPath expressions refer directly to
the syntactical features of schemata; as a result, there is no
single XPath expression that can be used in a query to refer to
the two semantically equivalent nodes	
���
�� and����,
and therefore to retrieve the associated documents.

We therefore need a way of recognizing that the two XPath
expressions

������� ��	
� � � � ����� �� ������������������������
(1)

and �������� ���	� � � �� ������ �����������������
(2)

are semantically equivalent, regardless of their concrete
syntactic form, and therefore that an XQuery expression
containing the first path should allow us to retrieve not only
documents from the corresponding path in the first schema,
but also document from the path in the second schema.

In addition, one might want to recognize that, for example,
a query containing the XPath expression

������� ��	
� � � ������ �� ������ �!"���������������

can be also a valuable answer for a query containing the
expression

������� ��	
� � � � ����� �� ������������������������

even though in this case the relation would not be semantic
equivalence, but rather subsumption (after all, JPEG pictures
of landscapes of Florence are a special case of JPEG pictures
of landscapes of Tuscany).

To sum up, the examples show that syntactically different
XPath expressions may be used to refer tosemantically
equivalentconcepts. The problem we address is to define an
automated method forasking and answering queries semanti-
cally, namely to ask queries which are (relatively) independent
from their syntactic form, and to answer a semantic query by
looking for semantic relations between concepts.

III. SEMQUERY: A SHORT DESCRIPTION

SEMQUERY is a method for asking semantic queries based
on what we call themeaningfulness hypothesis, namely that

the schemata which are used to organize information sources
have meaningful labels2. As we discussed in [1], there are
two reasons for making this hypothesis in a framework in
which semantic relations between schema elements are to be
discovered and exploited in a principled way:

1) Firstly, if we didn’t assume that labels were meaningful,
there would be no reason to say, for example, that there
is a relation between#$
�� and � #�%&'�. Indeed,
as mere strings, there is no similarity, and synonymy
is definitely a semantic relation between meaningful
words. Conversely, we don’t want to conclude that� #�
an �(� are more similar than� #� and �)�
*
% #(�,
though the first two are syntactically much more similar
than the others. We stress this issue, as many approaches
to semantic interoperability, e.g. those based on graph
matching, use thesauri or other type of lexical informa-
tion in a way which is sound only if one makes the
assumption of meaningfulness;

2) The second, more important observation, is that if we
ignore the meaning of lablels, we will not be able to
discover relations between paths in schemata that depend
only on the meanings of these labels. For example,
consider the two pairs of isomorphic schemata in Fig-
ure 2. Intuitively, the relation between the two pairs of

IMAGES

TUSCANY ITALY

IMAGES

FLORENCE FLORENCELUCCA LUCCA

IMAGES

TUSCANY

MOUNTAINBEACH

ITALY

IMAGES

BEACH MOUNTAIN

equivalent toless general than

Fig. 2. Relations across schemata with meaningful labels

nodes is different, subsumption on the left hand side and
equivalence on the right hand side, even though the two
schemata are isomorphic. The explanation is that we use
what we know about the concepts corresponding to the
labels, in order to decide what a node really means.

Closely related to the meaningfulness hypothesis is the idea
that SEMQUERY should use knowledge about labels to im-
prove the quality of its results. Indeed, only domain knowledge
can allow us to realize that the concept of ‘images of Florence’
is less general than the concept of ‘images of Tuscany’, no
matter how the two concepts are expressed syntactically. This
again is crucial to discover semantic relations across paths,
which do not depend only on what is explicitly said, but also
on what we know about the corresponding concepts.

We now turn to a general description of our method. Let+
be the set of noun phrases that can be built in English from
a set, of English words, and+- the set of all finite XPath
expressions using only elements of+ as tags, the child and
descendant axes, and the wild card *.. is the set of terms that

2More precisely, we assume that they would be interpreted as mean-
ingful by humans via some simple manipulation; for example,labels like�
	/
��� 0�/���/��/1�

,
�
	/
��� 0�/ ���/��/1�

or even
�
	/���/

would be easily recognized as meaningful – and basically equivalent – by
humans on the web site of, say, a Computer Science Department. In the rest
of the paper, we will pretend that labels are English noun phrases, but in many
real applications it may be necessary to go through a normalization phase in
which labels are transformed into correct English words andnoun phrases.

WOA 2005 23

can be built in a Description Logic language like��. 3 from
a set� of primitive terms and a set� of primitive roles, and�

is a (possibly empty) set of axioms defined over. . The
process of semantic elicitation can be viewed as a function� � +- � . which takes as input an element of+- and
returns a (complex) term in. which expresses its meaning.

How to compute this function is a crucial issue of our work,
and this will be discussed in Section IV. For now, suppose
that

�
is defined. We can then divide the set+- of all the

possible XPath expressions into sets of semantically equivalent
expressions, namely expressions with an equivalent meaning.
Formally:

Definition 1 (Equivalence class):Let � and � 	 be two
XPath expressions from+-, �

the semantic elicitation func-
tion, and let�
 �. � �

be a T-Box containing terminological
axioms. We say that� and� 	 belong to the same equivalence
class �+ - ��� �� � of + - with respect to

�
and� iff:

� �
 �� �� � � � �� 	 ��
We write � �� � to denote the equivalence class containing� .

We can now define the set ofsemantically equivalent
rewritingsof a query over a collection of schemata. Intuitively,
given an XPath expression� and a set of schemata�, the
problem of answering queries semantically can be defined as
the problem of determining the set� of XPath expressions
occurring in� which belong to the same equivalence class of
� . Formally:

Definition 2 (Semantically equivalent answer):Let � be an
XPath expression occurring in a query,� a set of schemata,
and� � + - the set of all the XPath expressions which denote
a path occurring in at least one schema in�. Then� 	 is the set
of semantically equivalent answersfor � if it is the maximal
subset of� such that

��� ��� � � � 	 � � �� �
 � �� �
A weaker, but still useful, notion of semantic answer

can be defined as follows. Suppose that a query containing
the XPath expression #$
�� ���� #%
	! 	
���
��
is performed over the structure on the left in Figure 1.
Intuitively, the associated concept, ‘JPEG images of
Italian landscape’, is subsumed by the concept ‘JPEG
images of Tuscany’s landscape’ corresponding to the path
 #$
�� "#$%& '(
 	����) #%
	! %&�
�! 	
���
��.
Therefore, the corresponding XPath expression is not
semantically equivalent to the query, but can be considered
as asemantically less generalanswer.

Formally, let* be a partial order over the set�+ - ��� �+ � w.r.t.�
and

�
, let , and- be two equivalence classes in�+- ��� �+ �,

3The choice of the logical language depends on what kind of structures
one is querying. Indeed, it’s all very well to say that we dealwith XPath
expressions, but one thing is to query a hierarchical classification, and one
thing is to query a service description. Indeed, it is well-known that the
sub-element relation in XML does not have any pre-defined meaning, and
can be used to organize concepts in a taxonomy, objects in a partonomy, or
even to decompose actions in a service description. A methodfor semantic
elicitation must take into account this pragmatic aspect, and choose the most
appropriate language for each case. In the situation we describe below, we
are interested in querying classifications, where each nodecorresponds to a
(complex) concept (e.g. ‘photos of my holidays in Italy’), and therefore we
will adopt the language./0 ; however, no DL logic language would not do
for a service description.

and let1 and2 be the witnesses of, and- respectively. Then

1 * 2 34 � �
 � �1� 5 � �2 �
We can then define the set of all the semantically related
answers as follows:

Definition 3 (Semantically related answer):Let � an
XPath expression occurring in a query,� a set of schemata,
and � � +- the set of all XPath expressions which denote a
path occurring in at least one schema in�. Then � 	 is the
set ofsemantically related answersfor � if it is the maximal
subset of� such that, for all� � � 	, one of the following
conditions hold:

1) � �� � * � �� � (semantically less general answer)
2) � �� � * � �� � (semantically more general answer)
In most real applications, only less general answers are

likely to be used; however, we cannot exclude that in some
situations one might be interested in broadening the scope of
a search and look for concepts that are more general than the
initial one.

IV. SEMANTIC ELICITATION

A crucial issue for our approach is the definition of a
reasonable implementation of the semantic elicitation function�

. In this section we provide an algorithm which approximates�
under the assumptions of meaningfulness. The current

version is adapted from [6].
Semantic elicitation is not just a (whatever complex) syn-

tactic rephrasing an XPath expression into an expression of
some formal language. To explain what we mean, consider
the two following XPath expressions:

#$
�� ���� %&�
�! (3)

#$
�� #%
	! %&�
�! (4)

Intuitively, the two XPath expressions could be translatedinto
the two DL terms respectively:

Image 6 7format 8JPEG 6 7about 8Tuscany (5)

Image 6 7about 8�Tuscany 6 7partOf 8Italy� (6)

whereImage is the concept of “a visual representation of an
object or scene or person or abstraction produced on a surface”
(from WordNet2.0, sense 1),JPEG is a format for electronic
images,Tuscany is the Italian region, and so on and so forth.

Despite their isomorphic syntactical structure, the XPath
expressions (3) and (4) do no have an isomorphic semantic
structure. Indeed, in (3), the second and the third elements
���� and %&�
�! are modifiers of the element#$
��,
while in (4) the first element,#$
��, is modified by the
third element,%&�
�!, which is in turn modified by the
second element,#%
	!. Thus, the process of semantic elic-
itation should be a process of deep interpretation of an XPath
expression, as a human being would do. [2] argues that such
a deep interpretation must take into account two general kinds
of knowledge:

WOA 2005 24

� Lexical knowledge: it allows us to determine the (set
of) concept(s) possibly denoted by a lemma4; for ex-
ample, the fact that the lemma ‘image’ can mean ‘a
visual representation’ and ‘a standard or typical example’.
Conversely, it can be used to recognize that two different
lemmas may refer to the same concept; for example,
the words ‘image‘ and ‘picture’ can both denote the
concept of a visual representation, and therefore – under
this interpretation – they are to be taken as synonyms.
Formally, let� be the set of lemmas that can be denoted
by words occurring in+ . A lexicon � � � � �� ��

is a
function that associates each lemma to a set of primitive
concepts or roles belonging to the signature of the T-Box
� . In the current version we shall useImage#n for the�-th concept that can be denoted by the lemma ‘Image’.

� Ontological/World knowledge: this type of knowledge
concerns relations between primitive concepts. For ex-
ample, the fact that there is aPartOf relation between
the conceptItaly#1 (‘a republic in southern Europe’) and
the conceptTuscany#1 (‘a region in central Italy’). We
formally define the ontological knowledge

�
to be a set

of axioms of the T-Box� . In the this paper we will
assume that we have a “black box” function� � � �� �
� which takes as input two concepts and returns a role
which holds between them. For further details, see [6].

For the sake of simplicity, we shall assume the set+
consists of single words in English5. Furthermore, we shall
use WORDNET6 as our source� of lexical knowledge; finally,
the terms� and the roles� of the signature	 will be
interpreted as WORDNET synsets;� contains two predefined
roles, IsA and PartOf; the set of concepts. is the set of
all the allowed expression built using the signature	 ; finally,
the ontological knowledge

�
contains theIsA and PartOf

relations defined over WORDNET, and possibly other relations
from some domain ontology. To make the presentation clearer,
we show how the process works with a running example over
the X-Path (2). The process of semantic elicitation is splitinto
four main steps:

1) Local Interpretation: In the first phase, we try to build
the space of all possible interpretations for each element of
the query. Each element consists of a label and (possibly) a
set of attributes. We interpret an attribute as an object which
qualifies the meaning expressed by the label. Formally, we
interpret a node by the expression

label 6 7attName� 8filler� 6 8 8 8 6 7attName
 8filler

In particular, the attribute name is interpreted as a role and the
attribute filler as a range. We obtain the space of all possible
interpretations of a node by replacing the words that occur
in the pattern elements by all concept that could possibly

4We assume that we are able to determine the lemma of each word occurring
in a label through some standard lemmatizer.

5For the case when� contains complex noun phrases, and for further
discussion, see [6].

6WORDNET [4], a well-known Lexical/Ontological repository which con-
tains the set of concepts possibly denoted by a word (called synsets, i.e. set
of synonyms), and a set of relations (essentially theIsA and PartOf) that
holding between senses

be denoted by the words, with respect to the lexicon� .
For example, our lexicon provides 7 concepts for the lemma
‘image’, 7 for ‘about’, 1 for ‘Tuscany’, 4 for ‘landscape’
and 1 for ‘JPEG’. As a result, the space of the possible
interpretations for the elements of example (2) is:

� �������� � ���������� � � ������
Images#1 � �about#1 �Tuscany#1 Landscape#1 JPEG#1

Images#1 � �about#2 �Tuscany#1
.
.
.

.

.

. Landscape#4
Images#7 � �about#7 �Tuscany#1

2) Semantic Enrichment:We now look for semantic rela-
tions that hold between the concepts defined in the previous
step. This is done by accessing the ontological knowledge

�
using the� function. In particular, we search for the relations
that hold between two different kinds of elements:

� Attribute Roles: Consider#$
�� "'�$�(
 	%� � '!")
in our example. In the previous step, we built the
set #$ �#$
��� of all the possible interpretations for
this node. We now use the ontology

�
to determine

if it explicitly supports one or more of these pos-
sible interpretations. For example, we discover that
� �Image#2 �Tuscany#1�
 about#1, i.e., that the first
interpretation is supported by the ontology.

� Structural roles: Here, we search for semantic relations
between different elements in the same XPath expression.
In our example the relation� �Image#2 �JPEG#1�

format#1 holds.

Table I shows the semantic relations that hold between the
terms in our example.

1 %Image#2 &Tuscany#1 &about#1'
2 %Landscape#1 & Image#2 & IsA'
3 %Images#2 &JPEG#1 & format#1'
4 %Image#2 &Landscape#3 &about#1'

TABLE I

SET OF RELATIONS

3) Semantic Filtering: This step filters out the concepts
and relations which do not seem to be the right ones for
the XPath expression under analysis. Such a filtering applies
the following rules to every concept extracted in the previous
phase:

� Weak rule: A concept(associated to a word) occurring
in an XPath tag� can be removed if(is not involved
in any relation, and there is some other concept(that
is also associated to) in �, which is involved in some
relations.

� Strong rule: A concept (associated to a word) oc-
curring in an XPath tag� can be removed if(is not
involved in anyIsA or PartOf relation and there is some
another concept(associated to) in � which is involved
in someIsA or PartOf relation.

An example of the use first rule is as follows. In Table I
we see thatImage#2 occurs in relations 1–4, whileImage#1
and Image#3 8 8 8 � Images#7 do not occur in any relation. It
is therefore likely that the “right” concept expressed by the

WOA 2005 25

lemma ‘Image’ in this context is the second one, and the other
concepts can be discarded. The second rule is stronger, as
here a concept can be discarded even if it is involved in some
relation. The idea is that we considerIsA andPartOf relations
be stronger than the other ones, and give priority to these over
others. For example, consider relations 2 and 4. Because there
is a IsA relationship betweenLandscape#1 and Images#2
(relation 2), we can discard the conceptLandscape#3 even
though this concept occur in anabout#1 relation (relation 4).

The goal of this step is to reduce the space of possible
interpretations of a node, by discarding some concepts which
are unlikely to be relevant. In our example, we would obtain
the following terms.

� �������� � ����� ������ � ������
Images#2 � �about#1 �Tuscany#1 Landscape#1 JPEG#1

Note that if more than one concept satisfies our conditions, all
of them are retained (ambiguity partially solved). Furthermore,
if the concepts associated to a word are not involved in any
relation, no filtering is done (ambiguity is not solved). The
same filtering process is then applied to the set of relations,
i.e., we discard all relations involving discarded concepts, as
these ones refer to concepts that no longer exist. Table II shows
the current set of relations.

1 %Image#1 &Tuscany#1 &about#1'
2 %Landscape#1 & Image#1 & IsA'
3 %Images#1 &JPEG#1 & format#1'

TABLE II

SET OF FILTERED RELATIONS

4) Constructing the representation of the semantics:The
final step is to construct the logical representation of the
semantics of the query. This is done in two steps.

First, we construct thelocal meaningof an element of the
query, namely its meaning considering only the label and the
attributes. We define the�� �� �, the local meaning of an
element�, as the disjunction (�) of all terms occurring in
#$ �� �, the space of all the possible interpretations.

We then combine the local meanings to obtain theglobal
meaningof a node. First of introducing the method, we want
to make the following observation. Consider Table II: it essen-
tially says that there is a relationIsA between the (concepts
belonging to the interpretations of the) node	
���
�� and
the (concepts belonging to the interpretations of the) node
#$
��, and that there is a relationformat#1 between the
(concepts belonging to the interpretations of the) node#$
��
and the (concepts belonging to the interpretations of the) node
����. In short, we have the following set of relations between
nodes: 	
���
�� IsA�� #$
�� format#1�� ����. Essentially,
axioms can be interpreted as edges relating nodes. Such chain
of relations can be rephrased with the following pattern7:

	
���
�� 6 #$
�� 6 7format#1 8����
7Ambiguity can arise in the axioms. As an example, two elements can be

modifiers of each. See [6] for a set of heuristics for solving some ambiguity
problems.

At this time is quite simple to build theglobal meaningof
the X-Path: indeed we need just to substitute the node labels
with the local meanings provided by function�� ��. Going
on with our example, the global meaning for the X-Path (2)
is the following Description Logic term:

Landscape#1 � Images#1 � �about#1 �Tuscany#1 (7)

��format#1 �JPEG#1

5) Dealing with special symbols:The XPath symbols�
and do not have an explicit semantic counterpart in some
concept in� . The first is a wild card, which can be replace
by any tag; the second allows us to find elements at any depth
in an XML document. Here we propose a simple treatment of
thiese two special symbols in SEMQUERY.

From Section IV-.4 results that we essentially combine each
element as a conjunction (6). Following this idea, we can
argue that each element of an XPath is a specification of
the meaning of the others elements. Consider the element
#$
�� "'�$�(
 	#('�"). Its intuitive meaning is ‘Images
about Italy’. The further element	
���
�� reduces its
meaning to the ‘Images about Italy that are Landscapes’, so
as the last element���� reduces the meaning to the set of
‘Images about Italy with JPEG format that are Landscapes’.
Following this intuition, we can interpret a sign as� as one
potential element that reduces the meaning of the XPath, and
the sign as a possibly empty set of potential elements that
reduce the meaning of the XPath.

So, instead of introducing some redundant place-holder for
that symbols, we prefer to play on the class of equivalence
which an XPath where such symbols occur belong to.

Let � be an XPath where the sign� () occurs. Let- � + -
be the set of all the XPaths allowed by+ such that the symbol
� () in � is substituted with some element (a finite, possibly
empty, sequence of elements) of+. Let � - (�) be the XPath
resulting by removing (substituting with) element� ()
from �. For each2 � - , if

� �
 � �2 � 5 � �� - � �� �
 � �2 � 5 � �� 		 ��
then �

 2
, namely� belongs to all the equivalence classes
of equivalence to whom belongs the XPaths in+- such that
(i) they are generated by substituting� () in � with an
element (a set of elements) of+ and (ii) their meanings are
a specification of the meaning of�. Multiple occurrence of�
() can be defined recursively in the same way.

6) Concluding example:Following this approach, we can
state that the class of equivalence where the XPath of example
3, namely #$
�� "'�$�(
 	%� � '!") 	
���
�� ����,
belongs to is the same of the class of equivalence where
the XPath #$
�� "'�$�(
 	%� � '!") 	
���
�� ����
belongs to.
Now consider the XPath expression

������ ��	
� � � � ����� �� ������������������������

from left hand schema of Figure 1. Running the semantic
elicitation process, we obtain the following DL term:

WOA 2005 26

Images#1 � �about#1 ��Tuscany#1 � �partOf#1 �Italy#1� (8)

�Landscape#1 � �format#1 �JPEG#1

Imagine then to have an ontology
�

which contains the axiom
Tuscany#1 5 7partOf 8Italy#1 (such an axiom can be found,
as an example, in WORDNET), then we can say that

� �
 ��� � �� �
so they belong to the same class of equivalence.
From Definition 2 we can conclude that the XPath
#$
�� "#$%& '(
 	����) #%
	! %&�
�! 	
���
�� of
left schema of Figure 1 is a semantically equivalent answer for
the query #$
�� "'�$�(
 	%� � '!") 	
���
�� ����.

V. CONCLUSIONS

The main idea of the paper is that querying heterogeneous
information sources requires to abstract from the syntactic
form of local schemata and lift the representation to a levelin
which only semantic differences are preserved. This is what
we called semantic elicitation. Here we proposed a general
method for processing these type of semantic queries called
SEMQUERY, and described a technique for semantic elicitation
derived from our experience on the problem of semantic
interoperability in the Semantic Web.

We are perfectly aware that this is only a starting point.
Future work will explore the following directions. First, we
will extend the approach to other kinds of data sources (e.g.
relational databases) and other query languages (e.g. SQL).

Second, we want to test the approach on real cases, and
see how it performs from a user’s point of view; however,
we must say that similar tests have been done in our work
on the Semantic Web (see e.g. [5]) in the domain of web
directories and e-commerce catalogs, and the results were quite
promising.

REFERENCES

[1] P. Bouquet, L. Serafini, and S. Zanobini. Semantic coordination: a new
approach and an application. In K. Sycara, editor,Second International
Semantic Web Conference (ISWC-03), Lecture Notes in Computer Science
(LNCS), Sanibel Island (Florida, USA), October 2003.

[2] P. Bouquet, L. Serafini, and S. Zanobini. Semantic coordination: a
new approach and an application. In D. Fensel, K. P. Sycara, and
J. Mylopoulos, editors,The Semantic Web – 2nd international semantic
web conference (ISWC 2003), volume 2870 ofLNCS, Sanibel Island, Fla.,
USA, 20-23 October 2003.

[3] A. Elmagarmid, M. Rusinkiewicz, and A. Sheth, editors.Management of
Heterogeneous and Autonomous Database Systems. Morgan Kaufmann,
1999.

[4] Christiane Fellbaum, editor.WordNet: An Electronic Lexical Database.
The MIT Press, Cambridge, US, 1998.

[5] B. M. Magnini, L. Serafini, A. Doná, L. Gatti, C. Girardi,, and
M. Speranza. Large–scale evaluation of context matching. Technical
Report 0301–07, ITC–IRST, Trento, Italy, 2003.

[6] S. Sceffer, L. Serafini, and S. Zanobini. Semantic coordination of hierar-
chical classifications with attributes. Technical Report 706, Department
of Informatics and Telecommunications, University of Trento, December
2004. http://eprints.biblio.unitn.it/archive/00000706/.

[7] W3C. XML Path Language (XPath).
http://www.w3.org/TR/xpath, November 1999.

[8] W3C. XML Schema Part 1: Structures Second Edition.
http://www.w3.org/TR/xmlschema-1/, October 2004.

[9] W3C. XML Schema Part 2: Datatypes Second Edition.
http://www.w3.org/TR/xmlschema-2/, October 2004.

[10] W3C. XQuery 1.0: An XML Query Language.
http://www.w3.org/TR/xquery/, October 2004.

WOA 2005 27

Building Semantic Agents in eXAT
Antonella Di Stefano, Corrado Santoro
University of Catania - Engineering Faculty

Department of Computer and Telecommunication Engineering
Viale A. Doria, 6 - 95125 - Catania, Italy

EMail: {adistefa, csanto}@diit.unict.it

Abstract— This paper describes the FIPA-ACL semantics sup-
port provided by eXAT, an Erlang-based FIPA-compliant agent
platform, developed by the authors, which uses the Erlang
language to offer a complete environment for the realization
of the behavioral, intelligent and social parts of an agent.
eXAT agents can thus exploit a FSM-based abstraction for the
behavioral part and an Erlang-based rule processing engine
(with its own knowledge base) for the implementation of agent’s
reasoning process. In this architecture, a SL Semantics Layer
is introduced to support FIPA-ACL semantics; such a module is
activated during messaging and is able to automatically check and
perform the feasibility precondition and rational effect relevant
to the communicative act sent or received. This is performed
by manipulating the knowledge base of the inference engines
of the sender/receiver agent, by checking for the presence of
suitable facts and/or asserting other facts, according to FIPA-
ACL semantics specification. ACL semantics handling is also
enriched with a reasoning module, charged with the task of
providing an “higher-level” messaging, based on agent actions—
rather than messages—that, after a semantics-aware reasoning
process, are transformed into communicative acts.

Keywords— Interaction Semantics, FIPA-ACL, Ontologies, Agent
Programming Platform, eXAT, Erlang

I. INTRODUCTION

To date, FIPA specification [26] is the most widely used and
referenced standard for the development of software agents
in both academic/research institutions and industries. Even if
there are few projects [30] that use different ad-hoc agent
architectures and models, FIPA is recognized as the leading
reference architecture for open and interoperable multi-agent
systems.

On this basis, some Java-based FIPA-compliant platforms
have been developed [9], [1], [7], and, among them, JADE [9]
can be now considered “the FIPA platform”, as it is the most
widely used in agent-based projects. All of these platforms
take care of only some aspects of FIPA specification, as they
provide a support for agent management, directory service,
ACL interaction, ontology specification and encoding, agent
behavior programming. But all of them fail to take into account
“agent intelligence”: As a consequence, one of the main contri-
bution of FIPA, which is the FIPA-ACL semantics [24], cannot
be supported1. As we argued many times [17], [18], [19],

1We consider FIPA-ACL semantics specification very important because
we argue that, without taking into account “mental attitudes” (i.e. goals,
plans, beliefs, etc.), FIPA specification can be considered a standard for the
interoperability of distributed reactive entities that could not necessarily be
“software agents”.

this gap between agent nature, FIPA specification and FIPA-
compliant platforms is due to the fact that the Java language is
not able to offer native statements to express logic constructs,
like those needed by FIPA-SL language [25]. Neither logic
predicates nor production rules can be described in Java and, to
this aim, additional tools must be introduced [2], [28], which,
however, use a different language and, in any case, are not
able to support FIPA-ACL semantics.

The first attempt to fill such a gap is represented by the
eXAT2 platform [14], [16], [15], [18], [19], which has been
developed by the authors (since 2003) with the aim of offering
an environment that takes care of the three main aspects
of agent-oriented programming: behavior, intelligence and
(semantic and syntactic) interoperability. The key feature of
eXAT that enables such an integration is the use of the Erlang
language [5], [8] for agent programming: It is a functional
language that, thanks to two main features—pattern matching
in function clause declaration and handling of symbols in
data—is very well suited for the implementation of both
(reactive) behaviors and (intelligent) production rules [18],
[13]. eXAT, designed to be FIPA-compliant, includes an
inference engine that can be tightly coupled with ACL message
exchanging, in order to support the reasoning process deriving
from the meaning of messages sent and received, according
to the semantics of FIPA-ACL. This mechanism exploits the
Erlang-native data types—atom (symbols), lists, tuples and
records—in order to represent SL sentences, handled as facts
or predicated for the knowledge base of running agents.

This paper describes the functionalities of the eXAT plat-
form from the point view of the support provided to build
semantics-aware agents. The paper focuses on the tools and
abstractions provided to write ontologies and use them not
only in agent messaging but also in rule-based inference
engines. Then the paper describes the support for FIPA-ACL
semantics dealing with the primitives and mechanisms for
semantic reasoning. A key aspect of the architecture is the use
of pluggable semantics, i.e. user-defined software modules that
can be plugged in the platform in order to implement an ad-hoc
semantic reasoning process. A comparison of the semantics
support of eXAT with other solution is also provided, showing
that, even if eXAT is still a work-in-progress3, its features seem

2erlang eXperimental Agent Tool.
3eXAT is an “experimental” platform and it has been mainly designed for

investigation purposes.

WOA 2005 28

�
1 -module (reactive_agent).
2
3 agent_loop () ->
4 E = wait_for_next_event (),
5 act (E),
6 agent_loop ().
7
8 act ({switch , on }) -> % act when switch is turned on
9 act ({switch , off }) -> % act when switch is turned off

10 act ({temperature , X}) when X > 30 ->
11 % act when the temperature is greater than 30
12 act ({temperature , X}) when X < 20 ->
13 % act when the temperature is less than 20
14 act (_) -> % unknown event, no action

� �

Fig. 1. A simple pure-reactive agent in Erlang

able to provide a “semantic environment” more flexible and
complete than that of other similar proposals.

The paper is organized as follows. Section II illustrates
the motivations behind our choice of employing the Erlang
language in writing agent systems (and thus the reasons why
we developed eXAT). Section III gives a brief overview of
the eXAT platform. Section IV describes the support for SL
and ontology handling in eXAT. Section V deals with the
semantic framework. Section VI compares our approach with
other solutions. Section VII concludes the paper.

II. WHY ERLANG?

Some of the main reasons that led us to choose Erlang as
a possible language for the development of agent systems,
and that in turn guided us in realizing the eXAT platform, are
discussed in [17], [19]. In those papers, the authors first derive
an abstract model of intelligent agent, based on the concepts
of finite-state machine and rule-production system, and then
introduce some properties that should be met by an agent
programming language. Here, the basic properties of agents
listed in [32]—reactivity, pro-activeness and social ability—
are instead taken into account and, starting from them, the
reasons for the use of Erlang are subsequently derived.

A. Reactivity

An agent has the basic capability of reacting to incoming
events. This includes e.g. a change of the state of the reference
environment, the arrival of a messages from the user or other
agents, the occurrence of exceptional conditions, etc. An event
can be considered featured by a type and additional data
bound to the event itself (e.g. for an incoming message, the
additional data could be the payload) and, on this basis,
suitable predicates on bound data can discriminate various
reaction cases to events of the same kind.

From the programming point of view, reacting to events
implies to provide (i) an abstraction for modeling events and
(ii) some constructs or library calls to specify the computation
to be triggered when a particular event occurs, also given that
the bound data could be subject to certain conditions. Erlang
seems particularly suitable to face such requirements for the
following reasons:

�

rule (Engine , {’child -of ’, X, Y}, {female , Y}) ->
eresye :assert (Engine , {’mother -of ’, Y, X});

rule (Engine , {’child -of ’, X, Y}, {male , Y}) ->
eresye :assert (Engine , {’father -of ’, Y, X}).

� �

Fig. 2. Some Erlang function clauses expressing inference rules

1) Erlang is a symbolic language (like Prolog or LISP),
and it is known that the use of literal symbols (atoms)
facilitates the representation of constants in data4. Struc-
tured information can be represented as tuples5 and,
since they are untyped, are well-suited for heteroge-
neous data [31] and thus particularly appropriate for
event types that could be very different one another.
For example, the state of a switch can be represented
as {switch, on } or {switch, off }, a sensed
temperature with {temperature, 25 }, an incoming
message as {message, ’QUERY-IF’, {sender,
’UserAgent’ }}, etc.

2) Erlang is a functional language and functions can have
multiple clauses, each one expressing a match on one
or more parameters; clauses can also have guards to
specify more complex matching expressions. Matching
on function definition can be exploited to specify the
computation to execute following an incoming event
formed as desired: Function (clause) declaration will
specify the matching criteria relevant to a triggering
event, while function body will implement the associated
action.

The example in Figure 1 shows a practical usage of the
concepts indicated above. The listing in the Figure reports
a possible implementation of a (very simple) pure reactive
agent programmed in Erlang. Agent’s main loop (function
agent loop , lines 3–6) waits for an incoming event and
then executes the associated action; computations tied to
events are specified by using multiple clauses of the function
act , each one specifying a different matching value for the
parameter: When the function is invoked using the event
acquired (line 5), only the matching clause is activated (if one
exists, otherwise the default clause—line 14—is chosen). As
the reader can appreciate, using symbols, structured data and
function with several clauses improve not only engineering
and implementing reactive agents, but also the readability of
the source code.

B. Pro-Activeness

Pro-activeness means the capability of an agent to develop
and execute plans, in order to achieve a specific goal. Unless
specific BDI tools are employed [6], [28], such an ability is
generally supported by means of a rule production system [3],

4A symbol (atom), in Erlang, is a string constant beginning with a lowercase
letter or any string literal enclosed in single quotes, e.g. ’My atom’ .

5A tuple, in Erlang, is a comma-separated set of identifiers enclosed in
graph braces.

WOA 2005 29

[2], [4], [13], featuring a knowledge base and a set of infer-
ence rules. In this context, Erlang’s features are particularly
interesting for the following reasons:

1) Symbols and primitive types (i.e. atoms and tuples)
are well suited to represent facts of a knowledge base;
moreover the use of the same types for facts and events
(i.e. tuples) facilitates agent programming, allowing the
direct use of event data in the knowledge base.

2) Function clauses, which indeed represent predicates on
parameters that if matched activate the clause, fit well in
the representation of the precondition part of a rule; at
the same time, the function body can represent the action
part.

3) The Erlang-native pattern matching mechanism facilitates
the implementation of rule-handling algorithms, also im-
proving processing performances.

Note that despite Erlang’s capability to represent rules, the
language and run-time system do not include an engine for
rule processing, which has to be provided by an external tool6.
For this reason, the ERESYE system has been designed by the
authors [13] and it has been included in the eXAT platform.
ERESYE is an Erlang-based rule production system featuring
the same characteristics (from both the syntactic and semantic
point of view) of other well-known similar tools, such as
OPS5 [20], [21], CLIPS, Jess, etc.

The example in Figure 2 gives a sketch of Erlang function
clauses used as rules of an ERESYE inference system. In the
example, the rules shown permit to enrich the knowledge by
deriving the concepts of ’father-of’ and ’mother-of’ ,
on the basis of the knowledge of the ’child-of’ and
“gender” concepts.

In the eXAT platform, ERESYE is used not only to
support a (user-defined) agent’s reasoning process but also the
inference process required by ACL message semantics, as it
will be explained in Section V.

C. Social Ability

Agent-oriented engineering is based on subdividing a whole
application into a set of goals to be achieved by several
cooperating agents; thus the possibility of supporting interac-
tion among agents is a mandatory functionality of any agent
programming language or platform. The Erlang language and
its run-time system have been explicitly designed to support
communication, thus providing the programmer with a set of
smart and flexible language constructs to perform message
exchanging among (local or remote) processes. Messages that
can be exchanged are basic Erlang data types and include
atoms, tuples, strings, lists, etc., no further manipulation (e.g.
enveloping, etc.) is needed. Moreover, language constructs for
interaction do not change should a receiving process be local
or remote. As reported in [8], [18], the programming model
of applications in Erlang is based on subdividing a problem
into a set of tasks to be assigned to the same number of
concurrent processes that share nothing and interact each other

6Erlang is functional, not logic.

DF

AMS

......
Agent

Agent
eXAT Platform

Agent behaviours ERESYE engines

ACL Semantics

Module

ACL Interface

SL Codecs

MTP (HTTP) module

Network

ontology−specific codecs

Fig. 3. Architecture of the eXAT Platform

only by means of message passing. The reader can appreciate
the similarity between this model and the basics of multi-
agent systems: Erlang concurrency model and interaction con-
structs seem thus perfect “as-is” to support interactions among
(Erlang-programmed) agents. The only concern is with the
exchanging protocol and data representation, which is Erlang-
proprietary and thus non-standard (even if it is documented).
An agent platform is thus needed when standard messaging,
as in FIPA, is required to favor the interoperability with
different platforms and agents written with other programming
languages.

III. OVERVIEW OF EXAT

Even if the eXAT platform has been already described
in [14], [15], [16], [17], [19], [18], [13], it is worthwhile to
give an overview of it, in order to help the reader in better
understanding the remaining part of the paper.

The eXAT platform has been designed with the objective
of providing an “all-in-one” environment to execute agents
and to program them in their behavioral (reactive), intelligent
(pro-active) and cooperative (social) parts, all with the same
language (Erlang).

Agent behaviors can be programmed by means of finite-
state machines (FSMs), enriched with the possibility of using
composition, i.e. serial and parallel execution of sub-FSMs,
and extension, i.e. refining some parts of an existing FSM
(according to the concept of virtual inheritance proper of the
object-oriented technology) in order to support new require-
ments.

Agent intelligence is instead programmed by means of
rule-based code, supported and executed by the ERESYE
tool (as briefly illustrated in the Section II). An ERESYE

WOA 2005 30

(a) wine.onto
�
class (wine_grape) ->
{ name = [string , mandatory , nodefault] };

class (wine) ->
{ name = [string , mandatory , nodefault],

color = [string , mandatory , nodefault],
flavor = [string , mandatory , nodefault],
grape = [set_of (wine_grape), mandatory , nodefault],
sugar = [string , mandatory , nodefault]};

class (’red -wine ’) -> is_a (wine),
{ color = [string , mandatory , default (red)] };

class (’white -wine ’) -> is_a (wine),
{ color = [string , mandatory , default (white)] };

class (’Chianti ’) -> is_a (’red -wine ’),
{ sugar = [string , mandatory , default (dry)] }.

� �

(c) wine agent.erl
�
-module (wine_agent).
-include (" wine .hrl "). % include the ontology records

on_starting (Self) ->
ontology_service :register_codec ("wine ",

wine_ontology_sl_codec).

send_inform_action (Self , _, _, _) ->
acl :inform (
#aclmessage { sender = Self ,

receiver = Dest ,
ontology = wine ,
content = #’Chianti ’ {

name = ’Barone Ricasoli ’,
grape = ...,
flavor = ... }

}).

� �

(b) wine.hrl
�

-record (’ wine_grape ’, {
’name ’}).

-record (’ wine ’, {
’name ’,
’color ’,
’flavor ’,
’grape ’,
’sugar ’}).

-record (’ red -wine ’,{
’name ’,
’color ’ = ’red ’,
’flavor ’,
’grape ’,
’sugar ’}).

-record (’ white -wine ’, {
’name ’,
’color ’ = ’white ’,
’flavor ’,
’grape ’,
’sugar ’}).

-record (’ Chianti ’, {
’name ’,
’color ’ = ’red ’,
’flavor ’,
’grape ’,
’sugar ’ = ’dry ’}).

� �

Fig. 4. The “wine” ontology and an excerpt of the generated include file

engine, together with its programmed rules, can be bound to
an agent of the platform in order to support agent’s inference:
The knowledge base of the engine can thus represent agent’s
mental state, while production rules support agent’s reasoning
process. ERESYE engine’s events can be bound to behaviors,
thus allowing reasoning processes to also trigger user-defined
agent actions.

Agent interaction is performed by means of the exchange
of FIPA-ACL messages; this is supported by the eXAT’s ACL
modules that include library functions to send and receive
communicative acts and codecs for user-defined ontologies.
Message exchanging is mainly connected to behavior execu-
tion in order to make possible the occurrence of a proper event
when a new message is delivered to the agent. But message
exchanging is also able to influence agent’s mental state thanks
to the support of FIPA-ACL semantics: An incoming message
is processed by the ACL semantics module and, according
to the performative name and the message content, suitable
actions are performed on the knowledge base of the ERESYE
engine bound to the receiving agent. The details of such a
process are reported in Section V.

Figure 3 reports a sketch of the architecture of the platform.

According to FIPA abstract architecture [22], the platform (at
runtime) includes also the MTP module7, as well as AMS and
Directory Facilitator agents, which provide the agent directory
and the service directory, respectively.

IV. WRITING AND USING ONTOLOGIES IN EXAT

One of the key features that allows interoperability in multi-
agent systems is to make interacting agents sharing the same
concepts in their “universe of discourse”: In other words,
they should share the same ontology. Ontology writing and
manipulation is thus a mandatory characteristic that any FIPA-
compliant agent platform has to feature, as well as modules to
translate messages, written in the SL language [25], [23], into
constructs and data types proper of the programming language
employed (and vice-versa).

In order to comply with these requirements, eXAT provides
a support for ontologies—i.e. concepts organized in classes
with hierarchies—and for their use in agent behaviors, agent
messaging and ERESYE engines. Ontologies can be written,
in a specification file, using a (more or less) standard notation;

7Current eXAT version supports only the HTTP message transport protocol.

WOA 2005 31

Erlang−encoded
messages

MTP (HTTP)

SL−encoded messages

SL Codec Layer

......

Ontology−specific codecs

ACL Interface

eXAT Platform
Agent

Network

(a) without ACL semantics support

ACL_S Interface

Agent

......

SL Semantics

Pluggable semantics

......

MTP (HTTP)

SL Codec Layer

Ontology−specific codecs

Network

ACL Interface

eXAT Platform

(b) with ACL semantics support

Fig. 5. Architecture of modules for message exchanging and handling in eXAT

in the current version of eXAT, ontologies can be written
using an ad-hoc Erlang-like syntax, as Figure 4a illustrates,
while the ability to translate files written in standard notations,
such as OWL, or by means of visual tools, such as Protégé,
will be available in the next releases of the platform. Then
a suitable Ontology Compiler, provided with eXAT8, is able
to parse such ontology specification files and generate the
relevant Erlang type definitions to be used in agent source
code. Since Erlang is not object-oriented, a task of the Ontol-
ogy Compiler is also to transform the object-based ontology
specification into an Erlang-readable (non-object-based) form,
while maintaining semantics. This is performed by generating
some functions that reflect the class hierarchy.

In detail, the Ontology Compiler generates, from the ontol-
ogy specification file, the following Erlang sources:

i) An Erlang (.hrl) include file, which reports the definition
of an Erlang record for each class9, provided that the
hierarchy is “flattened” by incorporating each attribute
of a class/record into all the relevant child class/records;
therefore, creating a fact referring to an object of class
’T’ implies to create and Erlang record of type ’T’ .
Figure 4b reports an excerpt of the include file generated
from the “wine” ontology in Figure 4a.

ii) An Erlang source (.erl) file (class-hierarchy file), con-
taining information on class hierarchy, which is lost in the
include file, and encoded by means of suitable is a and
childof functions. This source file also contains some
functions to perform class typecasting (up- and down-
casting).

8Also the Ontology Compiler is written in Erlang.
9An record in Erlang is like a “struct” in C, it has a name and a set of

named fields; however, according to Erlang syntax and unlike C, fields are
untyped.

iii) An Erlang source (.erl) file (parser file), containing the
parser (codec) for the translation of the concepts defined
with Erlang records from/to FIPA-SL language.

Once generated, the .hrl file can be included in the agent
source code in order to allow a programmer to directly use the
generated Erlang records in the specification of and access to
a message content. The other files, once compiled, are instead
used as libraries. Functions provided by the class-hierarchy
file can be used by ERESYE engines and/or agent’s code to
perform check or manipulation of ontology records. Functions
provided by the parser file are instead internally used by
the eXAT platform to perform automatic encoding/decoding
of message contents. To this aim, eXAT provides a function
call that agents can use to register an ontology by giving its
name and the name of the parser module (codec) generated by
the Ontology Compiler. This means that, when a message is
received through the network by the platform’s MTP module
(see Figure 5a), its SL-encoded payload is passed to the
SL codec layer: If the ontology specified in the message
is registered, the relevant ontology-specific codec is called
and the message content is automatically translated into the
relevant Erlang record(s)10. A similar process is performed
when a message has to be sent: Erlang record(s) can be directly
used in the source code and it’s up to the ontology-specific
codec to perform automatic Erlang-to-SL translation.

As an example, Figure 4c shows a piece of code
of an agent that, after startup, registers the codec for
the “wine ” ontology (function on starting) and, when
send inform action is called, sends an “inform” speech
act containing information on a Chianti wine.

10If the ontology is not registered the content is passes as is, i.e. encoded
in a string.

WOA 2005 32

(a) SL
�
(B

(agent -identifier
:name alice@JADE
:address

(set (http :// csanto .diit .unict .it:7778/ acc)))
(temperature 50 C)

)

--
(I

(agent -identifier
:name alice@JADE
:address

(set (http :// csanto .diit .unict .it:7778/ acc)))
(done
(action

(agent -identifier)
(purchase computer 500)

)
)

)

--

(iota
?x
(temperature ?x C))

� �

(b) Erlang
�
#’B ’ {

identifier =
#’ agent -identifier ’ {

name = "alice@JADE ",
addresses = ["http :// csanto it :7778/ acc "]

},
formula =

#temperature {value = "50 ", um = "C" }
}
--
#’I ’ {

identifier =
#’ agent -identifier ’ {

name = "alice@JADE ",
addresses = ["http :// csanto it :7778/ acc "]

},
formula = #done {

action = #action {
identifier = #’ agent -identifier ’ { },
action = #purchase { item = "computer ",

price = "500 " }}
}

}
--
#iota { term = #var {name = "x" },

formula = #temperature {
value = #var {name = "x" },
um = "C" }}

� �

Fig. 6. Correspondence between some SL constructs and the relevant constructs traslated in Erlang by eXAT

V. THE SEMANTIC FRAMEWORK OF EXAT

A. eXAT and the FIPA Semantic Language

Supporting FIPA-ACL semantics in an agent platform
means to tie the acts of sending and receiving a message
to agent’s mental state and reasoning process. In fact, the
basic principles regulating FIPA-ACL semantics are in the so-
called feasibility precondition (FP) and rational effect (RE):
For each communicative act type, FP is a predicate, on
sender’s mental state, that has to be true for the message
to be sent, while RE represents a condition, on sender’s and
receiver’s mental state, to be met when the message has been
delivered [24]. These conditions are expressed using modal
logic constructs that have their concrete representation and
implementation in the SL language. Moreover, the semantics
of many communicative acts is based on the fact that the
content field of a message is also expressed in SL or, if this
is not the case, in a language that is able to represent the SL’s
modal logic semantic constructs. SL can be thus considered
not only a simple content language but also a mandatory
building block for a concrete support of FIPA-ACL semantics.

Following the statement above, and given that eXAT allows
agents to handle message contents using Erlang types, not SL
constructs, a suitable way to represent SL logic expressions
is also needed in the platform. In this sense, eXAT handles
SL constructs using a model similar to that of ontologies:
SL sentences and operators are translated into suitable Erlang
records, where the record name is equivalent to the name of
the SL operator, while the other fields represent the arguments.
As an example, Figure 6 reports the correspondence between

some SL constructs and the relevant constructs translated
in Erlang records; in particular the Figure shows the “B ”
(believes) and “I ” (intends) modal operators, and the “ι” (iota)
referential operator. This means that, in encoding/decoding
a message content (see Figure 5a), SL-specific constructs
and operators are first taken into account by the SL Codec
Layer; then all other non-SL-specific constructs that appear in
the message are passed to the ontology-specific codec, thus
building the final message in the proper representation. Note
that the use of Erlang records to represent SL constructs is
not a case, since such types can be directly used in ERESYE
engines; this means that not only message contents but also
SL constructs can take concrete part to the agent’s reasoning
process.

B. Architecture and Functionality

FIPA-ACL semantics is supported, in eXAT, by means
of several modules that connect the incoming and outgoing
messages to the “agent’s mind”, i.e. the ERESYE engine
representing agent’s mental state. With reference to Figure 5b,
which reports the architecture of eXAT with ACL semantics
support, such modules are ACL Interface, SL Semantic Layer
and ACL S Interface. The first two are the main modules
responsible for handling the basic FIPA-ACL semantics, while
the third module, ACL S Interface, is charged with the task
of providing an “higher-level” messaging, based on agent
actions—rather than messages—that, after a semantics-aware
reasoning process, are then transformed into communicative
acts (this functionality is detailed in Section V-C).

WOA 2005 33

In order to use the semantic support, an agent has to activate
it; this is performed by means of a suitable function, to be
called in the agent’s body, that also associates an ERESYE
engine to the agent, to be used as “agent’s mind”. After that, as
Figure 5b depicts, each incoming (resp. outgoing) message is
processed by the SL Semantic Layer before being delivered to
the agent (resp. sent through the network). On the basis of the
message’s direction (incoming or outgoing), the SL Semantic
Layer performs the following tasks:

a. Outgoing messages. Before sending a message, the SL
Semantic Layer checks for its feasibility precondition,
according to the communicative act being issued. Since
FP is based on SL modal logic predicates, this opera-
tion is performed by checking that the relevant Erlang-
translated SL expressions are asserted (i.e. present)—or not
asserted—in the knowledge base of the ERESYE engine
representing the sender agent’s mental state. For example,
for a “confirm” communicative act whose content is X , the
FP is BiX ∧ BiUjX

11, thus the task of the SL Semantic
Layer is to verify that facts “X ” and “#’U’ {identifier
= j, formula = X}” are present in i’s mind.
When the message has been successfully sent, the SL
Semantic Layer performs the rational effect for the
sender agent, that is, it asserts the facts that reflect,
in sender agent’s mental state, the communicative act
semantics following message forwarding. For “confirm”,
for example, the SL Semantic Layer will assert the
fact “#’B’ {identifier = j, formula = X}” in
i’s mind. Appropriate internal rules are also implemented to
avoid consistency problems in the presence of contradictory
facts; as instance, the assertion of both BjX and UjX

results in a contradiction, so an internal rule is used to
remove (in this case) the latter fact, leaving the former
asserted.

b. Incoming messages. When a message is received in a
platform, before forwarding it to the destination agent, the
SL Semantic Layer is charged with the task of asserting the
FP and performing the RE (for the receiver agent12), that is
(once again) to assert the proper facts, in the agent’s mind,
according to the communicative act and message context.
For a “confirm” communicative act with content X , for
example, the RE will be the assertion of X in receiver
agent’s mind.

The internal architecture of the SL Semantic Layer is
organized in a way as to provide a great flexibility in semantics
handling, allowing a programmer to define and implement its
own semantic support. Such a functionality is achieved by
means of pluggable semantics module, i.e. Erlang modules13

that can be plugged-in at run-time in order to support user-
defined semantics. In fact, it should be noted that, even if

11The formula means that “i believes X and it believes that j is uncertain
about X”, where i is the sender and j is the receiver.

12These operations are performed only if the receiver agent has enabled the
support for ACL semantics.

13A “module” in Erlang is a set of functions belonging to the same source
file.

FIPA-ACL semantics is a FIPA-approved standard, it has
been often criticized14 and alternative proposals have been
provided [12]; therefore the possibility of employing user-
defined semantics is, in the authors’ opinion, a very important
characteristics that any semantics-aware agent platform should
feature.

In eXAT, plugging-in operation is performed at the agent
level, using the same function call that enables ACL semantics
for an agent; this function, called agent:set rational ,
takes two arguments: (i) the name of the ERESYE en-
gine representing agent’s mind and (ii) the name of the
Erlang module implementing the code for semantic sup-
port (in particular, for FIPA-ACL standard, the module is
“fipa std semantics ”).

In order to be plugged-in, semantics modules must export
two functions: is feasible and rational effect . The
former is called by the SL Semantic Layer before sending
the message, by passing, together with the message to be
sent, the (identifier of the) sender agent and the (identifier
of the) ERESYE engine representing sender agent’s mind.
Multiple clauses of this function can be used to discriminate
the action to be taken on the basis of the different com-
municative act carried by the message. The latter function—
rational effect —is instead called when the message is
sent (from sender’s side) and received (from receiver’s side).
The function takes the same data of the former function plus
an additional parameter, which can assume the value of one
of the atoms “sender” or “receiver” and indicates the peer
at which the function is called. Also in this case, multiple
clauses can discriminate the various cases, i.e. sender or
receiver side, as well as the communicative act, thus allowing
the implementation of the rational effect appropriate for the
message.

An additional feature of the pluggable semantics support
is the possibility of refining some parts of another semantics
module, according to the principles of code inheritance, proper
of the object-oriented technology. Programmers can “inherit”
all the functionalities of a yet existing semantics module
and modify only some parts of it, e.g. the FP of one or
more communicative act, the RE of only one communicative
act at sender side, etc. In this case, the programmer has to
specify the name of the module to extend and then to write
only the functions implementing the new functionalities. Such
an object-based behavior (which is not Erlang-standard but
provided by eXAT as an additional feature) introduces great
flexibility and improves semantics engineering a lot. As an
example, Figure 7 shows a user-defined semantics module that
inherits all functionalities from “fipa std semantics ”
(see functions extends) and overrides the actions to be taken
for the “inform” communicative act. In particular, no checks

14One of the main critique is that FIPA agents are “benevolent”, e.g. issuing
an “inform” implies, as a precondition, that the sender has to believe what it
is saying: So a FIPA agent cannot lie. But this could not be a practical case,
as in auctions, for example, a competitive behavior could also consider lying
in order to try to convince other agents to give up bidding and thus win the
auction.

WOA 2005 34

�
-module (fipa_semantics_simple).
-export ([extends/0, is_feasible/4, rational_effect /5]).
-include ("acl.hrl").
-include ("sl.hrl").

extends () -> fipa_std_semantics .

is_feasible (Self, Agent , Engine,
AclMessage =

#aclmessage { speechact = ’INFORM ’ }) ->
true .

rational_effect (Self , Agent, Engine ,
AclMessage =

#aclmessage { speechact = ’INFORM ’ },
sender) ->

% rational effect on sender side
Fact = #’B’ {identifier = AclMessage #aclmessage .receiver,

formula = AclMessage #aclmessage.content },
eresye :assert (Engine , Fact),
true ;

rational_effect (Self , Agent, Engine ,
AclMessage =

#aclmessage { speechact = ’INFORM ’ },
receiver) ->

% rational effect on receiver side
eresye :assert (Engine , AclMessage #aclmessage.content),
true .

� �

Fig. 7. A pluggable semantics module

are performed for the FP, while some facts are asserted for
the RE.

C. Semantics-aware Messaging in eXAT

The interaction model of eXAT, as that of other agent
platforms, is based on the assumption that agents explicitly
perform the actions of sending and receiving communicative
acts as part of their behavior. To this aim, appropriate “send”
and “receive” primitives (or equivalent mechanisms) are avail-
able to agent programmer.

But the situation could change when ACL semantics is
considered, since the actions of sending and receiving a
message are intrinsically and tightly connected to the agent’s
mental state, which is dynamic in nature. A clear example
is the “confirm”/“inform” question; given that both of these
communicative act are used for the same purpose (commu-
nicating that a given proposition is true), the use of one of
these depends on the feasibility precondition: If the sender
believes that the receiver is uncertain about the proposition
then a “confirm” should be used, otherwise an “inform” is
made necessary.

Another example, is the fact that some communicative acts
carrying certain proposition are considered equivalent to other
communicative acts. As instance, saying that agent j agrees to
perform a requested action a (“agree” comm. act) is equivalent
to inform that j intends to do a, i.e. IjDone(a); this means
that issuing an “inform” communicative act with IjDone(a)
as content, and given that j has received a prior request to do
a, should result in an “agree”, instead of “inform”.

For these reasons, in ACL semantics-aware agents, a better
approach seems to avoid the direct use of communicative acts
and replace them “higher level” actions [10], [11].

In eXAT, such a support is provided by the ACL S Interface
(see Figure 5b), which offers to the agent a set of primitives
for high-level actions derived from grouping the various com-
municative acts into some categories. Such a categorization
has been performed following not only the principles of the
speech act theory [29], but also the semantic equivalence of
some communicative acts as reported in [24]. However, note
that the functionalities of the ACL S Interface, as well as
the communicative act categorization, is still at a preliminary
experimental level.

The categories considered are:

• Assertive—This category holds all communicative acts
that express the truth of a proposition. The acts are
“accept-proposal”, “agree”, “cancel”, “confirm”, “dis-
confirm”, “inform”, “refuse” and “reject-proposal”.

• Directive—This category holds all communicative acts
that express the desire of the sender agent that an action
has to be performed, i.e. “cfp”, “request”, “request-
when”, “request-whenever”, “propagate” and “proxy”.

• Interrogative—This category holds all communicative
acts that express a query to a given agent. Communicative
acts of this category are “query-if ” and “query-ref ”.

• Exceptional—This category holds all communicative acts
that express an (exceptional) error condition, i.e. “not-
understood” and “failure”.

The ACL S Interface provides a different primitive—
i.e. assert , perform , query , report —for each of the
four categories; each of these primitives, on the basis of the
message content passed as parameter and the sender agent’s
mental state, builds the proper communicative act and then
sends it. For example, invoking the query primitive with a
referential operator as message content (i.e. #iota , #all
or #any) will automatically results in a “query-ref ” commu-
nicative act, while, if the content is a simple proposition, a
“query-if ” is issued.

The ACL S Interface is also able to react to incoming
messages by automatically sending a reply on the basis of
the knowledge of the receiver agent, present in the associated
ERESYE engine. For example, if a “request” is received
and the knowledge base of the receiver agents contains a
fact expressing that the agent (already) has the intention of
doing the action, then an “agree” is automatically replied.
Similarly, if a “query-ref ” is received, the knowledge base of
the ERESYE engine of the receiver agent is queried for facts
meeting the referential expression, and a subsequent “inform”
is generated and issued.

Such an automatic reaction process can be however con-
trolled by the receiver agent, in order to allow agents main-
taining their autonomy, as this is a mandatory characteristic
of agent technology.

VI. RELATED WORK

Currently, the sole proposal15 dealing with FIPA-ACL se-
mantics is the JADE Semantic Agent [27] (JSA), presented, for

15At the time this paper has been written.

WOA 2005 35

the first time, at AAMAS 2005. JSA is a JADE add-on that
implements a reasoning engine that, on the basis of agent’s
knowledge and some built-in production rules, is able to auto-
matically generate and send the messages needed for an agent
to achieve its goal. Similarly, incoming communicative acts are
processed in order to affect receiver agent’s knowledge on the
basis of the rules of FIPA-ACL semantics, thus automatically
generating a proper reply, if needed.

A great advantage of JSA is that it can be integrated
in JADE, even if this integration is not so tight. In fact,
JSA requires to handle concepts directly in SL forms, using
Java strings in agent’s code and without any connection to
JADE ontology framework. This impedes (or burdensome)
the operation of porting agents that yet use JADE ontologies
to a “semantics-aware” form, but such agents will have to
be almost entirely rewritten. Moreover, even if the reasoning
framework provides a programming capability (e.g. user-
defined “listeners” can be defined when a fact has been
asserted), the rules implementing the reasoning process are
built-in and cannot be modified to implement an ad-hoc
semantic support.

From this point of view, the semantic support of eXAT
seems more flexible, as it is basically possible to use the same
Erlang structures (and the same data) to represent message
contents, SL expressions and facts, thus tightly avoid any form
of data conversion to use a message content or SL expression
in a rule-based reasoning (and vice-versa). Moreover, not
only a user-defined reasoning process can be implemented
through the provided ERESYE tool, but also the FIPA-ACL
semantics support is programmable, thus giving the program-
mer a full control over the reasoning mechanisms behind
semantics handling and providing a flexible and complete
agent programming environment. The only issue could be that
eXAT is based on Erlang, not Java, but, as argued in [14],
[15], [16], [17], [19], [18], Java does not seem the best choice
for agent implementation.

VII. CONCLUSIONS

In this paper, the semantic framework of eXAT has been
presented. Such a framework is able to support FIPA-ACL
semantics, thus allowing the implementation of “really ra-
tional” agents. This objective has been achieved by means
of a platform architecture that integrates and connects one
another the modules for messaging, ontology handling and
rule-based reasoning. Moreover, the full programmability of
such modules provides a very flexible environment for the
development of semantics-aware multi-agent systems.

REFERENCES

[1] “http://fipa-os.sourceforge.net/. FIPA-OS Web Site.” 2003.
[2] “http://herzberg.ca.sandia.gov/jess/. JESS Web Site,” 2003.
[3] “http://www.ghg.net/clips/CLIPS.html. CLIPS Web Site,” 2003.
[4] “http://www.drools.org. Drools Home Page,” 2004.
[5] “http://www.erlang.org. Erlang Language Home Page,” 2004.
[6] “http://www.agent-software.com,” 2004.
[7] “http://sourceforge.net/projects/zeusagent/. ZEUS Agent Toolkit Web

Site.” 2005.

[8] J. L. Armstrong, M. C. Williams, C. Wikstrom, and S. C. Virding,
Concurrent Programming in Erlang, 2nd Edition. Prentice-Hall, 1995.

[9] F. Bellifemine, A. Poggi, and G. Rimassa, “Developing multi-agent
systems with a FIPA-compliant agent framework,” Software: Practice
and Experience, vol. 31, no. 2, pp. 103–128, 2001.

[10] F. Bergenti and A. Poggi, “A development toolkit to realize autonomous
and interoperable agents,” in 5

th International Conference on Au-
tonomous Agents (Agents 2001), Montreal, Quebec, Canada, 2001.

[11] ——, “Formalizing the Reusability of Software Agents,” in 4
th Interna-

tional Workshops on Engineering Societies in the Agents World (ESAW
2003), London, UK, 2003.

[12] M. Colombetti, N. Fornara, and M. Verdicchio, “A Social Approach to
Communication in Multiagent Systems,” in First International Workshop
on Declarative Agent Languages and Technologies (DALT 2003), vol.
LNCS 2990. Melbourne, Australia: Springer, 2003.

[13] A. Di Stefano, F. Gangemi, and C. Santoro, “ERESYE: Artificial
Intelligence in Erlang Programs,” in Erlang Workshop at 2005 Intl. ACM
Conference on Functional Programming (ICFP 2005), Tallinn, Estonia,
25 Sept. 2005.

[14] A. Di Stefano and C. Santoro, “eXAT: an Experimental Tool for
Programming Multi-Agent Systems in Erlang,” in AI*IA/TABOO Joint
Workshop on Objects and Agents (WOA 2003), Villasimius, CA, Italy,
10–11 Sept. 2003.

[15] ——, “eXAT: A Platform to Develop Erlang Agents,” in Agent Exhibi-
tion Workshop at Net.ObjectDays 2004, Erfurt, Germany, 27–30 Sept.
2004.

[16] ——, “Designing Collaborative Agents with eXAT,” in ACEC 2004
Workshop at WETICE 2004, Modena, Italy, 14–16 June 2004.

[17] ——, “On the use of Erlang as a Promising Language to Develop Agent
Systems,” in AI*IA/TABOO Joint Workshop on Objects and Agents
(WOA 2004), Torino, Italy, 29–30 Nov. 2004.

[18] ——, “Supporting Agent Development in Erlang through the eXAT
Platform,” in Software Agent-Based Applications, Platforms and De-
velopment Kits. Whitestein Technologies, 2005.

[19] ——, “Using the Erlang Language for Multi-Agent Systems Implemen-
tation,” in 2005 IEEE/WIC/ACM International Conference on Intelligent
Agent Technology (IAT’05), Compiégne, France, 19–22 Sept. 2005.

[20] C. Forgy, “OPS5 Users Manual,” Dept. of Computer Science, Carnegie-
Mellon Univ., Tech. Rep. CMU-CS-81-135, 1981.

[21] ——, “The OPS Languages: An Historical Overview,” PC AI, Sept.
1995.

[22] Foundation for Intelligent Physical Agents, “FIPA Abstract Architecture
Specification—No. SC00001L,” 2002.

[23] ——, “FIPA ACL Message Representation in String Specification—No.
SC00070I,” 2002.

[24] ——, “FIPA Communicative Act Library Specification—No.
SC00037J,” 2002.

[25] ——, “FIPA SL Content Language Specification—-No. SC00008I,”
2002.

[26] ——, “http://www.fipa.org,” 2002.
[27] T. Martinez and L. Vincent, “JADE Semantic Framework,” in JADE

Workshop at 4
th AAMAS 2005, Uthrect, The Netherlands, 2004.

[28] A. Pokahr, L. Braubach, and W. Lamersdorf, “Jadex: Implementing a
BDI-Infrastructure for JADE Agents,” Telecom Italia Journal: EXP - In
Search of Innovation (Special Issue on JADE), vol. 3, no. 3, Sept. 2003.

[29] J. R. Searle, Speech Acts: An Essay in the Philosophy of Language.
Cambridge University Press, 1969.

[30] K. Sycara, M. Paolucci, M. van Velsen, and J. Giampapa, “The
RETSINA MAS Infrastructure,” Special joint issue of Autonomous
Agents and Multi-Agent Systems Journal, vol. 7, no. 1 and 2, July 2003.

[31] C. van Reeuwijk and H. J. Sips, “Adding tuples to Java: a study in
lightweight data structures,” Concurrency and Computation: Practice
and Experience, vol. 17, no. 5–6, pp. 423–438, 2005.

[32] M. J. Wooldridge, Multiagent Systems. G. Weiss, editor. The MIT
Press, April 1999.

WOA 2005 36

Integrating Ontologies in Mobile Agents
F. Corradini, R. Culmone, M.R. Di Berardini and E. Merelli

Dipartimento di Matematica e Informatica
Universit̀a di Camerino

via Madonna delle Carceri
62032 Camerino, Italy

Email: {flavio.corradini, rosario.culmone, mariarita.diberardini, emanuela.merelli}@unicam.it

Abstract— The process of information extraction and data
integration in a global information system demands automatic
techniques for quickly determining semantic similarity among
concepts across different ontologies. This paper presents a graph
based approach for computing, on-the-fly, semantic similarities
among ontologies of a specific domain. The approach consists of
integrating mobile agents and ontologies to support a variety of
applications in distributed environments. The resulting technique
is illustrated on Hermes, agent-based middleware for mobile
computing, by an example in molecular biology domain.

I. I NTRODUCTION

In recent years, ontologies [13], [14], [8], have played
an important role in many research areas such as informa-
tion retrieval and data integration; ontologies are usefulfor
semantic interoperability among heterogeneous information
systems [20]. In the information and computer science, an
ontology is a type of knowledge-base that describes the
concepts, through definitions, that are sufficiently detailed to
capture the semantics of a specific domain [13], [15]. An
ontology captures a certain view of the world, it provides a
vocabulary of terms and relations to model the domain [8];
it supports intentional queries regarding the content of one or
more data repositories, and it reflects the relevance of databy
providing a description of semantic information independent
of the data representation.

In a global environment, the interoperability of information
systems, is based on the possibility to offer a query environ-
ment in which users may enter a request without knowing how
and where the requested information are stored. Thus, due to
the heterogeneity of distributed information sources, theuse of
ontologies become essential to support the semantic interop-
erability; as well as, the availability of automatic techniques
for quickly determining semantic similarity among concepts
to describe queries and information sources to be queried.
In addition, the new Web applications, as described by T.B.
Lee et al. in [2], aim at guaranteeing the almost completely
automatic execution of complex distributed processes, where
autonomy, adaptability and cooperation are essential require-
ments. Agents technology [19] is an appealing approach to
build automatic applications. Agents being an autonomous
entity, able to react and adapt in a proactive way, in a dynamic
execution context, can encapsulate the execution of several
independent activities. The agent ability to cooperate with
other agents allows to have a useful interaction within an

heterogeneous environment [31]. The integration of agents
and ontologies as discussed in Hendler [17], provides a
powerful approach to automate distributed computation, to
support semantic interoperability and to allow meaningful
agents interaction. Furthermore, an agent can move from
one environment to another. In some specific domains as
computational biology and bioinformatics, the quantity ofdata
to be processed is often prohibitively large to be retrievedin an
acceptable time, thus the possibility to move the computation
is a promising approach. In an environment with multiple
information systems, such those visited by mobile agents, dif-
ferent domain ontologies can coexist [16]. Although the useof
single shared ontology would ensure the complete integration
across information systems, it is quite impractical because it
forces information systems to commit to this single ontology
by making difficult the input of new concepts. Thus, a mobile
agent has to face two problems: the ability to measure, on-
the-fly, thesimilarity among concepts of different ontologies,
(its own, e.g. its knowledge base and those used in the visited
sites, e.g. conceptual schema of local data repository), and the
ability to enrich his own knowledge with new concepts.

In this work, we propose integrating mobile agents with
suitable tools for managing ontologies during their migration
across distributed heterogeneous information systems. Tothat
purpose, we have defined an abstract data model, theonto-
logical graph, derived from the graph-based conceptual model
proposed in Mitra et al. [24], and we have defined a minimum
set of operators essential to manageontological graphs to
determine the similarity. We define three algebraic operators,
to isolate a concept in an ontology (projection), to measure
similarity between two concepts (similarity) and to enrich an
ontology with a new concept (enriching).
The proposed approach shows some advantages: any domain
ontology, being represented by RDF or OWL or DAML+OIL,
can be mapped into theontological graph; every information
system can use a local conceptualization of the domain without
to commit to a single global one; every agent can enrich
its own knowledge by generating a collection of synonyms;
and it can choose the most suitable similarity function [22],
[27], [10], [11], to relate domain-specific ontologies. Last
but not least, the algebraic operators can be considered the
ground for designing a declarative language to specify the
agent behaviour.
The three operators has been implemented in Hermes, mid-

WOA 2005 37

dleware for mobile computing, to support the description of
the mobile agents behaviour in a distributed environment. In
particular, the similarity operator has been implemented over
three algorithms: the semantic similarity algorithm proposed
by Maedche et al in [22], that proposed by Rodriguez and
Egenhofer in [27] and over a new algorithm based on structural
similarity, proposed in this work as an extension of our
previous work [7].

The paper is structured as follows: Section II describes
a motivating scenario with an example in Bioinformatics.
Section III defines theontological graphand the algebraic
operators. Section IV proposes a new similarity function.
Section V, discusses the behaviour of a mobile agent by
an example in Bioinformatics. Finally, Section VI remarks
conclusions and future work.

II. M OTIVATING SCENARIO

Nowadays, the widespread interconnection of distributed
systems, with the global distribution of information sources
and computational tools, offers a scenario where to built dis-
tributed applications in every domain of social and life science
(Medicine, BioMedicine, Computational and Systems Biology,
Health Care . . .). In a wide view, we can think to design a
scenario where a user (human or application) describes his
goal (e.g complex queries, workflows of activities) by usinga
vocabulary of terms and relations close as much as possible
to his application domain. He will not worry about where
information are stored, what data formats have been used,
how tools can be integrated and services coordinated. The
achievement of the user goal is delegated to one or more
software entities or agents that are responsible for a correct
achievement of the user goal.

In particular, in Bioinformatics, a biologist would be ableto
specify his experiment like a workflow of activities, ranging
from researching and integrating information, to coordinating
computational tools executed over specific data. In this do-
main, where the amount of interrelated information exponen-
tially increases, it is very difficult for a human to exploit all
available data, to identify, select, clean and use all relevant
data, also because of different data formats with different
semantics.
If on the one hand the integration of heterogeneous data can be
achieved in different ways, on the other to manage all suitable
data in an acceptable time asks for remote computation. In
fact, data can be extracted and integrated either in a unique
datawarehouse to which users can submit a query using a
global schema, or instantaneously in native data sources. In the
first approach data are centralized, there is no instant schema
translation, but it is difficult to add new data repositories,
to maintain data updated and to modify any schema. In the
second approach, data remain in native repositories where
they are constantly updated and free to be represented in any
format, but an instant (on-the-fly) schema mapping must be
done by the data collector; in fact different data sources may
use different names and formats to refer the same object,
or the same name to refer objects with different meaning.

The latter is a typical scenario where a mobile agent works
on; therefore, integrating mobile agents with suitable tools
for managing ontologies would enrich its capabilities. It is
worth pointing out that an act of communication between two
agents is feasible only if a common ontology is shared. Even
if this restriction guarantees an agreement on the semantics of
exchanged data, not all data are a priori shared, thus agents
must be able to reach an on-the-fly agreement by measuring
semantic similarity of different ontologies. Whenever an agent
acquires new information, it can enrich its personal knowledge
base.

A. Running Example

Suppose a biologist has prepared his experiment within
an interactive virtual laboratory for Bioinformatics. Theex-
periment consists of the set of concurrent and coordinated
activities each of which is described by using the specific
terminology taken from an ontology of the biological domain.
The execution of the experiment is delegated to the run-
time support of the virtual laboratory. Suppose to have a
computational environment based on middleware for mobile
computation, where every experiment is compiled in a pool of
mobile agents activated to support the execution of the whole
experiment. Also, suppose that one of the agents is involved
in the execution of a query, which implies its migration across
several places to query different data repositories. Let

“Find all Complementary DNA transcribed from Messenger
RNA whose DNA is”
be a meaningful query for a biologist. We can observe that
“Complementary DNA”, “ Messenger RNA” and “DNA” are
terms that identifies domain specific concepts while “Tran-
scribed from” is a relation between two concepts.

As the mobile agent reaches a destination, it will interact
with a local stationary service agent, passing on to it the query
and the reference of the domain ontology. If the service agent
shared the domain ontology it will just translate the query in
the local format. If not, it will offer its local ontology to the
mobile agent, which in turn will decide whether to come to
an agreement or to move to next place. The final decision
could be taken over the result given by the similarity function
measured between the two ontologies. Once the mobile agent
has decided which are the most similar concepts to those
describing its query, it will rewrite the query in terms of
new concepts, and submit the query to the local service
agent. Afterward, the service agent will be able to convert
the incoming query to a corresponding local one. In some
cases, the mobile agent, could decide to enrich his knowledge
with new learned concepts, which could be also used by the
biologist to interpret the extracted data. Then, the mobileagent
moves to the next place.
What are suitable tools to support the interaction of mobile
agents with local service agent? To provide an answer, we
define theontological graph an abstract data model more
flexible and light than an ontology; suitable to map every
ontology a mobile agent will manage and analyze during
its migration. In the next section, before the definition of

WOA 2005 38

ontological graph the general concept of ontology will be
introduced.

III. O NTOLOGICAL GRAPH MODEL

Gruber in [13] defines an ontology as an explicit
specification of a conceptualization. A conceptualizationis
an abstract, simplified view of the world that we wish to
represent for some purpose. We can note that every knowledge
base, knowledge-based system, or knowledge-level agent is
committed to some conceptualization, explicitly or implicitly.
Usually, agents share a common specification (common
ontology) which supports the communication with each other
and they commit “on-the-fly” specifications (local ontology)
to operate on a specific domain. Guarino ([14]) underlines
that interoperating systems need two types of ontologies: a
top-level and a domain-level ontology. The top-level ontology
describes very general common concepts (e.g primitives of
a communication protocol [9] or concepts as time, space,
event, etc.) which are independent of a particular problem
or domain, by which to verify the consensus on sharing a
generic domain ontology. The domain ontology describes the
vocabulary related to a specific domain (like Biomedicine,
Molecular Biology, etc.) or a specific task or activity (like
Protein, Enzyme, etc.) by specializing the terms introduced
in a top-level ontology. The evolution of ontology researchin
computer science recently shifted from theoretical to practical
issues. Noy and Klein report in [26] that issues like what
a formal ontology is - what requirements an ontology must
satisfy - what representation language is suitable to define
and exchange ontologies, shifted to issues associated withthe
use of ontologies in real-world, for large-scale applications,
like how to use multiple distributed heterogeneous ontologies
- how to maintain updated an ontology - how to integrate
similar ontologies, etc.

An ontology, denoted by O, is a formal specification of
a conceptualization, that is the knowledge structure that de-
scribes, using a lexicon, the semantics of a given domain. A
lexicon is defined in [28], as a “knowledge-base about some
subset of words in the vocabulary of a natural language de-
noting concepts of the domain and relations among concepts”.

Notations

For ease of notation and retention of all definitions, in the
sequel of this paper, we will use the following notation.

Let:
L be the set of lexicons, ranged over byL1, L2 . . . L, L

′

, L
′′

;
O be a set of ontologies, ranged over by O1,O2,

. . . O,Ō,O
′

,O
′′

;
C be a set of ontological concepts, ranged over by

c1, c2, . . . c, c
′

, c
′′

;
R be a set of ontological relations, ranged over by

r1, r2, . . . r, r
′, r

′′

;
N,N1, N2 . . .H,K be a set of nodes, ranged over by

n1, n2, . . . , n,m ;

A,A1, A2 . . . be a set of arcs, ranged over bya, a1, a2,

Since, a lexicon contains terms to identify both concepts
and relations which semantically describe the domain, in the
sequel of this paper, we will separately use concepts and
relations as terms of a given lexicon. Therefore, a lexiconL
can be represented as a finite, not empty setC of concepts
and a not empty setR of relations among concepts.L can
be represented asL = 〈C,R〉. We assume thatR contains
a special relationsimilar which will be used to denote a
similarity relation between concepts.

Formally, an ontology O is a, node and arc labelled, graph,
where the labelling functions are expressed over a lexicon
L∈L; the set of graph nodes represents concepts and the set
of arcs represents relations between concepts. The association
between a node and a concept, so as between an arc and a
relation, is unique. Any concept can be described by its lexical
name and the set of relations it has with other concepts. A
concept is represented by a rooted subgraph.

An ontological graphis formalized by the following defi-
nition:

Definition 3.1 (Ontological Graph):An ontological graph
O=(N ,A, n) is a directed, rooted, node and arc labelled over
a lexicon L =< C,R >, graph. WhereN is the finite set
of ontology concepts,A is the finite set of relations among
concepts andn is the root. The node labelling function,λ :
N→ C uniquely associates a node to a concept in the lexicon.
The arc labelling functionδ : A→ R uniquely associates an
arc to a relation in the lexicon.

The functions,λ and δ, are neither injective nor surjective
mapping function; this property allows the existence of con-
cepts and relations in the ontology, that are not expressed in
the ontological graph.

Each ontology O∈ O is associated to the corresponding
ontological graphO. Each conceptc ∈ C is associated to
the corresponding subgraph. Each subgraph is, in turn, an
ontological graph. Each noden of an ontological graph
is associated to the name of the concept described by the
ontological graphrooted on the noden.

In the sequel of this paper, both ontology and
ontological graph, so as concept name and node, concept and
ontological graph, will be used interchangeable.

Figure 1 shows theontological graph corresponding to
a small set of concepts in Bioinformatics, whose lexicon
is L1 = {DNA, RNA, Ribozyme, Nucleotide, Ribonucleo-
tide, Deoxinucleotide, Nucleic-acid, Protein, Macromolecule,
Complementary-DNA, Messanger-RNA; Polymer-of, Subclass-
of, Transcribe-from, Translate-to}. In the figure, the concept
of Ribozymeis described in the subgraph rooted at the node
labelled byRibozyme. Thus, theRibozymeis Subclass-ofa
Macromoleculeand a Polymer-of the Ribonucleodite; this
latter, in turn is aSubclass-of Nucleotide. A Nucleotide, in
this conceptualization, is a primitive concept of the domain, a
leaf node of the graph. The Molecular Biology ontology used
to derived theontological graphhas been taken from TAMBIS

WOA 2005 39

Macromolecule

Protein

Messenger-RNA

Complement-DNA

Transcribed-from

Translated-to

DNA

Ribozyme

RNA

Deoxinucleotide

Polymer-of

Ribonucleotide

Genomic-DNA

Nucleic-acid

Subclass-of

Transcribed-from

Subclass-of

Subclass-of

Subclass-of
Subclass-of

Subclass-of

Polymer-of

Polymer-of

Is-a
Subclass-of

Nucleotide

Subclass-of
Subclass-of

Subclass-of

Polymer-of
Polymer-of

Fig. 1. An ontological graphfor the lexiconL1

Macromolecule

Protein

mRNA

cDNA

Transcribed-from

EnzymeTranslated-to

DNA

Ribozyme

RNA

Deoxinucleotide

Polymer-of

Ribonucleotide

Genomic-DNA

Nucleic-acid

Subclass-of

Transcribed-from

Subclass-of

Subclass-of

Subclass-of
Subclass-of

Subclass-of

Polymer-of

Polymer-ofIs-a

Subclass-of

Nucleotide

Subclass-of
Subclass-of

Subclass-of

Polymer-of
Polymer-of

Polymer-of

Fig. 2. ontological graphfor the lexiconL2

project [12] in OIL [18], [29] description.
In Figure 2, we consider anontological graphcorresponding

to a different lexiconL2 = {DNA, RNA, Ribozyme, Nu-
cleotide, Ribonucleotide, Deoxinucleotide, Nucleic-acid, Pro-
tein, Macromolecule, cDNA, mRNA, Enzyme; Polymer-of, Is-a,
Subclass-of, Transcribe-from, Translate-to}. Figure 2 shows
that theRibozymeconcept is described by the same subgraph
of Figure 1. Whereas, the concept ofComplementary-DNA
from the lexiconL1 and cDNA from the lexiconL2 are de-
scribed by two different subgraphs whose degree of similarity
will be later discussed.

A. Algebraic operators

To allow the manipulation of ontologies byontological
graph, we concentrate on a minimum set of operators nec-
essary to measure on-the-fly the similarity among concepts of
different ontologies. The three main operators are:projection,
similarity andenriching (see Table I).

projection π : O × N → O

similarity σ : O ×O → [0, 1]

enriching ǫ : O ×O → O

TABLE I

ALGEBRAIC OPERATORS

Theprojectionallows to reduce theontological graphinto a
subgraph whose root node corresponds to a given concept. The
similarity operator is a function which measures the similarity
of two concepts and returns a coefficient that ranges over by
[0,1]; the coefficient is 1, if the two concepts are equal; it is

WOA 2005 40

0 if they completely mismatch. Theenrichingoperator allows
to enrich theontological graphwith new concepts.

The small set of operators could be easily extended with
other operators, for example those proposed by Mitra et al.
in [25] for ontology composition:Select, Intersection, Union
andDifference;

In the following, the description of behaviour of the pro-
posed operators is given. We have omitted the formal defini-
tions which can be found in Appendix I.

1) Projection π: The projection of anontological graph
over a given concept, reduces theontological graphby isolat-
ing the subgraph consisting of those concepts and relations
– except for the relationsimilar – that describe the given
concept. The root node of the projected graph is represented
by the concept itself.

The projection is a binary operator defined over anonto-
logical graphand a concept name.

π : O × N → O

Given anontological graphO=(N ,A,n) and a nodem∈N ,
the projectionof O overm returns the subgraph O

′

, rooted in
m corresponding to the concept associated tom. Suppose we
wish to isolate the conceptRibozymein the ontological graph
O given in Figure 1, theprojection operator can be used as
follows

π(O, Ribozyme) = O
′

Figure 3 shows the graphical behaviour of theprojection
operator over the example.

2) Similarity σ: The measure of the similarity between
two concepts determines how much the two corresponding
ontological graphs are similar. There are several ways to
measure the similarity among two concepts. Giunchiglia in
[11] proposes to classify the process of discovering the graphs
mapping in syntactic and semantic matching. The syntactic
similarity (matching) [21] is based on searching the semantic
correspondence among node labels, the resulting coefficient,
that ranges over [0,1], measures the similarity between the
labels of the given nodes by performing linguistic analysis.
The semantic similarity is based on analyzing the position
that a node has in a graph, that can be done either analysis
the position of a given node in terms of neighbours nodes [11],
or by following a path in the graph [3] or by analyzing both the
semantic and the syntactic concepts matching, as Maedche et
al. propose in [22]. In the above cases, the similarity algorithm
returns a coefficient that ranges over[0, 1], except for the
Giunchiglia algorithm that returns a set of values that range
over {=,⊆,⊇,⊥} (equality, more specific, more general and
mismatch respectively). In Section IV, we propose a new
approach which determines semantic similarity by clustering
concepts satisfying common relations. The algorithm allows
to measure on-the fly semantic similarity without sharing a
domain ontology.

The similarity operator allows to measure the similarity
between two concepts of differentontological graphs. The

similarity returns a coefficient that ranges over [0,1]. How the
similarity is measured, it depends on the algorithm chosen to
implement the operator. In any case, two concepts are equal if
the similarity returns 1, two concepts mismatch (no affinity)
if the similarity returns 0.

The similarity is a function defined over twoontological
graphs.

σ : O ×O → [0, 1]

Given two ontological graphs O=(N1, A1, n) and
O

′

=(N2, A2,m) respectively, thesimilarity of O and O
′

over the two root nodesn and m returns a real number
α ∈ [0, 1] that quantitatively estimates the similarity degree
of the concepts described by theontological graphs.

Suppose we wish to measure the similarity between
the concept Ribozyme in the ontological graph
O=(N1, A1, Ribozyme) given in Figure 1, andRibozyme
in the ontological graphO

′

=(N2, A2, Ribozyme) given in
Figure 2, thesimilarity operator most likely will return the
value 1.

σ(O, O
′

)= 1

If we measure the similarity betweenComplementary-DNA
and cDNA described in the two graphs respectively, the
similarity operator will returns the valueα depending on the
algorithm that implements the operator.

σ(Complementary-DNA, cDNA) = α

3) Enrichmentǫ: When an agent discovers a new concept,
he can decide to enrich his knowledge by storing the new
knowledge. This can be done in several ways, by creating a
new data structure or by adding the projection of the new
concept to itsontological graph. Theenriching is an operator
defined over two concepts, i.e. twoontological graphs:

ǫ : O ×O → O

Given twoontological graphs O=(N1, A1, n) and O
′

=(N2,

A2,m), representing two similar concepts, the enrichment of
O with O

′

is obtained by adding a new arc from the root
n of O to the rootm of O

′

labelled by “similar”; similar
is a special relation meaningful only for the agent purpose.
Suppose we wish to store the knowledge thatcDNA is similar
to Complemntary-DNA, we can use theenrichingoperator be-
tween O=(N1, A1, Complement-DNA), O

′

=(N2, A2, cDNA)
as follows

ǫ(O, O
′

) = Ō

The resulting graph̄O is depicted in Figure 4.

IV. A STRUCTURAL SEMANTIC SIMILARITY FUNCTION

In this section, a new function to assess the semantic
similarity between concepts is proposed. We only compare
the structural (topological) similarity among sets of concepts
without considering syntactic matching between node labels.

WOA 2005 41

Ribonucleotide

Macromolecule

Ribozyme

Polymer-of Subclass-of

Nucleotide

Subclass-of

Fig. 3. The projectedontological graphin Figure 1 over the node “Ribozyme”

Complement-DNA

cDNA

similar

Fig. 4. Enriching operator over the running example

Given two ontological graph O1=(N1, A1, n),
O2=(N2, A2,m) and two sets of nodesH ⊆ N1 and
K ⊆ N2, with H 6= ∅ 6= K, the similarity betweenH and
K is measured by the function in Table II, where, for any
given set of nodesN , τ(N) is the number of outgoing arcs
from (nodes in)N , RN is the set of relations – different
from similar – associated to the arcs outgoing fromN , and
sonsr(N) is the set of nodes reachable from any node inN

through the relationr ∈ R.

Intuitively, two set of conceptsH and K are equal (mis-
match) if both of them (one but not the other) contain only
primitive concepts, that is, have no outgoing arcs. Otherwise,
if both H andK contain no primitive concepts (the number of
outgoing arcs fromH andK is greater than zero), we consider
the setRH ∩ RK of the relations they have in common. For

eachr ∈ RH ∩ RH , we recursively applyf to the sets of
nodes reachable fromH andK through the relationr.

It is worth noting, that the proposed similarity function is
relevant when the relation are meaningful for the application
domain.

V. ON-THE-FLY CONCEPTSCOMPARISON ACROSS

ONTOLOGIES

As we mention in the introduction, in the context of multiple
information systems, the semantic interoperability must allow
users to enter a request without knowing where and how data
are stored.

We have implemented the biological example described
in Section II, in the framework of Hermes, middleware for
mobile computation proposed by Corradini et al. in [5], [6].

WOA 2005 42

f(H, K) =

1 iff τ(H) = τ(K) = 0

0 iff τ(H) = 0 xor τ(K) = 0

∑

r∈RH∩RK

f(sonsr(H), sonsr(K))

card(RH ∪ RK)
otherwise

TABLE II

THE SIMILARITY FUNCTION

As Figure 5 shows, Hermes is structured as a component-
based system with 3-layer software architecture:user layer,
system layerand run-time layer. At the user layer, it allows
users to specify their application as a workflow of activities
using the graphical notation provided by DroFlo (OpenWFE,
2005) and JaWE editor (Enhydra, 2003). At the system layer, it
provides a context-aware compiler to generate a pool of user
mobile agents from the workflow specification. At the run-
time layer, it supports the activation of a set of specialized
service agents, and it provides all necessary components to
support agent mobility and communication. Hermes can be
configured for specific application domains by adding domain-
specific components.

Biological workflow
———————————————- User Layer
Workflow Management

Bio-agents
———————————————- System Layer
Context-aware compiler

Bio-Service Agent
———————————————- Run-Time Layer
Core

Fig. 5. Hermes Software Architecture

Suppose to have Hermes as middleware that allows the
interoperabilty among different information systems and sup-
pose to have a service agent,ontology service agentwhich
interfaces local repositories and interacts with mobile agents to
allow semantic querying. Let us consider the running example
described in Section II, and suppose that the definition of a
workflow in the biological domain consists of a single task:
retrieval of information aboutComplement-DNA. Also assume
that the ontological graphs in Figures 1 and 2 (denoted in the
following by O1 and O2) are used to describe the query and
the remote data schema repositories, respectively.

In the Hermes context, a mobile agent (called bio-agent)
is created, by usingL1 related to O1 on platform 1, to
support the execution of the workflow activity. The bio-
agent has the goal to move to platform 2 and to search the
conceptComplement-DNA. The bio-agent starts to extract the
subgraph ofComplement-DNAfrom the derivedontological

graph O1 (Figure 1) and moves to platform 2. There, it will
interact with a local stationary service agent, passing on to
it the query and the reference of the domain ontology. If
the service agent shared the domain ontology it will just
translate the query in the local format. If not, it will offer
its local ontology to the bio-agent. The bio-agent will search
for the most similarComplement-DNAconcept onO2. Note
that nodes and arcs of the subgraphs are indicated by corre-
sponding labels in the lexicon. TheComplement-DNAconcept
is compared to all the subgraphs, thus the agent will compute
f(Complement-DNA, mRNA) = 0.33331 and f(Complement-
DNA, Enzyme) = 0.333. To evaluatef(Complement-DNA,
cDNA), the agent needs to evaluate the following values:
f(Messenger-RNA, mRNA) = 1+1+1

4
= 3

4
= 0.75 and

f(Deoxinucleotide, Deoxinucleotide) = 1.
The agent can now complete the comparison between
Complement-DNAand cDNA, computing f(Complement-
DNA, cDNA) = 0.75+1

4
= 1.75

4
= 0.4375, which yields

cDNA as the concept most similar toComplement-DNA, with
a similarity degree of0.4375.

Having obtained the degree of similarity between
Complement-DNAon platform 1 and cDNA on platform 2,
the mobile agent can ask service agent to extract information
(projection) aboutcDNA from platform 2, having learned
that cDNA is “sufficient” similar toComplement-DNA, it will
enrich is knowledge. Then, it will rewrite the query and
proceed in the task execution.

A. Related Work

A general approach to data integration has been to map the
local terms of distinct ontologies onto a single shared ontology,
as described in [27]. In this work the semantic similarity is
typically determined as a function of the path distance between
terms in the hierarchical structure underlining this ontology
[4]. Another strategies for ontology integration are basedon
the mapping of a local ontology onto a more generic ontology
[1], [30]. The ONIONS methodology [1] integrates local on-
tologies by inheriting from shared generic ontologies, butdoes
not automatically compare concepts (as proposed herein). The
OBSERVER [23] ontology-based system combines intensional
and extensional analysis to calculate lower and upper bounds
for the precision and recall of queries that are translated across
ontologies.

1Given two nodesn andm, we writef(n, m) to denotef({n}, {m})

WOA 2005 43

Weinstein et al. [30] propose differentiated ontologies as
support to communications in distributed systems subject to
semantic heterogeneity. Ontologies are described by using
Description Logic. Concepts are formally defined in relation
to other concepts, so that concepts in local ontologies inherit
definitional structure from concepts in shared ontologies.

Recently, Rodriguez in [27], has suggested that in the area
of information retrieval and data integration, the use of on-
tologies and semantic similarity functions have recently been
emphasized as a mechanism for comparing objects that can
be retrieved or integrated across heterogeneous repositories
[16]. The authors proposed a model for semantic similarity
among Entity Classes from different ontologies. Ontologies
are described as objects by using BNF. The similarity model
provides a systematic way to detect similar entity classes
across ontologies based on the matching process of each of
the specification components in the entity class representa-
tion (i.e., synonym sets, distinguishing features, and semantic
neighborhoods).

The approach presented in this paper measures the structural
similarity by only considering the relations among concepts.

VI. CONCLUSIONS ANDFUTURE WORK

The present work aims at integrating ontologies in mobile
agents. This approach allows the information retrieval and
data integration in a scenario where a pool of mobile agents
can migrate across different data repositories where updated
information can be instantaneously retrieved.

The integration ontologies and mobile agents allows to
discover new knowledge by combining information extracted
from different data repositories and to move computational
tools over data, by delegating a software entity. This approach
supports the decentralization of the execution of local activ-
ities, to avoid the warehousing of highly dynamic data, to
reduce network traffic and to free the users from network faults
and from the need to be continuously connected to a laptop.

Future work will be geared towards reducing complexity
through hypergraphs in place of graphs, generalizing the
similarity function to cyclic graphs, exploiting the similar
relation in the definition of similarity function and validating
the proposed approach on a real application.

Acknowledgements

This research was partially supported by the MIUR strategic
project Oncology over Internet and FIRB project LITBIO.

REFERENCES

[1] A.Gangemi, M. Pisanelli, and G. Steve. Some requirements and experi-
ences in integreting terminological ontologies in medicine.In Eleventh
Workshop on Knowledge Acquisition, Modelling and Management, 1998.

[2] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific
American, 284(5):34–43, May 2001.

[3] P. Bouquet, G. Kuper, M. Scoz, and S. Zonobini. Asking andanswering
semantic queries. InProceedings of Meaning Coordination and Nego-
tiation Workshop (MCNW-04) in conjuction with Iternational Semantic
Web Confererence (ISWC-04), 2004.

[4] M. Bright, A. Hurson, and S. Pakzad. Automated resolutionof semantic
heterogeneity.ACM Transaction on Distributed Systems, 19(2):212–253,
1997.

[5] F. Corradini, L. Mariani, and E. Merelli. An agent-basedapproach to
tool integration.Journal of Software Tools Technology Transfer, 6:231–
244, 2004.

[6] F. Corradini and E. Merelli. Hermes: agent-based middleware for mobile
computing. InTutorial Book of SFM-05. Springer-Verlag, 2005. LNCS
3465.

[7] R Culmone, Gloria Rossi, and Emanuela Merelli. An ontologysimilarity
algorithm for bioagent. InNETTAB Workshop on Agents in Bioinfor-
matics, July 12-14 2002.

[8] D. Fensel.Ontologies: a silver bullet for Knowledge Management and
Electronic Commerce. Springer, 2001.

[9] The Foundation for Intelligent Physical Agents. http://www.fipa.org/.
[10] Gustavo A. Gimnez-Lugo, Analia Amandi, Jaime Simo Sichman, and

Daniela Godoy. Enriching information agents’ knowledge by ontology
comparison: A case study. In M. Toro F.J. Garijo, J.C. Riquelme,
editor,Advances in Artificial Intelligence - IBERAMIA 2002: 8th Ibero-
American Conference on AI, Seville, Spain, November 12-15,2002.
Proceedings, volume 2527 ofLecture Notes in Artificial Intelligence,
pages 546–555. Springer-Verlag, 2003.

[11] Fausto Giunchiglia, Pavel Shvaiko, and Mikalai Yatskevich. S-match: an
algorithm and an implementation of semantic matching. In Y. Kalfoglou,
M. Schorlemmer, A. Sheth, S. Staab, and M. Uschold, editors,Semantic
Interoperability and Integration, number 04391 in Dagstuhl Semi-
nar Proceedings. Internationales Begegnungs- und Forschungszentrum
(IBFI), Schloss Dagstuhl, Germany, 2005.

[12] C. A. Goble, R. Stevens, G. Ng, S. Bechhofer, N. W. Paton,P. G. Baker,
M. Peim, and A. Brass. Transparent access to multiple bioinformatics
information sources.IBM Systems Journal, 40(2):532–551, 2001.

[13] T. R. Gruber. Toward principles for the design of ontologies used
for knowledge sharing. Technical Report 93-04, Knowledge Systems
Laboratory, Stanford University, 1993.

[14] N. Guarino. Formal ontology and information systems. InProceedings
of FOIS - Formal Ontology in Informatin Systems, 1998.

[15] N. Guarino and P. Giaretta. Ontologies and knowledge bases: Towards a
terminological clarification. In N.J.I. Mars, editor,Towards Very Large
Knowledge Bases. IOS Press, 1995.

[16] N. Guarino, C. Masolo, and G. Verete. Ontoseek: Content-based access
to the web.IEEE Tran. on Informtion Systems, 14(3):70–80, 1999.

[17] J. Hendler. Agents and the semantic Web.IEEE Intelligent Systems,
16(1):30–37, January/ February 2001.

[18] I. Horrocks, D. Fensel, J. Broekstra, S. Decker, M. Erdmann, C. Goble,
F. van Harmelen, M. Klein, S. Staab, R. Studer, and E. Motta. The
ontology inference layer OIL. Technical report, Free University of
Amsterdam, 2000.

[19] Nicholas R. Jennings. On agent-based software engineering. Artificial
Intelligence, 117:277–296, 2000.

[20] Yannis Kalfoglou, Marco Schorlemmer, Michael Uschold, Amit Sheth,
and Steffen Staab. 04391 – semantic interoperability and integration:
Executive summary. In Y. Kalfoglou, M. Schorlemmer, A. Sheth,
S. Staab, and M. Uschold, editors,Semantic Interoperability and Inte-
gration, number 04391 in Dagstuhl Seminar Proceedings. Internationales
Begegnungs- und Forschungszentrum (IBFI), Schloss Dagstuhl, Ger-
many, 2005.<http://drops.dagstuhl.de/opus/volltexte/2005/50> [date of
citation: 2005-01-01].

[21] Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. Generic
schema matching with cupid. InVLDB ’01: Proceedings of the 27th
International Conference on Very Large Data Bases, pages 49–58, San
Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[22] Alexander Maedche and Steffen Staab. Measuring similarity between
ontologies. InProceedings of the European Conference on Knowledge
Acquisition and Management (EKAW2002), pages 251–263, Madrid,
Spain, October 1-4 2002.

[23] E. Mena, A. Illarramendi, V. Kashyap, and A. Sheth. Observer: an
approach for query processing in global information system based on
interoperation across preexisting ontologies.Distributed and parallel
Databases, 8(2):223–271, 2000.

[24] P. Mitra, G. Wiederhold, and M. L. Kersten. A graph-oriented model
for articulation of ontology interdependencies. InExtending Database
Technology, pages 86–100, 2000.

[25] Prasenjit Mitra and Gio Wiederhold. An algebra for semantic interoper-
ability of information sources. In IEEE, editor,: 2nd IEEE International
Symposium on Bioinformatics and Bioengineering (BIBE’01), 2001.

[26] F. N. Noy and M. Klein. Ontology evolution: not the same asschema
evolution.Knoledge and Information Systems, (6):428–440, march 2004.

WOA 2005 44

[27] A. Rodriguez and M. Egenhofer. Determining semantic similarity among
entity classes from different ontologies.IEEE Tran. on Knowledge and
Data Eng., 16(2):442–456, 2003.

[28] J.F Sowa.Knowledge representation, logical, philosophical and Com-
putational Foundations. Brooks/Cole, 2000.

[29] R. Stevens. An ontology of molecular biology and the questions that can
be performed on the resources containing data about molecularbiology.
http://img.cs.man.ac.uk/stevens/tambis-oil.html.

[30] P. C. Weinstein and W. P. Birmingham. Comparing concepts indiffer-
entiated ontologies. InWorkshop on Knowledge Acquisition, Modeling
and Management (KAW), 1999.

[31] Michael Wooldridge and Nicholas R. Jennings. Agent theories, architec-
tures and languages: a survey. In Michael Wooldridge and Nicholas R.
Jennings, editors,Intelligent Agents, Lecture Notes in Computer Science,
pages 1–22. Springer-Verlag, Berlin, 1995.

APPENDIX I
FORMAL DEFINITION OF ALGEBRAIC OPERATORS

In this appendix we provide the formal definition of the
three operators performing the minimal set of operators that
a mobile agent can use across platforms for determining
ontology mapping. The three operators introduced in Section
III-A are: Projection, Similarity and Enriching.

1) Projectionπ: Theprojectionis a binary operator defined
over anontological graphand a concept.

π : O × N → O

Definition 1.1 (Projection):Given an ontological graph
O=(N , A, n) and a concept namem ∈ N the projection of
O on m is defined as:

π(O,m) = Ō

whereŌ = (N1, A1,m) is the subgraph of O such that:

1) N1 is the set of nodesnj ∈ N such that eithernj = m

or ∃ n0, n1, . . . , nj ∈ N , with j ≥ 1, such thatn0 = m

and (n0, n1), . . . , (nj−1, nj) ∈ A

2) A1 = {(n1, n2) ∈ A | n1, n2 ∈ N1}

Properties of the projection
• π(O, null) = (∅, ∅, null)
• π(O, n) = (∅, ∅, null) sen /∈ N
• π(∅, n) = (∅, ∅, null)

2) Similarity σ: The similarity is a function defined over
two ontological graphs. Given twoontological graphs O, O

′

and two noden, m, thesimilarity of O and O
′

over n andm

returns a real numberα ∈ [0, 1]; α, quantitatively estimates
the similarity degree of the two concepts.

Definition 1.2 (Similarity):Let O= (N,A, n) and O’=
(N′,A′, n′) be two ontological graphs. The similarity of O
and O’ is defined as:

σ(O, O′) = α

whereα ∈ [0, 1].
The similarity operator can be implemented with one of

the algorithms available in literature [7], [22], [27] or the one
introduced in Section IV, in that case the similarity will beas
follows

σ(O, O′) = f(n, n′)

Properties of the similarity
• σ(O, O) = 1
• σ(O, ∅) = σ(∅, O) = σ(∅, ∅) = 0
• σ(O, O′) = σ(O′, O)

Several similarity functions can be defined over two
ontologies, as long as, they return a real positive number that
ranges over by[0, 1]; 0 means no affinity and 1 overlapping
(equivalence) of the two ontological concepts.
As an example, the similarity function has been discussed in
details in Section IV.

3) Enrichmentǫ: Theenrichingis a binary operator defined
over ontological graphs. Given twoontological graphs O, O

′

theenrichingof O with O
′

returns O enriched by adding a new
arc from the root of O to the root of O

′

labelled bysimilar.
Definition 1.3 (Enrichment):Let O=(N ,A, n), O′ =(N ′,A′,

n′) be twoontological graphs. The enrichment of O over O
′

is defined as:

ǫ(O, O′) = Ō

whereŌ=({N∪ N′}, {A∪ A′ ∪ {(n, n′)}, n}) and δ(n, n′) =
similar.

WOA 2005 45

Abstract—L’articolo presenta la soluzione alle problematiche

legate alla mobilità degli agenti adottata nella piattaforma
AgentService. L’infrastruttura per il trasferimento degli agenti
sfrutta il modello di agente della piattaforma che prevede la
separazione tra lo stato e le attività dell’agente.
L’implementazione dell’infrastruttura per la mobilità si
avvantaggia della struttura modulare della piattaforma e si
integra in modo del tutto trasparente per gli agenti e gli altri
componenti. AgentService offre un servizio di mobilità debole,
nonostante ciò garantisce il mantenimento dello stato degli agenti
tramite il trasferimento delle strutture dati, della coda dei
messaggi, delle conversazioni e dello stato dei comportamenti. Il
servizio di mobilità degli agenti è inoltre sfruttato per
l’applicazione di politiche di bilanciamento di carico tra
piattaforme federate

Index Terms—Agent Mobility, Load Balancing Policy, Agent
Framework

I. INTRODUZIONE
E metodologie, le architetture e le tecnologie che

vengono utilizzate per lo sviluppo di applicazioni
distribuite manifestano i propri limiti quando sono applicate a
sistemi distribuiti di notevoli dimensioni, potenzialmente
illimitati, come si verifica per applicazioni Internet. In
particolare ciò è ancor più evidente quando si ha a che fare
con sistemi che debbano offrire un elevato grado di
configurabilità, alta scalabilità e facilità di personalizzazione.
Un metodo efficiente per la soluzione di problemi di questo
tipo ci viene offerto dalle tecnologie basate sulla mobilità del
codice, in altre parole la possibilità di spostare codice
attraverso i nodi di una rete [1].

La mobilità del codice non è un concetto nuovo, gli Applet
Java ne sono un lampante esempio, ma il lavoro di ricerca in
questo campo è sempre attivo, sia per quanto riguarda le
disquisizioni concettuali sia per ciò che riguarda gli aspetti
puramente tecnologici, si veda ad esempio [2], [3].

Un ambito a cui i concetti di mobilità ben si adattano è
quello degli agenti software. Gli agenti ci forniscono, in
effetti, un’astrazione tale da rendere semplice l’applicazione
del concetto di mobilità. Le caratteristiche intrinseche degli

Manuscript received October 4, 2005.
A. Grosso, A. Boccalatte, and C. Vecchiola are with Department of

Communication, Computer and Systems Sciences, University of Genova,
16145 Genova Italy (phone: +39-010-353-2812; e-mail: {agrosso, nino,
christian}@ dist.unige.it).

agenti quali l’autonomia, l’inserimento in un ambiente, la pro-
attività e la cooperazione, consentono di introdurre con
naturalezza il concetto di agente mobile.

L’idea di agente mobile, vale a dire la possibilità di
trasferirne il codice e lo stato tra nodi di una rete, porta a
diverse considerazioni: la prima è che deve esistere una
struttura che consenta all’agente di spostarsi; la seconda è che
l’agente dovrebbe avere una certa intelligenza, tale da
renderlo particolarmente autonomo nel decidere sugli
spostamenti. Una volta realizzata un’infrastruttura adatta e una
volta che all’agente saranno forniti tutti gli strumenti perché se
ne avvalga, si potranno ottenere svariati vantaggi. Grazie agli
agenti mobili, gli amministratori delle piattaforme possono
disporre di uno strumento più efficiente per il bilanciamento
delle risorse. Dall’altro lato la mobilità sembra rafforzare
l’autonomia dell’agente stesso, che ad esempio potrebbe
decidere su quale computer migrare in base alla disponibilità
delle risorse.

In questo articolo viene presentata l’infrastruttura di
supporto alla mobilità per la piattaforma AgentService. La
soluzione proposta è risultata particolarmente efficace grazie
al modello di agente adottato dalla piattaforma; tale modello
consente di gestire con facilità lo stato degli agenti e quindi di
mantenerlo persistente e/o trasferirlo altrove. Inoltre lo
sviluppo degli strumenti per la mobilità risulta facilitato
dall’architettura modulare di AgentService, la quale permette
di arricchire i servizi offerti agli agenti attraverso la
realizzazione di moduli aggiuntivi; il tutto può avvenire in
maniera trasparente e senza la necessità di sostanziali
modifiche all’infrastruttura software. Infine la tecnologia
offerta dalla Common Language Infrastructure (CLI) [4, 5], su
cui AgentService si basa, fornisce gli strumenti necessari ad
un’implementazione efficiente del servizio grazie ad alcune
particolarità quali la serializzazione, la presenza di primitive
di comunicazione remota, l’utilizzo di domini applicativi e la
gestione delle unità di distribuzione del codice (Assembly).

Nelle sezioni successive descriveremo le caratteristiche
principali della piattaforma AgentService e dei componenti
che influiscono maggiormente sullo sviluppo di
un’infrastruttura per la mobilità, quali il modello di agente ed
alcuni dei moduli che implementano le funzionalità di base
(Sezione II). Dopo una breve introduzione sui problemi
relativi alle problematiche associate agli agenti mobili
(Sezione III), descriveremo in dettaglio le caratteristiche
architetturali dell’infrastruttura per la mobilità e la sua

Un’Infrastruttura per la Mobilità in
AgentService

A. Grosso, A. Boccalatte, C. Vecchiola

L

WOA 2005 46

interazione con gli altri componenti della piattaforma
AgentService (Sezione IV). Valuteremo perciò gli aspetti
riguardanti le possibili applicazioni dell’infrastruttura quali
l’attuazione di politiche di bilanciamento di carico tra più
piattaforme (Sezione V). Alcune osservazioni finali sulle
caratteristiche dell’architettura, i suoi punti di forza ed i suoi
punti deboli, seguiranno nelle conclusioni.

II. ARCHITETTURA DI AGENTSERVICE

A. Caratteristiche Principali
AgentService [6] è un framework per lo sviluppo di

applicazioni orientate agli agenti basato sulla Common
Language Infrastructure, di cui un’implementazione è il .NET
framework. AgentService offre un particolare modello di
agente ed un ambiente di run-time per l’esecuzione degli
agenti conforme alle specifiche FIPA [7]. In letteratura sono
presenti numerosi lavori riguardanti piattaforme ad agenti, tra
i più diffusi si veda Zeus [8], FIPA-OS [9] e JADE [10].
L’architettura della piattaforma è estremamente modulare: sia
le funzionalità di base sia quelle aggiuntive sono
implementate utilizzando l’astrazione del modulo. Questa
soluzione architetturale rende la piattaforma ad agenti un
ambiente di run-time molto flessibile e facilmente
personalizzabile a particolari esigenze, nonché facilmente
estendile nelle sue funzionalità. I moduli si dividono in due
classi: i moduli fondamentali e quelli addizionali. I moduli
fondamentali implementano quei servizi necessari alla
piattaforma per attivarsi; questi comprendono la gestione degli
assembly in cui sono contenuti i tipi degli agenti (Storage), la
gestione della messaggistica, la gestione della persistenza e le
funzionalità di logging. Con i moduli addizionali vengono
implementate tutte quelle funzionalità che arricchiscono di
servizi la piattaforma, ma la cui assenza non è vincolante per
l’attivazione della piattaforma stessa.

Allo scopo di rendere più fruibile la trattazione
dell’implementazione della mobilità in AgentService
descriveremo brevemente alcuni elementi fondamentali
dell’architettura di AgentService: il modello di agente adottato
ed i moduli per la gestione dello storage e del servizio di
messaggistica.

B. Il Modello di Agente
AgentService modella un agente come un’entità software la

cui base di conoscenza è definita da un insieme di dati
chiamati Knowledge e le cui attività sono descritte da task
concorrenti che prendono il nome di Behavior. L’insieme
delle knowledge utilizzate da un agente ne definisce lo stato,
mentre il suo comportamento è descritto dall’insieme dei
behavior che sono in esecuzione. Una knowledge è di fatto
simile ad un record del linguaggio Pascal od ad una struct del
linguaggio C, sebbene possa essere caratterizzata anche da
metodi è principalmente pensata per esporre delle proprietà
(queste possono fare riferimento ai tipi base della CLI od a
classi anche definibili dal programmatore). I behavior sono a

tutti gli effetti delle classi generiche definibili dall’utente e
presentano un metodo particolare che costituisce l’entry point
della loro esecuzione. I behavior di un agente possono
condividere le knowledge che ne definiscono lo stato e
l’ambiente di run-time garantisce l’accesso esclusivo alle
knowledge, in modo relativamente trasparente.

Dal punto di vista implementativo ad ogni istanza di agente
viene associato un differente Application Domain che
garantisce l’esecuzione in maniera autonoma del codice in
esso contenuto. L’Application Domain è una struttura nuova
introdotta con la CLI ed è assimilabile ad un “processo
leggero” in quanto ha un proprio spazio di memoria, è
possibile creare in esso più thread di esecuzione ed associarvi
differenti permessi di esecuzione, ma il suo setup è più
leggero di quello di un processo. L’esecuzione di un agente
all’interno di un Application Domain ne garantisce
l’autonomia e l’isolamento dagli altri agenti: l’unico modo per
mantenere dei riferimenti ad oggetti in Application Domain
differenti è l’impiego di tecniche di comunicazione esplicite
quali il Remoting.

C. Gestione dello Storage
Lo Storage della piattaforma costituisce un repository

virtuale di tutte le classi necessarie al ciclo di vita degli agenti
che vengono creati ed ospitati all’interno della piattaforma. In
particolare nello Storage sono memorizzate le classi che
definiscono i tipi di agente, le knowledge ed i behavior usati
da tali agenti nonché i tipi logicamente dipendenti se non già
compresi nella class library della CLI. I tipi eseguibili ed
istanziabili dalla CLI sono fisicamente memorizzati in un file
od in un insieme di file logicamente collegati che prende il
nome di assembly. In ultima analisi lo Storage si occupa della
gestione degli assembly che contengono i tipi di agenti e tutto
ciò che serve per crearne delle istanze. La CLI per identificare
in modo univoco gli assembly utilizza una tecnica di
crittografia asimmetrica basato su chiave pubblica e privata
normalmente opzionale ma richiesto da AgentService.

Il modulo dello Storage viene interrogato ogni volta che la
piattaforma deve creare l’istanza di un particolare tipo di
agente e restituisce tutti gli assembly necessari a creare
l’istanza. Per poter caricare nello Storage un assembly occorre
firmarlo, l’apposizione della firma ad un assembly permette di
identificarlo in maniera univoca indipendentemente dal nome
dei file fisici che lo costituiscono. Questo è un elemento che
diventerà di fondamentale importanza quando verrà illustrata
l’infrastruttura che permette la mobilità.

D. Gestione del Servizio di Messaggistica
Il servizio di messaggistica è gestito da un opportuno

modulo che rende di fatto possibile la comunicazione tra
agenti attraverso scambio di messaggi (Messaging). Il modulo
di messaggistica mantiene una coda di messaggi per ogni
agente che è ospitato nella piattaforma in cui è installato il
modulo. All’atto della creazione di un agente il modulo
fornisce un opportuno client per il servizio di messaggistica.
Le specifiche di AgentService per l’implementazione del

WOA 2005 47

modulo di messaggistica prevedono che sia garantito il
semplice servizio di scambio messaggi, ma è prevista come
funzionalità addizionale la possibilità da parte degli agenti di
usufruire delle conversazioni che forniscono un servizio di
comunicazione connesso tra due agenti. Il modulo fornito con
l’installazione di default della piattaforma offre nativamente
questo servizio. I messaggi che possono essere scambiati tra
due agenti oltre ad aderire alle specifiche fornite da FIPA in
tale ambito devono contenere oggetti serializzabili, requisito
fondamentale dal momento che due agenti risiedono in
Application Domain diversi.

III. NOZIONI DI MOBILITÀ
La mobilità è sicuramente una proprietà importante per gli

agenti così come per gli oggetti; ciò è dovuto al fatto che la
mobilità del software è in grado di portare al sistema maggiore
robustezza, prestazioni, scalabilità ed espressività [11]. Gli
agenti mobili sono quindi divenuti un paradigma per
strutturare applicazioni distribuite.

In letteratura è possibile trovare una definizione che
caratterizza in maniera sufficientemente esaustiva l’essenza di
un agente mobile [12, 13]: un’agente mobile è un’entità
software che esiste in un dato ambiente e possiede parte delle
caratteristiche dell’agente. Un agente mobile deve contenere
tutti i seguenti modelli: un modello di agente, un ciclo di vita,
un modello computazionale, un modello di sicurezza, un
modello di comunicazione ed infine un modello di
navigazione.

In particolare per quanto riguarda il modello di
navigazione, FIPA ha definito un adeguato ciclo di vita
dell’agente. Tale specifica estende il consueto ciclo di vita
prevedendo in più lo stato transit e due azioni aggiuntive che
consentono rispettivamente di entrare e di lasciare tale stato
(move ed execute). Questo consente di rappresentare ogni
stato assumibile dall’agente nel contesto dell’AMS (Agent
Management System) [7]. L’agente stesso è in grado di
richiedere l’azione move, mentre è la piattaforma, attraverso
l’AMS, ad essere responsabile di completare la migrazione
eseguendo l’operazione di execute.

Gli agenti mobili richiedono naturalmente un opportuno
ambiente di run-time in grado di fornire un servizio di
trasferimento per essere spostati da un nodo ad un altro:
l’ambiente è costruito sopra ad un sistema host. Il compito
primario è fornire un ambiente in cui gli agenti mobili possano
operare. Essi devono poter comunicare tra loro sia localmente
sia in remoto in modo trasparente.

In letteratura c’è una distinzione tra due differenti tipi di
mobilità basata sul fatto che lo stato dell’esecuzione sia o no
trasferito assieme all’unità di computazione [14]. I sistemi in
grado di fornire il trasferimento dello stato dell’esecuzione si
dice supportino la mobilità forte (strong mobility), al contrario
i sistemi che perdono lo stato dell’esecuzione durante il
trasferimento si dice forniscano una mobilità debole (weak
mobility). Nei sistemi in cui la mobilità è forte, la migrazione

risulta completamente trasparente al programma trasferito,
mentre con la weak mobility è richiesta un ulteriore sforzo di
programmazione per salvare manualmente parte dello stato
dell’esecuzione.

Ad esempio un semplice agente scritto come un Applet Java
fornisce mobilità del codice attraverso lo spostamento dei file
delle classi da un server web ad un browser, ma naturalmente
non vi sono informazioni associate allo stato. Al contrario in
Aglets [15], piattaforma basata su Java e sviluppata da IBM,
vengono trasferiti anche I valori delle variabili istanziate,
senza però tenere conto dello stack e del program counter.
Infine un esempio di mobilità forte ci viene fornito da Sumatra
[16], sviluppato presso l’Università del Maryland, che
consente il trasferimento del contesto di run-time dei thread di
Java assieme al codice durante la migrazione.

IV. MOBILITÀ IN AGENTSERVICE

A. Introduzione
Il modello di agente su cui AgentService si basa, sembra

possedere tutte le caratteristiche richieste dalla definizione di
agente mobile, a partire dalla gestione del ciclo di vita che è
quella definita da FIPA.

AgentService implementa un modello di mobilità debole,
ma fornisce alcuni servizi aggiuntivi che possono consentire la
sua attuazione in maniera trasparente ai programmatori. L’idea
base è quella di sfruttare il modello di agente adottato da
AgentService trasferendo dell’agente solamente lo stato, vale
a dire le strutture dati contenenti le knowledge e lo stato dei
behavior. All’interno della piattaforma di destinazione le
attività dell’agente possono essere riavviate in conformità a
ciò che è indicato nello stato persistito dell’agente. Inoltre, il
framework fornisce agli sviluppatori un punto d’accesso per
controllare lo stato e le attività dell’agente prima che riprenda
la sua esecuzione. I dettagli di questo processo sono analizzati
nella sezione seguente.

B. Implementazione
Grazie al sottostante modello di agente, la mobilità in

AgentService può essere ottenuta con relativa facilità: la
separazione tra lo stato dell’agente e le sue attività consente
una semplice implementazione del processo di migrazione.
Per poter schedulare le attività di un agente, l’ambiente di run-
time di AgentService necessita dei dati che definiscono lo
stato dell’agente e degli assembly contenenti la definizione del
tipo di agente. Quindi, spostare un agente tra due installazioni
di AgentService implica, innanzi tutto, la presenza sulla
piattaforma di destinazione del dato tipo di agente
(AgentTemplate) all’interno dello Storage e richiede il
trasferimento dello stato dell’agente.

Una volta che l’agente è stato spostato è possibile riavviare
le sue attività istanziando un nuovo agente del tipo specifico e
ripristinandone lo stato in maniera simile a ciò che avviene per
un qualsiasi agente di AgentService dopo un crash o un
riavvio del sistema. Il ripristino dello stato implica quindi il

WOA 2005 48

caricamento degli oggetti knowledge trasferiti, la ricostruzione
delle conversazioni in corso e dei messaggi presenti nella coda
e l’attivazione di tutti i behavior in esecuzione quando
l’agente è stato fermato. Le informazioni sugli oggetti
knowledge e lo stato di ciascun behavior (ready, active,
suspended) sono tutto ciò che veramente occorre per trasferire
un agente. Discorso a parte merita la gestione delle
comunicazioni e della reperibilità dell’agente mobile che è
trattata nel paragrafo successivo.

Il servizio di mobilità è implementato all’interno di un
modulo addizionale della piattaforma che si occupa di seguire
la migrazione dello stato dell’agente e, quando necessario, del
trasferimento dei relativi assembly. Quando un agente richiede
un’azione move, gli agenti AMS delle piattaforme coinvolte
contrattano la possibilità di uno spostamento e
successivamente delegano al modulo di mobilità il
trasferimento.

La fase di contrattazione può essere controllata
dall’amministratore della piattaforma in due differenti modi,
entrambi portano ad influenzare il comportamento dell’AMS.
Il primo, quello più semplice, consiste nella modifica, al
momento dell’installazione di AgentService, del file di
configurazione della piattaforma; attraverso questo è possibile
indicare se consentire o no l’hosting di agenti provenienti da
altre piattaforme e in maniera duale se permettere l’invio di
agenti verso altre piattaforme. Di default sono entrambi
negati. Come si vede questo meccanismo di controllo è molto
semplice, ma estremamente limitativo, è quindi necessario un
approccio che fornisca maggiore flessibilità e potere
decisionale.

Il secondo modo attraverso il quale è possibile controllare,
da parte dell’amministratore, la mobilità degli agenti consiste
nell’implementazione di due metodi specifici. Tali metodi
vengono invocati dall’AMS nel momento in cui si verifica la
necessità di prendere decisioni sul trasferimento di un agente.
L’implementazione di default delle procedure si basa appunto
sulle informazioni contenute nel file di configurazione della
piattaforma, è, infatti, attraverso l’implementazione di default
che viene applicato il controllo descritto nel paragrafo
precedente. Ridefinendo invece tali metodi, è possibile
modificare da codice il comportamento dell’AMS riguardo
alla gestione della mobilità degli agenti nel contesto della data
piattaforma di appartenenza. Tale meccanismo consente di
personalizzare al meglio le decisioni, ma richiede, rispetto al
primo, un maggior sforzo per l’amministratore.

Discorso differente merita l’applicazione di politiche di load
balancing che sono analizzate nella sezione successiva.

Il processo di trasferimento di un agente può quindi essere
attivato direttamente dall’agente stesso, attraverso l’invio di
una richiesta all’AMS, o in alternativa utilizzando l’interfaccia
di programmazione della piattaforma (IPlatformController):
gli amministratori della piattaforma possono decidere di
spostare agenti tra differenti installazioni di AgentService.
Attraverso l’IPlatformController anche altre applicazioni
software sono in grado di controllare la mobilità degli agenti
ed applicare ad esempio algoritmi di distribuzione del carico.

C. Comunicazione e Reperibilità degli Agenti Mobili
Nel processo di trasferimento di un agente è importante

considerare come le comunicazioni, intrattenute dall’agente
mobile, possano proseguire in maniera trasparente al
programmatore anche una volta avvenuto il trasferimento. I
problemi di comunicazione e reperibilità sono legati al fatto
che gli agenti che hanno comunicazioni in corso con l’agente
mobile probabilmente saranno in possesso, relativamente ad
esso, di un agent identifier (AID) non aggiornato.

In AgentService la comunicazione tra agenti può avvenire in
due differenti modi: attraverso l’invio o la ricezione di
messaggi semplici (one-shot) oppure tramite lo scambio di
messaggi nel contesto di una conversazione. Per garantire la
trasparenza, dal punto di vista dei programmatori, nelle
comunicazioni con agenti mobili si sono definite delle
specifiche aggiuntive per il modulo di messaggistica della
piattaforma. L’implementazione del modulo di AgentService
che decide di seguire tali specifiche deve garantire la corretta
gestione delle conversazioni anche in presenza di agenti
mobili. Tale problematica è risolta attraverso l’aggiornamento
delle strutture dati che sono alla base delle conversazioni ogni
qual volta che un agente coinvolto in una conversazione viene
trasferito. Così facendo entrambi gli agenti sono in grado di
continuare a scambiarsi messaggi nel contesto di una
conversazione in modo indipendente rispetto alla mobilità.

Per quello che concerne invece la comunicazione basata
sullo scambio di messaggi semplici, la reperibilità è garantita
attraverso l’utilizzo dei cosiddetti resolvers presenti negli AID
degli agenti. All’interno dell’AID di ciascun agente mobile
dovranno essere indicati anche gli AID degli AMS delle
piattaforme federate, vedi Sezione V, in modo che possano
essere contattati per avere il nuovo indirizzo dell’agente
trasferito.

D. Le Fasi del Processo di Mobilità
Le fasi del processo di trasferimento possono essere

riassunte come segue:
- contrattazione con la piattaforma di destinazione per la

mobilità dell’agente prendendo informazioni sullo Storage di
destinazione (la contrattazione avviene tra gli agenti AMS
delle rispettive piattaforme);

- blocco delle attività dell’agente, persistenza del suo stato
e passaggio allo stato transit attraverso l’azione move (di
queste operazione si fa carico l’AMS della piattaforma di
partenza);

- se necessario, trasferimento degli assembly richiesti dal
dato Agent Template, tramite servizio ftp implementato nel
modulo di mobilità;

- trasferimento dello stato persistito (lo stato dell’agente
contenente tutti gli elementi della knowledge, i messaggi, le
conversazioni, l’AID e lo stato di ciascun behavior), tramite
servizio ftp implementato nel modulo di mobilità;

- creazione di un’istanza dell’agente sulla piattaforma di
destinazione, ripristino della knowledge, creazione degli
oggetti behavior posti nello stato in cui erano prima della
migrazione (di questa operazione si fa carico l’AMS della

WOA 2005 49

piattaforma di destinazione);
- invocazione del metodo Resume(...) per consentire al

programmatore di personalizzare la riattivazione dell’agente
(Resume è un metodo dell’Agent Template implementato dal
programmatore dell’agente che in questa fase viene invocato
dall’AMS);

- rilascio dell’agente e passaggio allo stato active
attraverso l’azione execute (l’AMS attiva l’agente e lo
scheduler della piattaforma manda in esecuzione i suoi
behaviour).

E. Aspetti di Sicurezza
Nelle precedenti sezioni abbiamo discusso dei requisiti

strutturali necessari ad implementare un’architettura per la
mobilità in AgentService. La sicurezza è un ulteriore requisito
che si aggiunge a tale architettura al fine di garantire che gli
agenti mobili portino avanti le loro attività senza costituire un
pericolo per l’ambiente che li ospita. In particolare ciò che si
vuole evitare è l’esecuzione arbitraria di codice trasferito
attraverso l’infrastruttura che permette la mobilità.

Un primo livello di sicurezza è fornito dallo Storage che
permette l’esecuzione di solo codice verificato: gli assembly
caricati nello Storage e quindi anche quelli trasferiti per
attuare la mobilità devono essere firmati. La firma di un
assembly ci fornisce una prima garanzia sul codice in esso
contenuto, in quanto ci permette di riconoscere qualcosa
identificato in precedenza. Tale livello di sicurezza può anche
non bastare e per tal motivo l’architettura di AgentService
permette di personalizzare attraverso la gestione utenti
l’insieme dei permessi che sono associati ad un agente,
fornendo ad essi solo quei permessi che l’amministratore della
piattaforma ritiene necessario conferirgli. La gestione dei
profili utente all’interno di AgentService è implementata in un
opportuno modulo la cui installazione non è obbligatoria. Le
funzionalità avanzate di gestione della sicurezza sono perciò
possibili solo in presenza di questo modulo. Questa è una
scelta che garantisce la massima flessibilità anche in tale
ambito: in contesti in cui non è richiesta una particolare
attenzione agli aspetti di sicurezza, l’amministratore della
piattaforma può decidere se accettare la mobilità oppure no.
Nel caso in cui si voglia abilitare la mobilità, gli agenti ospitati
e trasferiti nella piattaforma verranno eseguiti con l’utente
predefinito, che disporrà di un set di permessi associati al
corrispondente utente del sistema operativo su cui è installata
la piattaforma. In presenza del modulo di gestione utenti,
l’amministratore potrà decidere se conferire agli agenti
trasferiti un predefinito profilo di sicurezza oppure se
richiedere che questi siano associati ad un particolare profilo
utente presente nel proprio insieme di utenti.

Osserviamo che la gestione della sicurezza attraverso i
profili utente è qualcosa che si sovrappone in modo del tutto
trasparente al normale ciclo di vita della piattaforma ad agenti:
il modello di agente adottato basato sugli Application Domain
permette, infatti, di conferire in maniera molto semplice un
particolare profilo utente con cui eseguire il codice in esso
contenuto. In mancanza di un’esplicita specifica del profilo

utente questo viene ereditato dall’Application Domain che lo
ha creato.

V. POLITICHE DI BILANCIAMENTO DI CARICO

A. Introduzione
La mobilità degli agenti può essere vantaggiosamente

sfruttata per risolvere il problema della distribuzione del
carico in un a rete di entità computazionali: i sistemi multi-
agente sono in grado di decentralizzare la distribuzione del
carico computazionale. Infatti, un’applicazione complessa può
essere suddivisa in parti autonome, ognuna delle quali
delegata ad un agente mobile. Ogni agente mobile ha il
compito di cercare il nodo/piattaforma nella rete a lui più
conveniente. Durante l’esecuzione, gli agenti possono
spostarsi verso altri nodi dove vi sono risorse computazionali
disponibili per poter quindi meglio distribuire il carico.

In alternativa la gestione della distribuzione del carico può
essere centralizzata per consentire l’applicazione di
politiche/algoritmi che siano in grado di forzare, quando
possibile, lo spostamento degli agenti. La scelta di
centralizzare le politiche di bilanciamento è volta ad
ottimizzare la distribuzione di carico dell’intero sistema
piuttosto che ad avvantaggiare il singolo agente.

B. Load Balancing Policy Module
Il bilanciamento del carico in AgentService è gestito dal

relativo modulo Load Balancing Policy Module (LBPM). Il
modulo fornisce un servizio di federazione di piattaforme per
creare un ambiente unico in cui gli agenti sono in grado di
muoversi. Per il trasferimento degli agenti, il LBPM sfrutta
naturalmente il servizio di mobilità offerto dal relativo
modulo. Per implementare correttamente il bilanciamento di
carico il modulo ha la necessità di accedere alle informazioni
che definiscono il profilo della piattaforma. In particolare
deve essere in grado di monitorare il numero degli agenti in
esecuzione ed ottenere informazioni pertinenti alle risorse
fisiche dell’host. Inoltre, potranno rivelarsi fondamentali al
modulo LBPM, ed in particolare alle politiche da esso
applicate, le informazioni relative al comportamento a run-
time del sistema multi-agente, come ad esempio il numero di
messaggi scambiati. La piattaforma è in grado di garantire ad
ogni modulo un contesto all’interno del quale è possibile sia
reperire informazioni riguardanti il suo profilo, sia registrarsi
agli eventi che scandiscono il ciclo di vita del sistema, ad
esempio l’attivazione di un agente.

Viste le considerazioni di cui sopra, il modulo LBPM è
quindi posto nella condizione di operare sulla mobilità
sfruttando tutte le informazioni messe a disposizione dalla
piattaforma. Inoltre, collaborando con i moduli LBPM
presenti su altre installazioni di AgentService, è in grado di
creare un quadro completo della situazione a run-time delle
piattaforme coinvolte nel processo di bilanciamento. Queste
piattaforme costituiscono, di fatto, una federazione che
determina i confini all’interno dei quali sono applicate le
politiche di bilanciamento.

WOA 2005 50

Di default, il LBPM fornisce due semplici politiche di
bilanciamento orientate alla distribuzione del carico: una
politica bilancia il numero di agenti tra le piattaforme, mentre
l’altra ha l’obiettivo di spostare nella stessa installazione di
AgentService gli agenti che interagiscono più frequentemente.
In aggiunta il modulo è progettato per poter applicare nuove
politiche di bilanciamento definite dall’utente, caricabile
all’interno del modulo attraverso un’architettura a plug-in.

C. Processo di federazione delle piattaforme e
applicazione delle politiche di bilanciamento
L’applicazione di politiche di balancing richiede, come

detto, la formazione di federazioni di piattaforme
AgentService. Occorre in pratica che le piattaforme coinvolte
siano in grado di conoscere i profili delle piattaforme federate
e vi sia un meccanismo centralizzato per lo spostamento degli
agenti in funzione della data politica che si vuole applicare. Il
sistema di federazione utilizza un modello client/server.

In fase di installazione l’amministratore di sistema deve
indicare, attraverso uno specifico file di configurazione del
modulo LBPM, la piattaforma AgentService che svolgerà le
funzioni di server. A questo punto le altre eventuali
installazioni di AgentService possono essere configurate come
nodi secondari e fare riferimento alla piattaforma server come
nodo primario, comunicando ad essa l’adesione alla
federazione, tali comunicazioni avvengo attraverso il servizio
di messaggistica normalmente utilizzato dagli agenti. Una
volta creata una federazione è possibile per il modulo LBPM
del nodo primario (server) richiedere agli altri moduli le
informazioni sullo stato delle rispettive piattaforme. Avendo a
disposizione i profili delle piattaforme, il LBPM (server) è in
grado di applicare correttamente l’algoritmo di balancing
prescelto. Tale politica applicata, sulla base dei profili e
d’altre eventuali informazioni, determina una differente
distribuzione degli agenti tra le piattaforme.

La realizzazione della distribuzione degli agenti è controllata
dal modulo ed avviene ciclicamente attraverso le seguenti fasi:

- LBPM server interroga la politica richiedendo il
successivo agente da spostare (invoca il metodo
GetNextAgentToMove(...) sull’interfaccia ILBP);

- la politica, in base all’algoritmo di bilanciamento,
fornisce l’AID dell’agente da trasferire e l’identificativo
(PlatformDescription) della piattaforma di destinazione;

- LBPM server comunica al LBPM della piattaforma che
ospita l’agente di operare il trasferimento richiesto (la
comunicazione, come già detto, avviene attraverso il modulo
di messaggistica standard di AgentService);

- LBPM client chiede quindi al locale modulo responsabile
del servizio di mobilità l’esecuzione fisica del trasferimento
(la comunicazione tra moduli è gestita dalla coda di comandi
della piattaforma);

- a trasferimento avvenuto il modulo client notifica al
LBPM server il successo dell’operazione;

- LBPM server aggiorna il profile delle piattaforme
coinvolte ed esegue un nuovo ciclo.

Si noti che il modulo LBPM prevarica il controllo dell’AMS

sul ciclo di vita degli agenti. Il modulo, infatti, opera sulla
mobilità degli agenti senza effettuare alcuna richiesta
all’AMS, elude la fase di contrattazione tra gli AMS. Sebbene
questo violi in parte i principi della teoria degli agenti e le
direttive FIPA a riguardo, sembra accettabile che per esigenze
non strettamente legate alla comunità di agenti ma, ad
esempio, alle disponibilità delle risorse hardware, si possa
operare sulle infrastrutture degli agenti stessi in maniera quasi
trasparente all’AMS. In alternativa il coinvolgimento
dell’AMS di ciascuna piattaforma per contrattare il
trasferimento degli agenti appesantirebbe eccessivamente il
protocollo di distribuzione degli stessi e rallenterebbe le
normali attività degli AMS coinvolti.

Per un corretto funzionamento della politica di
bilanciamento è opportuno che la configurazione delle
piattaforme federate sia tale da non permettere ai singoli
agenti di spostarsi autonomamente. Tale vincolo evita
eventuali conflitti ed è facilmente imponibile attraverso il file
di configurazione dell’installazione di AgentService.

D. Definizione di nuove politiche di bilanciamento del
carico
AgentService permette al programmatore di definire nuove

politiche di balancing per la distribuzione degli agenti sulle
piattaforme. La definizione di una nuova politica risulta
un’operazione relativamente semplice: allo sviluppatore non
viene richiesto di modificare il modulo, ma solamente di
implementare una specifica interfaccia (ILBP) che deve
caratterizzare ogni politica di bilanciamento. Tale interfaccia
espone i metodi che le consentono di fornire al modulo i
trasferimenti da effettuare, di ricevere dallo stesso le
informazioni sui profili delle piattaforme federate e di essere
notificata degli eventi originatisi nella piattaforma host. Di
seguito viene presentata la struttura dell’interfaccia:

interface ILBP
{
PolicyDescription GetDescription();
void ConsumeEvent(PlatformEvent evt);
void GetNextAgentToMove(
 out AID aid,
 out PlatformDescription dest);
void AddProfile(PlatformProfile p);
void UpdateProfile(PlatformProfile p);
void RemoveProfile(PlatformProfile p);
}

Di particolare interesse è il metodo

GetNextAgentToMove(...) nel quale viene implementato
l’algoritmo di bilanciamento. Eventuali informazioni sui
comportamenti a run-time del sistema, l’invio di un messaggio
o la creazione di un agente, sono fornite dal modulo di
bilanciamento (LBPM) attraverso il metodo
ConsumeEvent(...).

La classe che implementa tale interfaccia dovrà essere
inserita in un assembly della CLI e quindi aggiunta alle
politiche della piattaforma attraverso il relativo file di

WOA 2005 51

configurazione in fase d’installazione della stessa.
Una volta resa disponibile la nuova politica, il relativo

algoritmo di balancing potrà essere applicato
dall’amministratore della piattaforma della federazione
attraverso le procedure già descritte: file d’installazione o
interfaccia di programmazione della piattaforma del nodo
primario.

E. Test Case
L’infrastruttura per la gestione della mobilità è stata testata

con buoni risultati su una federazione di 10 piattaforme
AgentService.

Sono stati creati in maniera casuale sulle piattaforme della
federazione 100 agenti, la cui attività principale è data dal
semplice scambio di messaggi con i peer della comunità. Al
nodo primario è stata applicata la politica basata sulla
limitazione del numero di messaggi interpiattaforma
scambiati. Una volta definita la nuova distribuzione ed
effettuati i trasferimenti applicati dalla politica di
bilanciamento, il numero di messaggi interpiattaforma è
diminuito sensibilmente, ed è andato stabilizzandosi anche in
funzione di quegli agenti che modificavano il destinatario dei
loro messaggi, vedi Tabella I.

L’esito positivo del test relativamente alla politica applicata
è naturalmente dipeso dal tipo di attività svolta dagli agenti
coinvolti, ma quello che si è voluto attestare è la bontà
dell’infrastruttura di mobilità e dei meccanismi di
applicazione delle politiche di balancing, non tanto l’efficacia
degli algoritmi di balancing stessi. Questi ultimi dovranno
essere, in effetti, valutati ed eventualmente ridefiniti in
funzione del contesto applicativo della comunità di agenti su
cui andranno ad operare.

VI. CONCLUSIONI
L’architettura modulare di AgentService consente la

progettazione e l’implementazione di molte funzioni
aggiuntive ai normali servizi della piattaforma e l’integrazione
con essi. È possibile per tal motivo arricchire la piattaforma
con un’infrastruttura che garantisce la mobilita degli agenti
implementando tale funzionalità in un modulo. Il modulo della
mobilità implementa un servizio di mobilità debole con
persistenza dello stato che avviene in maniera del tutto
trasparente al programmatore dell’agente. La realizzazione di
un’infrastruttura ad agenti mobili più robusta e sicura richiede
invece la collaborazione di tale modulo con altri componenti
della piattaforma che devono soddisfare alcuni requisiti; in
particolare è stata sottolineata l’interazione con il modulo di
messaggistica che deve disporre di alcune funzionalità
aggiuntive rispetto alle specifiche richieste per tale modulo
dalla piattaforma AgentService. Allo scopo di fornire un
servizio più sofisticato, il modulo di messaggistica dovrebbe
essere in grado di tenere traccia degli agenti che si sono
trasferiti e notificare agli agenti residenti nella piattaforma lo
spostamento di tale agente. Un modulo di messaggistica che
soddisfa i requisiti richiesti dalla mobilità permette inoltre il

mantenimento delle conversazioni tra due agenti, anche se uno
di essi si trasferisce in un’altra piattaforma; tale operazione
viene effettuata in maniera del tutto trasparente agli agenti
stessi. Osserviamo che i servizi aggiuntivi richiesti dal modulo
che implementa la mobilità sono, di fatto, una violazione della
struttura modulare della piattaforma in quanto comportano un
debole accoppiamento con il servizio di messaggistica.
Occorre però tenere conto del fatto che tali servizi sono
richiesti per implementare un’infrastruttura per la mobilità più
sofisticata e che le funzionalità di base della mobilità sono
garantite indipendentemente dalla presenza o meno di tali
servizi. Poiché la scelta di dotare una piattaforma
dell’infrastruttura per la mobilità avviene molto spesso in fase
di installazione della piattaforma, l’accoppiamento debole con
il modulo di messaggistica non costituisce di fatto un
problema reale.

La presenza di un’infrastruttura per la mobilità permette di
arricchire la piattaforma con servizi sofisticati come ad
esempio la gestione del bilanciamento di carico tra piattaforme
federate. Tale funzionalità è nuovamente implementata
sfruttando i vantaggi dell’architettura modulare di
AgentService: un opportuno modulo (LBPM) appoggiandosi
al servizio di mobilità, applica algoritmi di bilanciamento del
carico per la gestione delle risorse hardware. Le politiche di
bilanciamento fornite di default si basano sul numero dei
messaggi scambiati e sul numero degli agenti presenti in una
piattaforma ma è possibile estendere tali politiche definendo
regole personalizzate.

Il processo di trasferimento degli agenti è stato testato con
esiti positivi assieme alla funzionalità di bilanciamento del
carico. Si è osservato che l’aspetto più oneroso per
l’architettura di AgentService è dato dallo spostamento dagli
assembly contenenti la definizione dei tipi di agenti
(AgentTemplate). Tale trasferimento non avviene sempre,
esso dipende dal tipo applicazione, ma in ogni caso dovrebbe
essere abbastanza limitato, in quanto normalmente si tende ad
avere applicazioni con più agenti dello stesso tipo o
perlomeno a riusare i loro elementi base, knowledge e
behavior, vista la modularità del modello di agente adottato da
AgentService.

Una limitazione di cui soffre l’infrastruttura per la mobilità
qui descritta è la mancanza di interoperabilità con altre
piattaforme che non siano installazioni di AgentService, Jade
[10] in particolare. La realizzazione di un’infrastruttura per la
mobilità tra piattaforme di diversa natura è, di fatto, un aspetto
molto difficile da concretizzare in quanto occorre superare i
problemi dovuti alla differenza delle tecnologie utilizzate,
delle architetture implementate e del modello di agente
adottato nelle diverse piattaforme.

TABELLA I
ANDAMENTO DEI MESSAGGI INTERPIATTAFORMA SCAMBIATI DURANTE IL

TEST
Tempo

(secondi)
Agenti
Trasferiti

Messaggi
Interpiattaforma

0-60 0 2412
60-240 32 2157
240-420 9 1123

WOA 2005 52

RIFERIMENTI
[1] A. Fuggetta, G. P. Picco, G. Vigna. Understanding Code Mobility, IEEE

Trans. on Software Engineering, Maggio 1998.
[2] Muhammad Kamran Naseem, Sohail Iqbal, Khalid Rashid,

Implementing Strong Code Mobility, Information Technology Journal
3(2): pp. 188-191, 2004.

[3] R. R Brooks, N. Orr. A Model for Mobile Code Using Interacting
Automata, IEEE Trans. Mobile Computing 1(4): pp. 313-326, 2002.

[4] Standard ECMA-335: Common Language Infrastructure (CLI), 2nd
Edition, Dicembre 2002, ECMA, disponibile presso: http://www.ecma-
international.org/publicati-ons/standards/Ecma-335.htm.

[5] Standard ISO/IEC 23271:2003: Common Language Infrastructure, 28
Marzo 2003, ISO.

[6] A. Boccalatte, A. Gozzi, A. Grosso, C. Vecchiola. AgentService, The
Sixteenth International Conference on Software Engineering and
Knowledge Engeneering (SEKE’04), Banff Centre, Banff, Alberta,
Canada 20-24 Giugno 2004.

[7] FIPA Abstract Architecture Specification,
http://www.fipa.org/specs/fipa00001/

[8] H.S. Nwana, D.T. Ndumu, L.C. Lee, ZEUS: An advanced Tool-Kit for
Engineering Distributed Multi-Agent Systems, in Proceedings of
PAAM98, pp. 377-391, London, U.K., 1998.

[9] Stefan Poslad, Phil Buckle, Rob Hadingham, The FIPA-OS agent
platform: Open Source for Open Standards, Published at PAAM2000,
Machestor, UK, April 2000.

[10] F. Bellifemine, G. Rimassa, A. Poggi, JADE - A FIPA-compliant Agent
Framework, in Proceedings of the 4th International Conference and
Exhibition on The Practical Application of Intelligent Agents and Multi-
Agents, London, 1999.

[11] N. M. Karnik, A. R. Tripathi. Design Issues in Mobile-Agent
Programming Systems, IEEE Concurrency 6(3): pp. 52-61, Luglio-
Settembre 1998.

[12] D. Chess, C. Harrison, A. Kershenbaum. Mobile Agents: Are they a good
idea?, Technical Report, IBM T.J. Watson Research Center, NY, Marzo
1995.

[13] H. Nwana. Software agents: An Overview, Knowledge and Engineering
Review, 11(3), Novembre 1996.

[14] G. Cabri, L. Leonardi, F. Zambonelli. Weak and Strong Mobility in
Mobile Agent Applications, Proceedings of the 2nd International
Conference and Exhibition on The Practical Application of Java (PA
JAVA 2000), Manchester (UK), Aprile 2000.

[15] D. Lange, M. Oshima. Programming and Deploying Java Mobile Agents
with Aglets, Addison-Wesley, 1998.

[16] A. Acharya, M. Ranganathan, J. Salz. Sumatra: A Language for
Resourceaware obile Programs, Mobile Object Systems: Towards the
Programmable Internet , J. Vitek and C. Tschudin (Eds.), Springer-
Verlag, Lecture Notes in Computer Science No. 1222: pp. 111-130,
Aprile 1997.

WOA 2005 53

PACMAS: A Personalized, Adaptive, and
Cooperative MultiAgent System Architecture

Giuliano Armano, Giancarlo Cherchi, Andrea Manconi, and Eloisa Vargiu
University of Cagliari

Piazza d’Armi
I-09123, Cagliari, Italy

Email: {armano,cherchi,manconi,vargiu}@diee.unica.it

Abstract— In this paper, a generic architecture, designed to
support the implementation of applications aimed at manag-
ing information among different and heterogeneous sources,
is presented. Information is filtered and organized according
to personal interests explicitly stated by the user. User pro-
files are improved and refined throughout time by suitable
adaptation techniques. The overall architecture has been called
PACMAS, being a support for implementing Personalized, Adap-
tive, and Cooperative MultiAgent Systems. PACMAS agents are
autonomous and flexible, and can be made personal, adaptive and
cooperative, depending on the given application. The peculiarities
of the architecture are highlighted by illustrating three relevant
case studies focused on giving a support to undergraduate and
graduate students, on predicting protein secondary structure, and
on classifying newspaper articles, respectively.

I. I NTRODUCTION

Accessing the widespread amount of distributed information
resources, such as the World Wide Web (WWW), entails rel-
evant problems (e.g., “information overload” [19]). Moreover,
different users are typically interested in different parts of
the available information, so that personalized and effective
information-filtering procedures are needed. Software agents
have been widely proposed for dealing with this kind of
information retrieval and filtering problems [13] [8] [15] [25].

From our perspective, assuming that information sources
are a primary operational context for software agents, the
following categories can be identified focusing on their specific
role: (i) information agents, able to access to information
sources and to collect and manipulate such information [19],
(ii) filter agents, able to transform information according to
user preferences [18], (iii)task agents, able to help users to
perform tasks by solving problems and exchanging informa-
tion with other agents [10], (iv)interface agents, in charge
of interacting with the user such that she/he interacts with
other agents throughout them [17], and (v)middle agents,
devised to establish communication among requesters and
providers [7]. Although this taxonomy is focused on a quite
general perspective, alternative taxonomies could be defined
focusing on different features. In particular, one may focus on
capabilities rather than roles, a software agent being ableto
embed any subset of the following capabilities: (i)autonomy,
to operate without the intervention of users; (ii)reactivity, to
react to a stimulus of the underlying environment according
to a stimulus/response behaviour; (iii)proactiveness, to exhibit

goal-directed behavior in order to satisfy a design objective;
(iv) social ability, to interact with other agents according to
the syntax and semantics of some selected communication
language; (v)flexibility, to exhibit reactivity, proactiveness, and
social ability simultaneously [24]; (vi)personalization, to per-
sonalize the behavior to fulfill user’s interests and preferences;
(vii) adaptation, to adapt to the underlying environment by
learning how to react and/or interact with it; (viii)cooperation,
to interact with other agents in order to achieve a common
goal; (ix) deliberative capability, to reason about the world
model and to engage planning and negotiation, possibly in
coordination with other agents; (x)mobility, to migrate from
node to node in a local- or wide-area network.

In this paper, we present a generic multiagent architecture
designed to support the implementation of applications aimed
at: (i) retrieving heterogeneous data spread among different
sources (i.e., generic html pages, news, blogs, forums, and
databases), (ii) filtering and organizing them according toper-
sonal interests explicitly stated by each user, and (iii) providing
adaptation techniques to improve and refine throughout time
the profile of each selected user.

Each agent is autonomous and flexible, and may implement
(one or more of) the following capabilities: personalization,
adaptation, and cooperation. The overall architecture hasbeen
called PACMAS, being designed to support the implementa-
tion of Personalized, Adaptive, and Cooperative MultiAgent
Systems. The PACMAS architecture can easily give rise to
specific systems by (1) identifying the characteristics of the
dataflow that occurs from information sources to users (and
vice versa), and (2) customizing each involved agent according
to its actual role and capabilities.

The remainder of this paper is organized as follows: In
Section 2 the Personalized, Adaptive, and Cooperative ar-
chitecture, called PACMAS, is depicted. In Section 3, three
case studies are presented, each one customized for a specific
application. Section 4 draws conclusions and future work.

II. T HE PACMAS ARCHITECTURE

PACMAS is a generic multiagent architecture aimed at
retrieving, filtering and reorganizing information according
to users’ interests. PACMAS agents can be personalized,
adaptive, and cooperative, depending on their specific role.

WOA 2005 54

Information Sources

MID-SPAN LEVELS

INFORMATION LEVEL

FILTER LEVEL

TASK LEVEL

INTERFACE LEVEL

User

Fig. 1. The PACMAS Architecture.

PACMAS Macro-Architecture

The overall architecture (depicted in Figure 1) encompasses
four main levels (i.e., information, filter, task, and interface),
each being associated to a specific role. The communication
between adjacent levels is achieved through suitable middle
agents, which form a corresponding mid-span level.

Each level is populated by a society of agents, so that com-
munication may occur both horizontally and vertically. The
former kind of communication supports cooperation among
agents belonging to a specific level, whereas the latter supports
the flow of information and/or control between adjacent levels
through suitable middle-agents.

At the information level, agents are entrusted with extracting
data from the information sources. Each information agent
is associated to one information source, playing the role
of wrapper. Upon extraction, the information is then made
available to the underlying filter level.

At the filter level, agents are aimed at selecting information
deemed relevant to the users, and cooperate to prevent infor-
mation from being overloaded and redundant. Two filtering
strategies can be adopted: generic and personal. The former
applies the same rules to all users; whereas the latter is cus-
tomised for a specific user. Each strategy can be implemented
through a pipeline of filters, since data undergo an incremental
refinement process. The information filtered so far is then
made available to the task level.

At the task level, agents arrange data according to users’
personal needs and preferences. In a sense, they can be con-
sidered as the core of the architecture. In fact, they are devoted
to achieve users’ goals by cooperating together and adapting
themselves to the changes of the underlying environment. In
general, they can be combined together according to different
connection modes, depending on the specific application.

At the interface level, a suitable interface agent is associated
to each different user interface. In fact, a user can generally
interact with an application through several interfaces and
devices (e.g., pc, pda, mobile phones, etc.). Interface agents
usually act individually without cooperation. On the other
hand, they can be personalized to display only the information
deemed relevant to a specific user. Moreover, in complex ap-
plications, they can adapt themselves to progressively improve
their ability in supplying information to the user.

a.
Nwana’s taxonomy

b.
PAC taxonomy

Learn ing

Cooperation

Autonomy Personalization Adaptation

Cooperation

Fig. 2. Agents taxonomies.

At the mid-span level, agents are aimed at establishing com-
munication among requesters and providers. In the literature,
several solutions have been proposed: e.g., blackboard agents,
matchmaker or yellow page agents, and broker agents (see
[7] for further details). In the PACMAS architecture, agents
at the mid-span level can be implemented as matchmakers or
brokers, depending on the specific application.

PACMAS Micro-Architecture

Keeping in mind that agents may be classified along several
ideal and primary capabilities that they should embed, let
us first recall the agent taxonomy proposed in [20]. In such
taxonomy, three primary capabilities have been identified:
autonomy, learning, and cooperation (see Figure 2-a). In our
view, agents are always autonomous and flexible, hence we
deem that autonomy should not be explicitly listed in a
diagram. On the contrary, we claim that personalization should
be taken into account as a primary feature while depicting the
characteristics of software agents, the resulting taxonomy is
depicted in Figure 2-b.

As for personalization, an initial user profile is provided
in form of a list of keywords, representing users’ interests.
The information about the user profile is stored by agents
belonging to the interface level. It is worth noting that,
to exhibit personalization, filter and task agents may need
information about the user profile. This flows up from the
interface level to the other levels through the middle-span
levels. In particular, agents belonging to mid-span levels(i.e.,
middle agents) take care of handling synchronization and
avoiding potential inconsistencies. Moreover, the user behavior
is tracked during the execution of the application to support
explicit feedback, in order to improve her/his profile.

As for adaptation, a model centered on the concept of
“mixtures of experts” has been employed. Each expert is im-
plemented by an agent able to select relevant information ac-
cording to an embedded string of feature-value pairs, features
being selectable from an overall set of relevant features defined
for the given application. The decision of adopting a subset
of the available features has been taken for efficiency reasons,
being conceptually equivalent to the one usually adopted ina
typical GA-based environment [11], which handles also dont-
care symbols. The system starts with an initial population of
experts, during the evolution of the system further experts
are created according to a covering, crossover, or mutation
mechanism.

WOA 2005 55

Fig. 3. Agents Connections.

As for cooperation, agents at the same level exchange
messages and/or data to achieve common goals, according to
the requests made by the user. Cooperation is implemented
in accordance with the following modes: centralized compo-
sition, pipeline, and distributed composition (see Figure3).
In particular: (i) centralized compositions can be used for
integrating different capabilities, so that the resultingbehavior
actually depends on the combination activity; (ii) pipelines can
be used to distribute information at different levels of abstrac-
tion, so that data can be increasingly refined and adapted to the
user’s needs; and (iii) distributed compositions can be used to
model a cooperation among the involved components aimed at
processing interlaced information. The most important form of
cooperation concerns the “horizontal” control flow that occurs
between peer agents. For instance, filter agents can interact
in order to reduce the information overload and redundancy,
whereas task agents can work together to solve problems that
require social interactions to be solved.

III. C ASE STUDIES

In order to highlight the peculiarities of the architecture,
three relevant case studies are presented. The first one is
focused on giving a support to undergraduate and graduate
students; the second one is concerned with the problem of
predicting protein secondary structure; and the third one is
devoted to classify newspaper articles.

All the proposed case studies have been implemented using
Jade [4] as the underlying framework.

PACMAS for Supporting Students in University Activities

This case study is focused on giving a support to under-
graduate and graduate students1.

Motivation: Let us consider a typical University Depart-
ment. It generally makes available the information about
courses, seminars, exams, professors, and students on different
areas: web sites, forums, and news (NNTP) servers. All the
relevant information is spread on the department portal, on
the web site of each course, and on the personal page of each
professor. Furthermore, each professor might activate her/his
news and forum service. Some of the information potentially
interests all students, such as lesson timetables, exam dates,

1This work has been partially funded by the Italian Ministry of University
and Research under the program PRIN 2003Programmi di Ricerca Scientifica
di Rilevante Interesse Nazionale.

taxes, and student tutoring. On the other hand, students be-
longing to different courses are interested in different lessons
and exams. For example, a student attending the MSc in
Computer Science may be interested in theObject Oriented
Programming Languages Icourse rather than in theProcessors
and Embedded Systems Architecturesone. Similarly, a student
attending the MSc in Digital Microelectronics may be inter-
ested in theProcessors and Embedded Systems Architectures
course rather than inObject Oriented Programming Languages
I one. Typically, a student in search of relevant information
about her/his University activities browses web sites, and
reads announcements from forum and news services. This is
a repetitive and boring task that can be automated. From our
perspective, personalization and adaptation represent the added
value of such an automated system.

Implementation:Using PACMAS, we developed a system
devoted to support undergraduate and graduate students in
their University activity at the Department of Electrical and
Electronic Engineering (DIEE) of the University of Cagliari.
Let us note that supporting students involves several activities:
information extraction, information retrieval and filtering, in-
formation processing, and results presentation. Each activity
corresponds to a suitable level of the PACMAS architecture.

Information Extraction.It is carried out at the information
level by information agents that play the role of wrappers,
devised to process information sources. Each wrapper is
specialized for dealing with a specific information source:
e.g., web pages, forums or news services. In the current
implementation, information agents are not personalized,not
adaptive, and not cooperative (PAC). Personalization is not
supported, since information agents are aimed at retrieving
information potentially relevant to all students, regardless of
their personal interests and preferences. Adaptation is also not
supported, being the system mainly concerned with changes
in users needs rather than in the underlying environment2.
Cooperation is also not supported, cause each information
agent is devoted to wrap a different information source.

Information Retrieval and Filtering.It is carried out at the
filter level. In particular, this level contains a set of “redun-
dancy filters” (one for each information source), an anti-spam
filter agent and a population of personal filter agents (one for
each user of the system). Redundancy filters cooperate together
to remove the redundancy of data provided by the informa-
tion sources (throughout the information agents). Redundancy
filters are not personalized, not adaptive, and cooperative
(PAC). Similarly to information agents, personalization and
adaptation are not required. On the other hand, cooperation
is required to prevent the information from being redundant.
The anti-spam filter is not personalized, not adaptive, and not
cooperative (PAC)3. Being not dependent from a specific stu-
dent, it filters the same information by removing undesirable
contents according to a rule-based mechanism. Personal filters

2In this particular case the variability of the information sources
3In the current release of the system anti-spam agents are notpermitted to

implement adaptation, although in principle this property maybe supplied in
a future release.

WOA 2005 56

Fig. 4. JSP graphical interface.

are personalized, adaptive and not cooperative (PAC). As
for personalization, they are sensible to any explicit change
imposed by the corresponding student or to a change that
occurs in the curriculum of the student. As for adaptation,
they are able to progressively adapt their filtering capabilities
according to the choices performed by the corresponding
student during the lifetime of the agent. Cooperation is not
supported; in fact, in the current release of the system, only
a specific support for implementing voting policies according
to the guidelines of GA-based systems is supplied.

Information Processing.It is carried out at the task level,
where agents are devoted to perform different tasks according
to the requirements imposed by the corresponding user. In
particular, each task agent is customized for a specific task
(e.g., lessons timetable, seminars, and exams scheduling).
Agents belonging to the task level exploit a model centered
on the concept of “mixtures of experts”, each expert being
implemented by an agent. The system supports each user with
a specific population of experts, handled in accordance with
the basic guidelines of online systems, expecially the ones
that characterize evolutionary environments. Task agentsare
personalized, adaptive, and cooperative (PAC). Personalization
is required since different behaviors are associated to different
students. Adaptation is required since they adapt themselves
to the needs of the corresponding student through a GA-
based feedback mechanism. Cooperation is required since they
usually need other task agents to successfully achieve their
own goals.

Results Presentation.It is carried out at the interface level,
through agents aimed at interacting with the users. Agents
and users interact through a suitable graphical interface that
can be run on several devices, including mobile phones. A
different interface agent has been associated to each device. In
the current implementation, the system embodies a graphical
interface that runs on several devices, including MIDP 1.0
compliant devices, and JSP web pages (as the one shown in
Figure 4)4.

Interface agents are also devoted to handle user profile and
propagate it by the intervention of middle agents. Furthermore,

4Available at: http://iascw.diee.unica.it/PacmasWWW

any feedback provided by the user can be exploited by the
adaptive mechanism to improve the user profile. Interface
agents are personal, adaptive, and not cooperative (PAC).
Personalization is required to allow each student the cus-
tomization of her/his interface. Adaptation is supported,since
an interface agent must adapt to the changes that occur in
the preferences and interests of the corresponding student.
Cooperation is not supported by agents that belong to this
architectural level.

PACMAS for Predicting Protein Secondary Structures

In this section we briefly describe an application concerned
with the problem of predicting protein secondary structure
using PACMAS (for further details see [2]).

Motivation: Difficulties in predicting protein structure are
mainly due to the complex interactions between different parts
of the same protein, on the one hand, and between the protein
and the surrounding environment, on the other hand. Actually,
some conformational structures are mainly determined by
local interactions between near residues, whereas others are
due to distant interactions in the same protein. Moreover,
notwithstanding the fact that primary sequences are believed to
contain all information necessary to determine the correspond-
ing structure [1], recent studies demostrate that many proteins
fold into their proper three-dimensional structure with the help
of molecular chaperones that act as catalysts [9], [12]. The
problem of identifying protein structures can be simplifiedby
considering only their secondary structure; i.e. a linear labeling
representing the conformation to which each residue belongs
to. Thus, secondary structure is an abstract view of amino
acid chains, in which each residue is mapped into a secondary
alphabet usually composed by three symbols: alpha-helix (α),
beta-sheet (β), and random-coil (c).

Implementation:Keeping in mind that the PACMAS archi-
tecture encompasses several levels, each one hosting a set of
agents, in the following, we illustrate how each level supports
the implementation of the proposed application.

At the information level, agents play the role of wrappers,
which –in our view– can be considered a particular kind of
filters, devised to process information sources. Each wrapper is
associated to one information source: (i) the selected training
set (the TRAIN database), (ii) the test set (the R126 database),
and (iii) a database containing information about the domain
knowledge (the AAindex database). Datasets are briefly sum-
marized in Table I. In the current implementation, information
agents are not personalized, not adaptive, and not cooperative
(shortly PAC). Personalization is not supported at this level,
since information agents are only devoted to wrap the datasets
containing proteins. Adaptation is also not supported, since
information sources are invariant for the system and are not
user-dependent. Cooperation is also not supported by the
information agents, since each agent retrieves information
from different sources, and each information source has a
specific role in the chosen application.

At the filter level, agents embody encoding methods. Let
us briefly recall that encoding methods play an important role

WOA 2005 57

TABLE I

INFORMATION SOURCES FOR PREDICTING PROTEIN SECONDARY

STRUCTURES

Dataset Description
TRAIN It has been derived from a PDB selection obtained by

removing short proteins (less than 30 aminoacids), and with
a resolution of at least 2.5̊A. This dataset underwent a
homology reduction, aimed at excluding sequences with
more than 50% of similarity. The resulting training set
consists of 1180 sequences, corresponding to 282,303 amino
acids.

R126 It has been derived from the historical Rost and Sander’s
protein dataset (RS126) [22], and corresponds to a total of
23,363 amino acids (the overall number has slightly varied
over the years, due to changes and corrections in the PDB.)

AAindex It contains information about hydrophobicity, dimension,
charge and other features required for evaluating the given
metrics. In the current application eight domain-specific
metrics have been devised and implemented. A sample
metrics is: Check whether hydrophobic amino acids occur
in a window of predefined length according to a clear
periodicity, whose underlying rationale is that sometimes
hydrophobic amino acids are regularly distributed along
alpha-helices.

in the prediction of protein secondary structures. In fact,they
describe the chemical-physics properties of aminoacid deemed
more interesting for the prediction. Several populations of filter
agents have been implemented, each of them performing a
different encoding techniques: one-shot, substitution matrices,
multiple alignment algorithms, and a techique that combines
the specificity of the multiple alignment technique with the
generality of the substitution matrices. Personalizationis not
supported by filter agents, since they always embody the
same encoding methods for all users. Adaptation is also not
supported either, since encoding methods do not change during
the application. Cooperation is supported by filter agents,as
some implemented encoding methods brings together several
algorithms (e.g., the encoding method that combines multiple
alignment with substitution matrices).

At the task level, a population of task agents, which are the
core of this case study, perform the protein secondary structure
prediction. The “internals” of each task agent is based on the
micro-architecture proposed for the NXCS-Experts [3]. In its
basic form, each NXCS expertE can be represented by a triple
〈g, h, w〉, where: (i)g is a “guard” devised to check whether
an input x can be processed or not, (ii)h is an embedded
predictor whose activation depends ong(x), and (iii) w is
a weighting function used to perform output combination.
Hence, the output ofE coincides with h(x) for any input
x “acknowledged” (i.e., matched) byg, otherwise it is not
defined. Typically, the guardg of a generic NXCS classifier is
implemented by an XCS-like classifier, able to match inputs
according to a set of selected features deemed relevant for the
given application, whereas the embedded predictorh consists
of a feed forward ANN, trained and activated on the inputs
acknowledged by the corresponding guard. In the caseE
contributes to the final prediction (together with other experts),
its output is modulated by the valuew(x), which represents the

expert strength in the voting mechanism. It may depend on
several features, includingg(x), the overall fitness of the cor-
responding expert, and the reliability of the prediction made by
the embedded predictor. It is worth noting that matching canbe
“flexible”, meaning that the matching activity returns a value
in [0,1] rather than “true” or “false”. In this case, only inputs
such thatg(x) ≥ σ will be processed by the corresponding
embedded predictor (σ being a system parameter). Task agents
are not personalized, adaptive, and cooperative (shortlyPAC).
Personalization is not required, since task agents exhibitthe
same behaviors for all the users. Adaptation is required, since
each expert is suitably trained through a typical evolutionary
behavior. Cooperation is required, since they usually need
other task agents to successfully achieve their own goals.

At the interface level, agents are aimed at interacting with
the user. In the current implementation, this kind of agents
has not been developed. Nevertheless, we are investigating
how to implement a flexible behavior at the user side. In
particular, a suitable web interface is under study. We envision
an interface personalized for each user, in which the user can
input a protein to be predicted also being given the possi-
bility of selecting the encoding technique to be applied. The
resulting information agents will be personalized, adaptive,
and not cooperative (shortlyPAC). Personalization will be
required in order to allow each user to customize the user
interface. Adaptation will be required, since agents couldadapt
themselves to the changes that occur in the user preferences.
Cooperation will not be required by the agents belonging to
this architectural level.

As for the mid-span levels, the corresponding middle agents
exhibit a different behavior depending on the mid-span level
that they belong to. In particular, let us recall that, in the
PACMAS architecture, there are three mid-span levels, one
between information and filter levels (in the following, IF
level), one between filter and task levels (in the following,
FT level), and one between task and interface levels (in the
following, TI level). In this specific application personalization
and adaptation are not supported by middle agents, since
they are only devoted to connect together agents belonging to
adjacent levels. Cooperation is supported by agents belonging
to the IF and the FT levels, since in the training phase they
are used to verify the prediction.

PACMAS for Newspaper Articles Classification

In this section we briefly describe the case study concerned
with the problem of classifying newspaper articles using
PACMAS (see [6] for details).

Motivation: All the information sources belonging to the
WWW make it hard for users to choose the most suitable
according to their interests. Finding useful information of
personal interest has become difficult for Internet users. Ide-
ally, users should be able to take advantage of the wide
range of available information while being able to find the
one she/he is interested in. In particular, manually selecting
newspaper articles is quite difficult or not feasible withinthe
time constraints common for most users also considering that

WOA 2005 58

the results could not perfectly fit with the user interests. Some
systems try to perform that task automatically, performing
content-based filtering. In particular, software agents have been
widely proposed for retrieving information from the web (
[23], [16], and [5]).

Implementation:At the information level, agents play the
role of wrappers, each one being associated to a different
information source. In particular, in the current implementation
a set of agents wraps databases containing italian newspaper
articles5. Furthermore, an agent wraps the proposed taxonomy
that is a subset of the one proposed by the International
Press Telecommunications Council6. Information agents are
not personalized, not adaptive, and not cooperative (shortly
PAC). Personalization is not supported at this level, since
information agents are only devoted to wrap information
sources. Adaptation is also not supported, since we assume
that information sources are invariant for the system and
are not user-dependent. Cooperation is also not supported by
the information agents, since each agent retrieves information
from different sources.

At the filter level, a population of agents manipulates
the information belonging to the information level through
suitable filter strategies. First, a set of agents removes all
non-informative words such as prepositions, conjunctions, pro-
nouns and very common verbs by using a standard stop-word
list. After stop-words removal, a set of agents performs a stem-
ming algorithm [21] to remove the most common morpholog-
ical and inflexional endings from words. Then, for each class,
a set of agents selects the features relevant to the classification
task according to the information gain method7. Filter agents
are not personalized, not adaptive, and cooperative (shortly
PAC). Personalization is not supported at this level, since the
adopted filter strategies are user-independent. Adaptation is
also not supported, since the adopted strategies do not change
during agents activities. Cooperation is supported by the filter
agents, since agents cooperate continously in order to perform
the filtering activity.

At the task level, a population of agents have been devel-
oped, each one embedding ak-NN classifier8. Each agent has
been trained in order to recognize a specific class, and it is
also devoted to measure the classification accuracy according
to the confusion matrix [14]. Task agents are not personalized,
adaptive, and cooperative (shortlyPAC). Personalization is
not supported at this level, since, in the current implementa-
tion, the adopted classification strategies are user-independent.
Adaptation is supported by the task agents since they learn the
classification rules during their life. Cooperation is supported
by the task agents, since agents sometimes have to interact

5In general they may wrap any web sites containing newspaper articles
(e.g., online newspapers).

6http://www.iptc.org/
7It measures the number of bits of information obtained for category

prediction by knowing the presence or absence of a term in a document.
8The k-nearest neighbor is a classification method based upon observable

features. The algorithm selects a set which contains thek nearest neighbours
and assigns the class label to the new data point based upon the most numerous
class with the set.

Fig. 5. Interface for the newspaper articles classifying system.

each other in order to achieve their goals.
At the interface level, agents are aimed at interacting with

the user. In the current implementation, agents and users
interact through a suitable graphical interface that runs on
a pc (see Figure 5). Interface agents are also devoted to
handle user profile and propagate it by the intervention of
middle agents. Interface agents are personal, not adaptive, and
not cooperative (shortlyPAC). Personalization is required
to allow each user the customization of her/his interface. In
the current implementation adaptation is not supported, but
in general an interface agent might adapt to the changes that
occur in the preferences and interests of the corresponding
user. Cooperation is not supported by agents that belong to
this architectural level.

Discussion

The peculiarities of the architecture have been highlighted
by depicting three relevant case studies. Table II shows agents
and their capabilities for the proposed case studies. In particu-
lar, the added value of the proposed approach is that PACMAS
agents are polymorphic in the sense that they can exhibit a
different behavior depending on the specific application in
which they operate.

IV. CONCLUSIONS ANDFUTURE WORK

In this paper a generic architecture designed to support
the implementation of applications aimed at managing infor-
mation among different and heterogeneous sources has been
presented. Information is filtered and organized accordingto
personal interests explicitly stated by the user. User profiles are
improved and refined throughout time by suitable adaptation

WOA 2005 59

TABLE II

AGENTSCAPABILITIES

Agents Case study 1 Case study 2 Case study 3
Information PAC PAC PAC

Redundancy:PAC

Filter Anti-spam:PAC PAC PAC

Personal:PAC

Task PAC PAC PAC

Interface PAC PAC PAC

IF: PAC

Middle PAC FT: PAC PAC

TI: PAC

techniques. The overall architecture has been called PACMAS,
being a support for implementing Personalized, Adaptive,
and Cooperative MultiAgent Systems. PACMAS agents are
autonomous and flexible, and can be personalized, adaptive
and cooperative depending on the implemented application.

As for the future work, we are investigating how to improve
the intelligent capabilities of agents with more complex forms
of personalization, adaptation, and cooperation. Moreover, the
possibility to implement further intelligent applications using
PACMAS is currently under study.

V. ACKNOWLEDEGMENTS

We would like to thank Andrea Addis for participating in
the implementation of the prototype.

REFERENCES

[1] C. Anfinsen. Principles that govern the folding of protein chains.
Science, 181:223–230, 1973.

[2] G. Armano, G. Mancosu, A. Orro, M. Saba, and E. Vargiu. Biopac-
mas: A personalized, adaptive, and cooperative multiagent system for
predicting protein secondary structure. InAI*IA 2005: Advances
in Artificial Intelligence, 9th Congress of the Italian Association for
Artificial Intelligence (AI*IA 2005). LNAI 3673, Springer, September
2005.

[3] G. Armano, A. Murru, and F. Roli. Stock market prediction bya
mixture of genetic-neural experts.Int. Journal of Pattern Recognition
and Artificial Intelligence, 15(16):501–526, 2002.

[4] F. Bellifemine, A. Poggi, and G. Rimassa. Developing multi-agent
systems with jade. InEventh International Workshop on Agent Theories,
Architectures, and Languages (ATAL-2000), 2000.

[5] R. Carreira, J. M. Crato, D. Gonalves, and J. A. Jorge. Evaluating
adaptive user profiles for news classification. InIUI ’04: Proceedings
of the 9th international conference on Intelligent user interface, pages
206–212, New York, NY, USA, 2004. ACM Press.

[6] G. Cherchi, A. Manconi, E. Vargiu, and D. Deledda. Text Categorization
Using a Personalized, Adaptive, and Cooperative MultiAgent System. In
Workshop dagli Oggetti agli Agenti, Simulazione e Analisi Formale di
Sistemi Complessi (WOA 2005), November 2005.

[7] K. Decker, K. Sycara, and M. Williamson. Middle-agents for the
internet. InProceedings of the 15th International Joint Conference on
Artificial Intelligence (IJCAI 97), pages 578–583, 1997.

[8] O. Etzioni and D. Weld. Intelligent agents on the internet: fact, fiction
and forecast.IEEE Expert, 10(4):44–49, 1995.

[9] S. J. Gething, M.J. Protein folding in the cell.Nature, 355:33–45, 1992.
[10] J. Giampapa, K. Sycara, A. Fath, A. Steinfeld, and D. Siewiorek. A

multi-agent system for automatically resolving network interoperability
problems. InProceedings of the Third International Joint Conference on
Autonomous Agents and Multiagent Systems, pages 1462–1463, 2004.

[11] D. Goldberg.Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, 1989.

[12] F. Hartl. Secrets of a double-doughnut.Nature, 371:557–559, 1994.

[13] C. A. Knoblock, Y. Arens, and C.-N. Hsu. Cooperating agents for infor-
mation retrieval. InProceedings of the Second International Conference
on Cooperative Information Systems, Toronto, Ontario, Canada, 1994.
University of Toronto Press.

[14] R. Kohavi and F. Provost. Glossary of terms.Special issue on
applications of machine learning and the knowledge discovery process,
Machine Learning, 30(2/3):271–274, 1998.

[15] J. Kramer. Agent based personalized information retrieval, 1997.
[16] H. Lieberman. Letizia: An agent that assists web browsing. In C. S.

Mellish, editor,Proceedings of the Fourteenth International Joint Con-
ference on Artificial Intelligence (IJCAI-95), pages 924–929, Montreal,
Quebec, Canada, 1995. Morgan Kaufmann publishers Inc.: San Mateo,
CA, USA.

[17] H. Lieberman. Autonomous interface agents. InProceedings of the
ACM Conference on Computers and Human Interface (CHI-97), pages
67–74, 1997.

[18] E. Lutz, H. Kleist-Retzow, and K. Hoernig. Mafiaan active mail-filter-
agent for an intelligent document processing support.ACM SIGOIS
Bulletin, 11(4):16–32, 1990.

[19] P. Maes. Agents that reduce work and information overload. Commu-
nications of the ACM, 37(7):31–40, 1994.

[20] H. Nwana. Software agents: An overview.Knowledge Engineering
Review, 11(3):205–244, 1996.

[21] M. Porter. An algorithm for suffix stripping.Program, 14(3):130–137,
1980.

[22] B. Rost and C. Sander. Prediction of protein secondary structure at better
than 70% accuracy.Journal Molecular Biology, 232:584–599, 1993.

[23] B. Sheth and P. Maes. Evolving agents for personalized information
filtering. In I. Press, editor,9th Conference on Artificial Intelligence for
Applications (CAIA-93), pages 345–352, 2003.

[24] M. Wooldridge and N. Jennings.Intelligent Agents, chapter Agent
Theories, Architectures, and Languages: a Survey, pages 1–22. Berlin:
Springer-Verlag, 1995.

[25] J. Yang, V. Honavar, L. Miller, and J. Wong. Intelligentmobile agents
for information retrieval and knowledge discovery from distributed data
and knowledge sources. InIEEE Information Technology Conference.
Syracuse, NY, 1998.

WOA 2005 60

Text Categorization Using a Personalized, Adaptive,
and Cooperative MultiAgent System

Giancarlo Cherchi, Andrea Manconi, Eloisa Vargiu
University of Cagliari

Piazza d’Armi, I-09123, Cagliari, Italy
Email: {cherchi,manconi,vargiu}@diee.unica.it

Dario Deledda
Arcadia Design

Loc. Is Coras, I-09028 Sestu, Cagliari, Italy
Email: dario.deledda@arcadiadesign.it

Abstract— In this paper, a multiagent system for supporting
users in retrieving information from heterogeneous data sources,
and classifying them according to users’ personal preferences,
is presented. The system is built upon PACMAS, a generic
architecture that supports the implementation of Personalized,
Adaptive, and Cooperative MultiAgent Systems. Preliminary tests
have been conducted to evaluate the effectiveness of the system
in retrieving and classifying newspaper articles. Results show an
avarage accuracy of about 80%.

I. I NTRODUCTION

The information available on the WWW is continuously
growing from different points of view: information sources
are increasing, topics discussed are becoming more and more
heterogeneous, and stored data has reached a considerable
size. It has become a difficult task for Internet users to
select contents according to their personal interests, especially
if contents are continuously updated (e.g., news, newspaper
articles, reuters, rss feeds, blogs, etc.). Unfortunately, tradi-
tional filtering techniques based on keyword search are often
inadequate to express what the user is really searching for.
Furthermore, users often need to refine by hand the achieved
results.

Supporting users in handling with the enormous and
widespread amount of web information is becoming a primary
issue. To this end, an automated system able to retrieve
information from the Internet, and to select the contents really
deemed relevant for the user, through a text categorization
process, would be very helpful.

In the literature, software agents have been widely proposed
for retrieving information from the web (see for example [9]
[7] [11]). Furthermore, several machine learning techniques
have been applied to text categorization (see [18] for a detailed
comparison).

In this paper, we focus on the problem of retrieving articles
from italian online newspapers, and classifying them using
suitable machine learning techniques. In particular, we exploit
the PACMAS architecture [2] to build a personalized, adaptive,
and cooperative multiagent system.

The outline of the paper is organized as following: in
Section II some related work on agent-based information
retrieving is briefly recalled; Section III briefly illustrates the
text categorization proble; Section IV sketches the PACMAS
architecture; In Section V, all customizations devised forex-

plicitly dealing with text categorization are presented, together
with some experimental results; Section VI draws conclusions
and points to future work.

II. A GENT-BASED SYSTEMS FORINFORMATION

RETRIEVING

Several multiagent systems have been proposed to support
the user in the task of retrieving information from the web.
Among them let us recall NewT [16], Letizia [13], Web-
Watcher [3], and SoftBot [7].

NewT [16] is designed as a collection of information
filtering interface agents. Interface agents are intelligent and
autonomous computer programs, which learn users’ prefer-
ences and act on their behalf. This system uses a keyword-
based filtering algorithm. The learning mechanisms used are
relevance feedback and genetic algorithms.

Letizia [13] is a user interface agent that assists a user
browsing the World Wide Web. The model adopted by this
system is that the search for information is a cooperative
venture between the human user and an intelligent software
agent. Letizia and the user both browse the same search space
of linked web documents, looking for “interesting” ones.

WebWatcher [3] is an information search agent that follows
web hyperlinks according to users’ interests, returning a list
of interesting links to the user.

In contrast to systems for assisted browsing or information
retrieval, the SoftBot [7] accepts high level user goals and
dynamically synthesizes the appropriate sequence of Internet
commands using a suitable ad-hoc language to satisfy those
goals.

Finally, let us point out that current web search engines
basically rely only on purely syntactical textual information
retrieval. There are only a few approaches that try to integrate
a set of different and specialized sources, but unfortunately it
is very difficult to maintain and to develop this kind of systems
[9].

III. T EXT CATEGORIZATION

The main goal of text categorization is to classify documents
into a set of predefined categories. Each document can be
in multiple or exactly one category. Using machine learning,
the objective is to learn classifiers from examples, which

WOA 2005 61

perform the category assignments automatically, according to
a supervised learning approach.

A major characteristic, or difficulty, of text categorization
problems is the high dimensionality of the feature space.
The native feature space consists of the unique terms (words
or phrases) that occur in documents, which can be tens or
hundreds of thousands of terms, even for a moderate-sized text
collection. This is prohibitively complex for many learning
algorithms. Thus, the first step in text categorization is to
transform documents into a representation suitable for the
underlying learning algorithm and the classification task.

After counting the number of occurences of a wordw
in a document –giving rise to an unorderedbag of words
[1]– suitable stemming algorithms [15] are applied to avoid
unnecessarily large feature vectors. Each distinct word stem
wi corresponds to a feature, with the number of occurrences
(in the entire document) of the wordwi as value. Words are
considered as features only if they occur in the training data
at least a predefined number of times except when they are
considered asstop-words(like and, or, is, etc.).

To further reduce the number of considered terms, suitable
feature selection methods can be applied. Automatic feature
selection methods include the removal of non-informative
terms according to corpus strategies, and the constructionof
new features which combine lower-level features (i.e., terms)
into higher-level orthogonal dimension. Among different fea-
ture selection methods, let us recall document frequency,
information gain, mutual information, aχ2 statistic, and term
strength (see [21] for a detailed comparison among them).

After selecting the terms, for each document a feature
vector is generated, whose elements are the feature values of
each term. A commonly used feature value is theTF (Term
Frequency)x IDF (Inverse Document Frequency) measure.

Among machine learning techniques applied to text cat-
egorization, let us cite multivariant regression models [19],
kNearest Neighbor classification [20], Bayes probabilistic
approaches [17], decision trees [12], neural networks [6],
symbolic rule learning [14] and inductive learning algorithms
[4].

IV. T HE PACMAS ARCHITECTURE

PACMAS, which stands for Personalized Adaptive and Co-
operative MultiAgent System, is a generic multiagent architec-
ture, aimed at retrieving, filtering and reorganizing information
according to the users’ interests. PACMAS agents can be
personalized, adaptive, and cooperative, depending on their
specific role (see [2] for details).

PACMAS Macro-Architecture

The overall architecture (depicted in Figure 1) encompasses
four main levels (i.e., information, filter, task, and interface),
each being associated to a specific role. The communication
between adjacent levels is achieved through suitable middle
agents, which form a corresponding mid-span level.

Each level is populated by a society of agents, so that com-
munication may occur both horizontally and vertically. The

Information Sources

MID-SPAN LEVELS

INFORMATION LEVEL

FILTER LEVEL

TASK LEVEL

INTERFACE LEVEL

User

Fig. 1. The PACMAS Architecture.

former kind of communication supports cooperation among
agents belonging to a specific level, whereas the latter supports
the flow of information and/or control between adjacent levels
through suitable middle-agents.

Information Level:At the information level, agents are en-
trusted with extracting data from the information sources.Each
information agent is associated to one information source,
playing the role of wrapper.

Filter Level: At the filter level, agents are aimed at selecting
information deemed relevant to the users, and cooperate to
prevent information from being overloaded and redundant.
Two filtering strategies can be adopted: generic and personal.
The former applies the same rules to all users; whereas the
latter is customised for a specific user.

Task Level:At the task level, agents arrange data according
to users’ personal needs and preferences. In a sense, they can
be considered as the core of the architecture. In fact, they
are devoted to achieve users’ goals by cooperating together
and adapting themselves to the changes of the underlying
environment.

Interface Level:At the interface level, a suitable interface
agent is associated with each different user interface. In fact, a
user can generally interact with an application through several
interfaces and devices (e.g., pc, pda, mobile phones, etc.).

Mid-span Level:At the mid-span level, agents are aimed at
establishing communication among requesters and providers.
In the literature, several solutions have been proposed: e.g.,
blackboard agents, matchmaker or yellow page agents, and
broker agents (see [5] for further details). In the PACMAS
architecture, agents at the mid-span level can be implemented
as matchmakers or brokers, depending on the specific appli-
cation.

PACMAS Micro-Architecture

Keeping in mind that agents may be classified along several
ideal and primary capabilities that they should embed, in our
view agents are always autonomous and flexible. Moreover, we
claim that personalization, adaptation and cooperation should
be taken into account as a primary feature while depicting the
characteristics of software agents.

Personalization:As for personalization, an initial user pro-
file is provided in form of a list of keywords, representing
users’ interests. The information about the user profile is stored

WOA 2005 62

by the agents belonging to the interface level. It is worth
noting that, to exhibit personalization, filter and task agents
may need information about the user profile. This flows up
from the interface level to the other levels through the middle-
span levels. In particular, agents belonging to mid-span levels
(i.e., middle agents) take care of handling synchronization and
avoiding potential inconsistencies. Moreover, the user behavior
is tracked during the execution of the application to support
explicit feedback, in order to improve her/his profile.

Adaptation: As for adaptation, a model centered on the
concept of “mixtures of experts” has been employed. Each
expert is implemented by an agent able to select relevant
information according to an embedded string of feature-value
pairs, features being selectable from an overall set of relevant
features defined for the given application. The decision of
adopting a subset of the available features has been taken
for efficiency reasons, being conceptually equivalent to the
one usually adopted in a typical GA-based environment [8],
which handles also dont-care symbols. The system starts with
an initial population of experts, during the evolution of the
system further experts are created according to a covering,
crossover, or mutation mechanism.

Cooperation: As for cooperation, agents at the same level
exchange messages and/or data to achieve common goals,
according to the requests made by the user. The most important
form of cooperation concerns the “horizontal” control flow
that occurs between peer agents. For instance, filter agents
can interact in order to reduce the information overload and
redundancy, whereas task agents can work together to solve
problems that require social interactions to be solved.

V. PACMAS FOR TEXT CATEGORIZATION

In this section, we describe how the generic architecture
has been customized to implement a system to perform text
categorization.

The PACMAS Levels

In the following, we illustrate how each level of the architec-
ture supports the implementation of the proposed application.

Information Level: At the information level, agents play
the role of wrappers, each one being associated to a different
information source. In particular, in the current implementation
a set of agents wraps databases containing italian news articles
1. Furthermore, an agent wraps the adopted taxonomy that
is a subset of the one proposed by the International Press
Telecommunications Council2 (a fragment is depicted in
Figure 2).

Information agents are not personalized, not adaptive, and
not cooperative (shortlyPAC). Personalization is not sup-
ported at this level, since information agents are only devoted
to wrap information sources. Adaptation is also not supported,
since we assume that information sources are invariant for the
system and are not user-dependent. Cooperation is also not

1More generally, they may wrap any web site containing news (e.g., online
journals).

2http://www.iptc.org/

Fig. 2. A fragment of the adopted (italian) taxonomy and its english
translation.

supported by the information agents, since each agent retrieves
information from different sources, and each information
source has a specific role in the chosen application.

Filter Level: At the filter level, a population of agents
manipulates the information belonging to the information
level through suitable filtering strategies. First, a set offilter
agents removes all non-informative words such as preposi-
tions, conjunctions, pronouns and very common verbs by using
a standard stop-word list. After removing the stop words, a set
of filter agents, performs a stemming algorithm to remove the
most common morphological and inflexional suffixes from all
the words. Then, for each class, a set of filter agents selects
the features relevant to the classification task according to
the information gain method. Let us recall that information
gain measures the number of bits of information obtained for
category prediction by knowing the presence or absence of a
term in a document.

Filter agents are not personalized, not adaptive, and co-
operative (shortlyPAC). Personalization is not supported
at this level, since all the adopted filter strategies are user-
independent. Adaptation is also not supported, since all the
adopted strategies do not change during the agents activities.
Cooperation is supported by the filter agents, since agents
cooperate continously in order to perform the filtering activity.

Task Level: At the task level, a population of agents has
been developed, each of them embedding akNN classifier. Let
us briefly recall that thek-nearest neighbor is a classification
method based upon observable features. The algorithm selects
a set which contains thek nearest neighbours and assigns
the class label to the new data point based upon the most
numerous class with the set. All the agents have been trained
in order to recognize a specific class. Given a document in
the test set, each agent, through its embeddedkNN classifier,
ranks its nearest neighbors among the training documents to
a distance measure, and uses the most frequent category of
the k top-ranking neighbors to predict the categories of the
input document. Task agents are also devoted to measure the
classification accuracy according to the confusion matrix [10].

Task agents are not personalized, adaptive, and cooperative
(shortly PAC). Personalization is not supported at this level,

WOA 2005 63

Fig. 3. Interface for the news classifying system.

since, in the current implementation, the adopted classification
strategies are user-independent. Adaptation is supportedby the
task agents since they continously adapt themselves to the
underlying environment. Cooperation is supported by the task
agents, since agents sometimes have to interact each other in
order to achieve their own goals.

Interface Level:At the interface level, agents are aimed at
interacting with the user. In the current implementation, agents
and users interact through a suitable graphical interface that
run on a pc. Interface agents are also devoted to handle user
profile and propagate it by the intervention of middle agents.

Interface agents are personal, not adaptive, and not coop-
erative (shortlyPAC). Personalization is required to allow
each user the customization of her/his interface. In the current
implementation, adaptation is not supported, but -at leastin
principle- an interface agent might adapt to the changes that
occur in the preferences and interests of the corresponding
user. Cooperation is not supported by agents that belong to
this architectural level.

Table I summarizes the involved agents and their capabili-
ties.

Training Task Agents

As for the training activity, task agents have been trained
by a set of newspaper articles classified by human experts.
Through a suitable graphical interface (see Figure 3), the user
interacts with the interface agents setting her/him preferences.
In particular, she/he can adjust the following parameters:

• the classification algorithm3;

3in the current implementation onlykNN is supported

TABLE I

AGENTSROLES AND CAPABILITIES

Agents The ability of ... Capabilities

information wrapping databases containing news ar-
ticles, and wrapping the taxonomy

PAC

filter preprocessing the documents PAC

task classifying news articles PAC

interface interacting with the user PAC

middle allowing interactions among agents be-
longing to different levels

PAC

Fig. 4. Accuracy of the system.

• the number of documents forming the dataset;
• the training category;
• the percentage of positive examples;
• the number of features to be considered.

User choices are sent from the interface agent to the task level
through the cooperation of the middle agent that belongs to
the task-interfacemiddle level (TI agent). The TI agent gen-
erates a task agent that embodies the corresponding classifier
algorithm and asks it to perform the classification with the
user preferences. The dataset needed for the classificationis
provided by information agents and subsequently pruned by
the filter agents. After the classification activity, the task agent
saves its own state in a suitable xml-like format in order to
make it available for the test phase.

Experiments and Results

To evaluate the effectiveness of the system, several tests
have been conducted using articles belonging to online news-
papers. For each item of the taxonomy, a set of 200 documents
has been selected to train the corresponding classifier, being
kNN the adopted algorithm (withk = 7). To validate the train-
ing procedure, the system has been fed by the same dataset
used in the training phase, showing an accuracy between 96%
and 100%.

Then, random datasets for each category have been gen-
erated to test the performance of the system. The accuracy
for fourtheen categories is summarized in Figure 4. On the
average, the accuracy of the system is 80.05%. Particular

WOA 2005 64

care has been taken in limiting the phenomenon of “false
negatives” (FN), which –nevertheless– had a limited impact
on the percent of “false positives” (FP). In particular, theratio
FN/(FN + FP) has been kept under 25% by weighting
positive prototypes with an additional factor of 1.05 with
respect to negative ones.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we presented a system devoted to retrieve
articles from italian online newspapers, and classify them
using suitable machine learning techniques. The system has
been built upon PACMAS, a generic architecture designed
to support the implementation of applications explicitly tai-
lored for information retrieval tasks. PACMAS stands for
Personalized, Adaptive, and Cooperative MultiAgent Systems,
since PACMAS agents are autonomous and flexible, and can
be personalized, adaptive, and cooperative depending on the
implemented application. The categorization capability has
been evaluated using several newspaper articles, showing an
average accuracy of about 80%.

As for the future work, we are extending the system to
handle with an automatic composition of the categories taken
from the taxonomy in order to better fit the user profile.

VII. A CKNOWLEDEGMENTS

We would like to thank Ivan Manca and Andrea Addis for
participating in the development of the application.

REFERENCES

[1] C. Apte, F. Damerau, and S. M. Weiss. Automated learning of decision
rules for text categorization.Information Systems, 12(3):233–251, 1994.

[2] G. Armano, G. Cherchi, A. Manconi, and E. Vargiu. Pacmas: A
personalized, adaptive, and cooperative multiagent systemarchitecture.
In Workshop dagli Oggetti agli Agenti, Simulazione e Analisi Formale
di Sistemi Complessi (WOA 2005), November 2005.

[3] R. Armstrong, D. Freitag, T. Joachims, and T. Mitchell. Webwatcher: A
learning apprentice for the world wide web. InAAAI Spring Symposium
on Information Gathering, pages 6–12, 1995.

[4] W. W. Cohen and Y. Singer. Context-sensitive learning methods for text
categorization. In H.-P. Frei, D. Harman, P. Schaauble, and R. Wilkinson,
editors,Proceedings of SIGIR-96, 19th ACM International Conference
on Research and Development in Information Retrieval, pages 307–315.
ACM Press, New York, US, 1996.

[5] K. Decker, K. Sycara, and M. Williamson. Middle-agents for the
internet. InProceedings of the 15th International Joint Conference on
Artificial Intelligence (IJCAI 97), pages 578–583, 1997.

[6] A. S. W. Erik Wiener, Jan O. Pedersen. A neural network approach to
topic spotting. InProceedings of 4th Annual Symposium on Document
Analysis and Information Retrieval, pages 317–332, Las Vegas, US,
1995.

[7] O. Etzioni and D. Weld. Intelligent agents on the internet: fact, fiction
and forecast.IEEE Expert, 10(4):44–49, 1995.

[8] D. Goldberg.Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, 1989.

[9] C. A. Knoblock, Y. Arens, and C.-N. Hsu. Cooperating agents for infor-
mation retrieval. InProceedings of the Second International Conference
on Cooperative Information Systems, Toronto, Ontario, Canada, 1994.
University of Toronto Press.

[10] R. Kohavi and F. Provost. Glossary of terms.Special issue on
applications of machine learning and the knowledge discovery process,
Machine Learning, 30(2/3):271–274, 1998.

[11] J. Kramer. Agent based personalized information retrieval, 1997.
[12] D. D. Lewis and M. Ringuette. A comparison of two learningalgorithms

for text categorization. InProceedings of SDAIR-94, 3rd Annual
Symposium on Document Analysis and Information Retrieval, pages 81–
93, Las Vegas, US, 1994.

[13] H. Lieberman. Letizia: An agent that assists web browsing. In C. S.
Mellish, editor,Proceedings of the Fourteenth International Joint Con-
ference on Artificial Intelligence (IJCAI-95), pages 924–929, Montreal,
Quebec, Canada, 1995. Morgan Kaufmann publishers Inc.: San Mateo,
CA, USA.

[14] I. Moulinier, G. Raskinis, and J.-G. Ganascia. Text categorization:
a symbolic approach. InProceedings of 5th Annual Symposium on
Document Analysis and Information Retrieval, pages 87–99, Las Vegas,
US, 1996.

[15] M. Porter. An algorithm for suffix stripping.Program, 14(3):130–137,
1980.

[16] B. Sheth and P. Maes. Evolving agents for personalized information
filtering. In I. Press, editor,9th Conference on Artificial Intelligence for
Applications (CAIA-93), pages 345–352, 2003.

[17] K. Tzeras and S. Hartmann. Automatic indexing based on Bayesian
inference networks. In R. Korfhage, E. Rasmussen, and P. Willett,
editors,Proceedings of SIGIR-93, 16th ACM International Conference
on Research and Development in Information Retrieval, pages 22–34,
Pittsburgh, US, 1993. ACM Press, New York, US.

[18] Y. Yang. An evaluation of statistical approaches to text categorization.
Information Retrieval, 1(1/2):69–90, 1999.

[19] Y. Yang and C. Chute. An example-based mapping method for text
categorization and retrieval.ACM Transactions on Information Systems,
12(3):252–277, 1994.

[20] Y. Yang and X. Liu. A re-examination of text categorization methods.
In M. A. Hearst, F. Gey, and R. Tong, editors,Proceedings of SIGIR-99,
22nd ACM International Conference on Research and Development in
Information Retrieval, pages 42–49, Berkeley, US, 1999. ACM Press,
New York, US.

[21] Y. Yang and J. O. Pedersen. A comparative study on featureselection in
text categorization. InInternational Conference on Machine Learning,
pages 412–420, 1997.

WOA 2005 65

PRACTIONIST:
implementing PRACTIcal reasONIng sySTems

Vito Morreale∗, Susanna Bonura∗, Fabio Centineo∗,
Alessandro Rossi∗, Massimo Cossentino† and Salvatore Gaglio†‡

∗R&D Laboratory - ENGINEERING Ingegneria Informatica S.p.A.
†ICAR-Italian National Research Council

‡DINFO-University of Palermo

Abstract— One of the best known approaches to the devel-
opment of rational agents is the BDI (Belief-Desire-Intention)
architecture. In this paper we propose a new framework,
PRACTIONIST (PRACTIcal reasONIng sySTem), to support the
development of BDI agents in Java (using JADE) with a Prolog
belief base.

In PRACTIONIST we adopt a goal-oriented approach with
a clear separation between the deliberation and the means-ends
reasoning, and then between the states of affairs to pursue and
the way to do it. Besides, PRACTIONIST allows developers to
implement agents that are able to reason about their beliefs and
the other agents’ beliefs, expressed by modal logic formulas.

Our approach also includes a specific tool that provides
the developer with the possibility to effectively monitor the
components involved in the execution cycle of an agent.

I. I NTRODUCTION

The Belief-Desire-Intention (BDI) architecture [1] derives
from the philosophical tradition of practical reasoning first
developed by Bratman [2], which states that agents decide,
moment by moment, which actions to perform in order to
pursue their goals. Practical reasoning involves two processes:
(1) deliberation, to decide what states of affairs to achieve;
and (2)means-ends reasoning, to decide how to achieve these
states of affairs. Besides, in such a theory intentions are
important, as they influence the selection of the actions to
perform.

In the context of rational agents, the BDI model appears
very attractive, because the abstractions of belief, desire and
intention are quite intuitive. Moreover the model provides
a clear functional decomposition that indicates what sort of
subsystems might be required to build an agent. Nevertheless,
the development of this abstract architecture involves several
issues in efficiently implementing the deliberation process and
the means-ends reasoning [3].

Moreover, since the BDI agent model suggests a declarative
approach to represent the internal states, the debugging of
BDI agents, the effective observation of their mental attitudes
and execution flow are critical and difficult activities. Thus,
having some development and debugging tools is crucial when
implementing BDI agents, especially in real case scenariosor
complex application domains.

Actually, several concrete implementations of the most
known BDI agent architecture, the Procedural Reasoning Sys-
tem (PRS) developed by Georgeff and Lansky [4], have been

proposed in the literature. Among them, it is worth mentioning
dMARS [5] developed at the Australian AI Institute, the UM-
PRS implemented in C++ at the University of Michigan [6],
and JAM [7], a Java version of PRS.

In order to enable the testing of BDI agents, the 3APL
platform [8], an experimental multiagent platform, provides a
graphical interface by which designers can develop, execute,
and monitor the agents. JADEX, an add-on to the JADE
platform [9] that supports the development of BDI agents,
provides two tools as a support of the JADE introspector
agent: thedebugger, which allows the visualization and re-
configuration of the internal BDI concepts, and thelogger
agent, which allows developers to detect the agent’s sequence
of outputs [10]. Finally, the JACK software [11], a commercial
suite of tools with a programming language that extends the
Java language with BDI features, provides an agent debugging
environment, which allows inspection of messages and the
internal execution states.

In several PRS-related BDI implementations, mental states,
deliberation, and means-ends reasoning, when actually imple-
mented, somewhat differ from their original meaning. As an
example, often executing plans are considered as intentions.
But intentions should be related to ends, while plans should
be related to means to achieve such ends.

PRACTIONIST (PRACTIcal reasONIng sySTem) is a new
framework we have been developing, which adopts a goal-
oriented approach and stresses the separation between the
deliberation process and the means-ends reasoning. Indeed,
the abstraction of goal is used to formally define both desires
and intentions during the deliberation phase. Unlike some of
existing BDI implementations, in our approach we actually
adopt the plans as recipes to achieve the intentions. Besides,
PRACTIONIST allows developers to implement agents that
are able to reason about their beliefs and the other agents’ (in-
cluding humans’) beliefs, since beliefs are not simple grounded
literals or data structures but modal logic formulas [12].

Finally, our framework provides the developer with the
PRACTIONIST Agent Introspection Tool, to entirely and eas-
ily monitor the components involved in the execution cycle of
an agent. Throughout this paper we show how PRACTIONIST
agents actually work by means of snapshots of our monitoring
tool and through the well-knownblocks worldexample. In this
simple case study, we developed ablocks world agent, which,

WOA 2005 66

Fig. 1. An initial situation for the blocks world problem.

starting from an initial situation (see figure 1), is requested
(through an ACL message) to order some numbered blocks.

This paper is organized as follows: in section II we give
a brief overview of the PRACTIONIST framework and the
agent model; then in sections III to V we provide a brief
description of the main agent components; finally in section
VI we describe the execution flow of PRACTIONIST agents
referring to their previously described components.

II. T HE PRACTIONIST FRAMEWORK: AN OVERVIEW

The PRACTIONIST framework aims at supporting the
programmer in developing agents(i) endowed with a symbolic
representation about their internal states and environment, (ii)
able to plan their activities in order to pursue some objectives,
and(iii) provided with both proactive and reactive behaviours.

PRACTIONIST has been designed on top of JADE, a
widespread platform that implements the FIPA specifications
[13] and provides some core services, such as a communica-
tion support, interaction protocols, life-cycle management, and
so forth. Therefore, the PRACTIONIST agents are executed
within JADE containers and the main cycle is implemented
by means of a JADE cyclic behaviour.

In PRACTIONIST, an agent is a software component with
the following elements:(i) a set ofperceptorsable to listen
to some relevant perceptions;(ii) a set of beliefs, which
represents the information the agent has got about both its
internal state and the external world;(iii) a set of goals,
which are some objectives related to some states of affairs
to bring about or actions to perform;(iv) a set ofplans that
are the means to achieve its intentions;(v) a set ofactionsthe
agent can perform to act over its environment;(vi) and a set
of effectorsthat actually support the agent in performing its
actions. The main components of PRACTIONIST agents are
described in more details in the following sections.

The framework also provides developers with the PRAC-
TIONIST Agent Introspection Tool (PAIT), a visual integrated
monitoring and debugging tool, which supports the analysisof
the agent’s state during its execution. In particular, the PAIT
can be suitable to display, test and debug the agents’ relevant
entities and execution flow. Each of these components can
be observed at run-time through a set of specific tabs (see
figure 2); the content of each tab can be also displayed in an
independent window.

All the information showed at run-time could be saved
in a file, providing the programmer with the possibility to
perform an off-line analysis. Moreover, the PAIT provides a
dedicated area for log messages inserted in the agent source
code, according to the Log4j approach [14]. The usage of
this console and the advantages it provides are described in
more details in the following sections along with the agent’s
components.

III. B ELIEFS

In general, the BDI model refers to beliefs instead of
knowledge, as agents’ information about the world is usually
incomplete or incorrect, due to uncertainty and problems
with perceptions and communication in their dynamic and
possibly unpredictable environment [1]. Indeed,beliefsare not
necessarily true, whileknowledgeusually refers to something
that is definitely true [12]. According to this, an agent may
believe true something that is false from another agent’s and/or
the designer’s point of view, but in the BDI model the idea is
just to provide the agents with a subjective window onto the
world.

The PRACTIONIST framework adopts the common ap-
proach of modeling agents’ beliefs by thedoxastic modal
logic, which is based on the axioms K, D, 4, and 5 (see [12]
for more details). Thus, in our framework beliefs are expressed
through the modal operatorBel(α,ϕ), whose arguments are
the agentα (the believer) and what it believes (ϕ, the fact).
Each factϕ may be believed true or false by a PRACTIONIST
agentα, i.e.:

• Bel(α,ϕ): the agentα believes thatϕ is true;
• Bel(α,¬ϕ): the agentα believes thatϕ is false.
Moreover, in order to assert that the agentα does not have

any belief aboutϕ, we defined the following operator:

Ubif(α,ϕ) ⇔ ¬Bel(α,ϕ) ∧ ¬Bel(α,¬ϕ)

Each fact can either be a closed formula of the classical
modal logic or a belief of any agent. In other words, an agent
may believe something (e.g. ‘it is possible that it is raining
in Rome’), or havenested beliefs, that is it may believe that
some agent (even itself) believes something (e.g. ‘the agent
Jim believes that it is raining in Rome’).

Finally, in PRACTIONIST agents it is possible to link an
agent’s beliefs to others’ beliefs or other elements, obtaining
new entailed beliefs, through thebelief formulas(BFs). An
example of belief formula follows:

Bel(tom,Bel(john, raining)) ∧ Bel(tom, trust(who :
john)) ⇒ Bel(tom, raining)

Therefore BFs define relationships among two or more beliefs,
allowing to infer new beliefs not explicitly asserted.

In regards to the architectural aspects, each PRACTIONIST
agent is endowed with a Prolog belief base, where beliefs
are asserted, removed, or entailed through the inference on
the basis of KD45 rules and user-defined belief formulas.
Therefore, in any moment the agent’s belief set (BS) is
composed of the beliefs that have been both directly asserted

WOA 2005 67

Fig. 2. The PRACTIONIST Agent Introspection Tool (PAIT).

Fig. 3. The belief base view of PAIT.

and inferred by means of the BFs and the other built-in
theorems.

Referring to the blocks world example, the initial set up
of the blocks shown in figure 1 is graphically represented
in PAIT in terms ofBels andUbif s (figure 3). As it can be
noticed, the structure of the belief base is represented as atree,
whose root refers to the current agent (i.e.self) and nodes refer
to the believed facts. This structure lets the developer easily
explore the belief base and select groups of beliefs ranging
from the whole belief set (by selecting the root) to a specific
belief (by selecting the corresponding leaf). Between themthe

developer can choose an intermediate node in order to select
the corresponding set of beliefs that share the same prefix.

Moreover, the icon of nodes represents the type of believed
facts, such aspredicateor modal logic formula(P), Bel (B),
Ubif (U), while the color represents their truth value, that is
true (green) andfalse (red).

As an example, selecting the node related to the agentpippo,
the beliefs with

Bel(self, not(bel(pippo,

as prefix will be detailed on the right frame, as shown in figure

WOA 2005 68

3. On the other hand, if the developer selects the leaf related
to the agentpluto within the above-mentioned node, PAIT will
show only the belief

Bel(self, not(Bel(pippo,Bel(pluto, on(under :
table1, over : block3)))))

It should be also noticed that this feature of the console is
very useful when developing and testing agents, as it provides
the user with a real-time snapshot of the agent’s information
attitudes.

IV. PLANS

In the PRACTIONIST framework plans represent an im-
portant container by which developers define the actual be-
haviours of agents. Therefore, each agent may own a declared
set of plans (theplan library), which specify the activities the
agent should undertake in order to pursue its intentions, or
to handle incoming perceptions, or to react to changes of its
beliefs.

Though the structure of plans can be defined by Java classes,
the preferred approach relies on a declarativeplan description,
which specifies the complete set of information (theplan slots)
used when actually executing the plans, as described in section
VI. The complete list of such slots is reported in table I.

Thus, a plan represents a possible recipe to manage the
trigger event; it may be related to a goal, an external event,
or an event which notifies a change of the belief set. How
to actually handle a certain event is reported within the body,
which is anactivity, that is a set ofacts, such asdesiring to
bring about some states of affairs or to perform some action,
addingor removingbeliefs,sendingACL messages,doing an
action and so forth.

It should be noticed that acts and actions are different, as
one of the possible acts concerns with doing an action that
lets the agent influence the environment, while other acts may
produce internal effects only.

Regarding to the blocks world running example, one of the
developed plans is theTopLevelPlan, which provides the agent
with the capability of receiving and handling the request for
ordering the blocks. In section VI we illustrate how the plans
and their components are used during the execution flow and
how the execution of plans affects the overall behaviour of
PRACTIONIST agents.

V. ACTIONS

In PRACTIONIST, actions are described by tuples of four
elements: (1)arguments, which are the objects each action
acts over; (2)results, which are some kind of direct re-
sponses received from the environment; (3)preconditions,
which should be satisfied before executing the action; and
(4) effects(for both successfully and failing action execution),
which are the state of affairs that will be true or false after
executing the action (as long as preconditions are satisfied). It
should be noticed that arguments and results are objects, while
preconditions and effects are modal logic closed formulas.

TABLE I

THE STRUCTURE OFPRACTIONISTPLANS.

Identifier Unambiguous (within each agent)
identifier of plans

Trigger event If this event matches the selected
event, this plan can be activated.
In this case the plan is defined
aspractical

Context A modal logic formula that, when
believed true by the agent,
makesapplicablea practical
plan, so that the agent can select
it to pursue its objectives

Success condition When the agent believes that this
condition holds, the plan ends
with success, regardless its
execution state

Cancel condition When the agent believes that this
condition holds, the plan ends
with failure, regardless its
execution state

Body Set of acts that are performed
during the execution of the plan.
The body defines the actual
behaviour of the plan

Invariant Condition that must remain true
during the execution of the plan.
As soon as it becomes false (at
least according to the agent’s point
of view), it will try to restore it

Belief updates Effects of this plan, in terms of
in case of success belief updates in case the plan

ends with success
Belief updates Effects of this plan, in terms of

in case of failure belief updates in case the plan
ends with failure

Actions are implemented in PRACTIONIST through Prolog
structures or Java classes that include the above-mentioned
elements. An example of action description from the blocks
world agent follows:

action(move(block: Block, to: To),
inputs: [Block, To],
outputs: [],
preconditions:
[on(over: Block, under: From),

clear(obj: To), clear(obj: Block)],
success:
[-clear(obj: To),

-on(over: Block, under: From),
+clear(obj: From),
+on(over: Block, under: To)],

failure: [])

It states that the actionmove takes two arguments as
inputs (respectively the block to move and the block where
it is moved over). Moreover, preconditionson(over :
Block, under : From), clear(obj : To), and clear(obj :
Block) must be satisfied before performing the action in order
to have a proper execution. Finally, once the action has been
executed, in case of success the agent will believe that both
clear(obj : To) and on(over : Block, under : From) are
false, while it will believe that bothclear(obj : From) and

WOA 2005 69

Fig. 4. An example of plan description: theTopLevePlan.

on(over : Block, under : To) are true. Otherwise, in case of
failure in executing the action, no update of the agent’s beliefs
has to be done.

Planning attitudes and the decision making of PRACTION-
IST agents will rely on action description information, espe-
cially preconditions and effects.

VI. EXECUTION FLOW

In this section, we present the execution flow of PRAC-
TIONIST agents in terms of relationships among the abstrac-
tions described above. Referring to figure 5, an agent cyclically
performs the following steps:

1) it searches for stimuli from the environment through the
perceptors that transform perceptions intoevents(we call
them external events), which in turn are put into the
Event Queue(in figure 6 a snapshot of the events tab
of PAIT is shown), along withinternal events (those
generated by belief updates or goal commitments).
In the PRACTIONIST console, the user could examine
the current, the suspended and the handled events. Each
event is tagged by some information about its arrival
time and when it has been actually handled.
Referring to the blocks world example, the agent will
receive an ACL message, by which another agent re-
quests it for putting the blocks in a specified order (see
the selected message in figure 2). This component of
the PAIT deals with the interactions established with
other agents: all incoming and outgoing messages are
registered in a single table, even though a complete de-
scription of messages can be shown in a different dialog
box whose structure reflects the well-known FIPA ACL
message. Besides, the messages can also be ordered (e.g.
by their arrival time, direction, etc.) or filtered according
to the relative performative;

2) it selects and extracts an event from the queue (Event
Selection). In the blocks world example, let us suppose
that the event corresponding to the above-mentioned

received message is extracted from the queue and then
handled as follows;

3) it selectspractical plans from thePlan Library, which
are those plans whose trigger event matches the selected
event (Optionsin figure 5); if the selected event is related
to a goal and no plan has been triggered, an automatic
planning is performed on the basis of available action de-
scriptions in order to build a new dynamically-generated
plan, which is able to pursue that goal (Planning in
figure 5). If the planner is not able to figure out any
plan, the calling plan will fail, then the selected event
will have not been successfully managed. As stated, in
the blocks world example we have defined a plan (i.e.
TopLevelP lan) that will be activated by the above-
mentioned message, as it has the following trigger event:

msg(request
(action
(agent-identifier :name bwa@foo.com)
(order(blocks: BlockList))))

Once the plan is triggered, the following substitution is
made:

BlockList = [table3, block1, block2,
block3, ..., block8,
block9, block10]

4) among practical plans, the agent detects theapplicable
ones, which are those plans whose context is believed
true by the agent. Then the agent builds the intended
means (Build Intended Means), which represents the
means the agent has just chosen and committed to in
order to satisfy a goal, or to react to a perception or a
change in its beliefs. Therefore, the intended means will
contain the main plan and the other alternative practical
plans (see figure 7).
If the event selected at the step (2) concerns with a
goal, this means that some executing intended means
has generated it after the deliberation phase (see below).
Thus, the selected plan is put on top of such an intended
means (figure 7a). On the other hand, in case of external
events or belief update events, a new intented means
stack is created (figure 7b).
The set of intended means stacks is monitored by means
of a corresponding tab in PAIT (figure 8), which shows
nested intended means through a tree data structure, used
as an explorer to select the ones to trace. In particular,
once an intended means is selected, its log messages
(managed inside the plan’s source code by the developer)
will be shown in the frame on the right, along with
the logs of nested intended means. The PRACTIONIST
console makes the process of building intended means
stacks easy to follow, providing the users with the
opportunity to examine the entire means-ends reasoning;

5) all intended means stacks are concurrently executed in
separate threads. In other words, the main plan at the
top of each stack is extracted and then executed (see
Execute intended meansin figure 5). In section VI-A
we provide more details on the execution of plans in
PRACTIONIST agents, in terms of the several kind of

WOA 2005 70

Fig. 5. PRACTIONIST agent architecture.

Fig. 6. The event queue view of PAIT.

Fig. 7. Building of intended means stacks: a) the new intendedmeans is put on top of executing stack; b) the new intended meansis put in a new stack.

WOA 2005 71

Fig. 8. Intended Means View.

acts the framework provides.
During the execution of the main plan, if the agent
believes that its success condition (see table I) holds, that
plan ends with success regardless its execution point and
state. On the other hand, if the agent believes that the
cancel condition is true, the plan ends with failure. Thus,
referring to theblocks world agentand theTopLevelPlan
described in figure 4, if during the execution of such
a plan the required final order of blocks is achieved
(for example due to some external reasons, e.g. other
agents do the work of ordering the blocks), the agent will
stop executing the plan, being successful in achieving its
goal. Likewise, if the agent suddenly believes that the
predicateordering is false, it will stop executing the
plan, but in this case failing in pursuing its objectives.
Moreover, while executing the plan the agent checks the
condition to be maintained (e.g.ableToOrder(who :
self) in figure 4): if it is believed false, the agent will
try to bring it about, by desiring and possibly intending
to achieve it. If the agent succeeds in doing that, the
plan will continue executing, otherwise it will fail. When
the plan has completed its execution, the agent will
update some beliefs, according to whether the plan has
succeeded or not.

It should be noted that, when the executing plan fails, since
a PRACTIONIST agent has a strong commitment to handling
the selected event, it selects another plan from the above-
mentioned alternative practical plans and checks whether it is
applicable or not. Then, if some other applicable plan exists,
the agent replaces the failed plan with it (which becomes the
new main plan) in the executing intended means; otherwise,
the whole intended means fails and in turn the plan below fails
too.

A. Executing Plans

While executing its plans, the agent will have different
behaviours according to the type of acts. The plans in turn will
fail as soon as one of such acts fails. Some of the possible
acts a PRACTIONIST agent can manage are:

• do an action: if its preconditions are satisfied (at least
according to the agent’s beliefs), the agent executes the
action with the proper inputs and gets both the outputs
and the general overcome of the action (that can betrueor
false). If the preconditions are not satisfied or the outcome
is false, the action fails. Finally, the effects of such an
action are applied to the belief base after the execution.
It should be noted that actions are actually executed by
some effectors. Thus, the agent will search for a proper
effector that is able to execute an action and then delegate
the actual execution to it;

• add or removebeliefs: as soon as it is executed, the
correspondingbelief updated eventis generated. This
event will be then handled in the following cycles;

• queryover the belief base according to several criterion;
• send an ACL messageto other agents;
• desire to bring about some state of affairs or perform

an action, both expressed as goals. The agent processes
such a desire in order to figure out whether it can be
promoted to an intention or not, according to the process-
ing described in section VI-B. If it can, a corresponding
internal event is created, put in the event queue, and then
considered at the step (2) in one of the following cycles.
Then, the corresponding intended means is built and
nested inside the one that contains the above-mentioned
desire invocation.
After executing the nested intended means, if the agent
does not believe that the goal has succeeded, the desire

WOA 2005 72

act will fail; otherwise, the goal will be satisfied and the
act will succeed.

• wait for external messages, by specifying an abstract
structure (a template) of them. Thus, as soon as a message
is received by the agent, if the message matches the
template, this intended means can continue its execution;

• wait for successful goals, which lets the agent syn-
chronize its activities with other intended means, but at
the goal level. In other words, there is not an explicit
synchronization among plans or intended means. Instead,
some intended means and their executing plans can be
directly synchronized with some ends (the intentions).

Several other acts are provided in PRACTIONIST in order
to support the developers in actually implementing effective
plans.

B. The Deliberation Process

In the PRACTIONIST framework, a goal is an objective
to pursue and we refer to it as an abstraction to make the
distinction between the state of affairs to be achieved and
the way to achieve it. Besides, we use goals as a mean
to transform desires into intentions through the satisfaction
of some properties during the deliberation phase. Thus, in
PRACTIONIST two families of goals were defined, as follows:

• state goals, which refer to some states of affairs the
agent desires/intends to bring about, or cease, or preserve,
or avoid. We provided PRACTIONIST agents with the
capability of managing and reasoning about the following
state goals:achieve, which represents what kind of world
state to bring about;cease(as opposed to achieve), which
represents a world state an agent wants to stop;maintain,
which has the purpose to observe some world state and
continuously re-establish this state when it does not hold;
avoid (as opposed to maintain), which has the purpose to
observe some world state and continuously prevent it;

• perform goals, which are not related to some world states
but to some actions the agent desires/intends to perform.

In our framework states of affairs are represented by closed
formulas of the FOL. Moreover, for each type of state goals,
PRACTIONIST defines a success condition formula which is,
in turn, defined by a modal logic closed formula that depends
on its state of affairs.

We also defined the properties ofinconsistencyand en-
tailment for goals. More precisely, we define a goalG1 as
inconsistentwith a goalG2 if and only if whenG1 succeeds,
thenG2 fails. On the other hand, a goalG1 entailsa goalG2

(or equivalentlyG2 is entailed byG1) if and only if whenG1

succeeds, then alsoG2 succeeds.
These properties of goals are used by PRACTIONIST

agents when reasoning about goals during the deliberation
phase.

Thus, as described in section VI-A, an agentα may have
the desire to pursue a goalG. Before committing to it, the
agent will check if the goalG is inconsistent with some of
currentactive goals, which are those goals the agent is already
committed to. Then, ifG is inconsistent with at least one of

Fig. 9. The intended final situation in the blocks world problem.

those goals,G will remain just a desire and the agent will not
”intend” it. On the other hand, if the goalG is not inconsistent
with active goals, then it can be promoted to anintention.

But before moving to means-ends reasoning, the agentα

will check if it believes that the goalG has already succeeded
or if the goalG is entailed by some of current active goals.
If so, there is no reason to really pursue the goal, that is the
agent does not need to make any means-ends reasoning to
figure out how to achieve such a goal, else the agent will try
to figure out a set of plans to achieve this intention, and build
the intended means, as explained in section VI.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper we presented PRACTIONIST, a framework
we have been developing for the implementation of agents
according to the BDI model of agency.

PRACTIONIST implements the practical reasoning pro-
posed by Bratmam, trying to provide developers with usable
abstractions and processing capabilities. In this direction, we
believe that with respect to some of existing BDI agent im-
plementations, our approach provides a more clear separation
between the ends the agent wishes/wants to bring about and
the means to do it. As a matter of fact, referring to the blocks
world example, the agent is mainly programmed in terms of
states to achieve instead of actions to perform, according to
the philosophy of our framework. The figure 9 shows the final
situation of blocks (the ends)intendedand pursued by the
agent through its plans (the means).

Moreover, our framework provide a very expressive way
to represent and reasoning about beliefs through modal logic
formulas.

We also presented the PRACTIONIST Agent Introspection
Tool (PAIT), which supports the developer in the debugging
of agents according to our model. We argue that such a tool
is important especially when defining BDI agents in real case
scenarios and in complex environments, due to the intrinsic
declarative nature of mental attitudes when compared to the
adopted imperative programming languages.

WOA 2005 73

However, some further work should be done with respect
to the several issues that a BDI model involves. Among them,
our intention is to improve the execution flow by adding some
functionalities like timing, new acts, and so on, that could
help in the successful application of our framework in real
problems.

ACKNOWLEDGMENT

This work is partially supported by the Italian Ministry
of Education, University and Research (MIUR) through the
project PASAF.

REFERENCES

[1] A. S. Rao and M. P. Georgeff, “Modeling rational agents within a
BDI-architecture,” inProceedings of the 2nd International Conference
on Principles of Knowledge Representation and Reasoning, J. Allen,
R. Fikes, and E. Sandewall, Eds. Morgan Kaufmann publishers
Inc.: San Mateo, CA, USA, 1991, pp. 473–484. [Online]. Available:
http://citeseer.nj.nec.com/rao91modeling.html

[2] M. E. Bratman,Intention, Plans, and Practical Reason. Cambridge,
MA: Harvard University Press, 1987.

[3] G. Weiss, Ed., Multiagent Systems: A Modern Approach to
Distributed Artificial Intelligence. MIT Press, 1999. [Online].
Available: http://jmvidal.cse.sc.edu/library/WeissBook/

[4] M. P. Georgeff and A. L. Lansky, “Reactive reasoning and planning,”
in Proc. of AAAI-87, Seattle, WA, 1987, pp. 677–682.

[5] M. d’Inverno, D. Kinny, M. Luck, and M. Wooldridge, “A formal
specification of dMARS,” ser. LNAI, M. P. Singh, A. Rao, and M.J.
Wooldridge, Eds., vol. 1365. Springer, 1997, pp. 155–176.

[6] J. Lee, M. J. Huber, P. G. Kenny, and E. H. Durfee, “UM-PRS:An
Implementation of the Procedural Reasoning System for Multirobot
Applications,” in Conference on Intelligent Robotics in Field, Factory,
Service, and Space (CIRFFSS), Houston, Texas, 1994, pp. 842–849.
[Online]. Available: citeseer.ist.psu.edu/lee94umprs.html

[7] M. J. Huber, “Jam: A bdi-theoretic mobile agent architecture.” in Agents,
1999, pp. 236–243.

[8] M. Dastani, F. de Boer, F. Dignum, W. van der Hoek, M. Kroese, and
J.-J. Meyer, “Implementing cognitive agents in 3APL,” pp. 515–516.

[9] F. Bellifemine, A. Poggi, and G. Rimassa, “JADE - a FIPA-
compliant agent framework,” inProceedings of the Practical
Applications of Intelligent Agents, 1999. [Online]. Available:
http://jmvidal.cse.sc.edu/library/jade.pdf

[10] L. Braubach, A. Pokahr, and W. Lamersdorf, “Jadex: A short overview,”
in Main Conference Net.ObjectDays 2004, 9 2004, pp. 195–207.

[11] P. Busetta, R. Rnnquist, A. Hodgson, and A. Lucas, “Jackintelligent
agents - components for intelligent agents in java,” 1999.

[12] B. F. Chellas,Modal Logic: An Introduction. Cambridge: Cambridge
University Press, 1980.

[13] “FIPA Abstract Architecture Specification,”
http://www.fipa.org/specs/fipa00001/, August 2001.

[14] “Jakarta Log4J Homepage,” http://jakarta.apache.org/log4j/. [Online].
Available: http://jakarta.apache.org/log4j/

WOA 2005 74

A Discrete-Event Simulation Framework
for the Validation of Agent-based and Multi-Agent Systems

Giancarlo Fortino, Alfredo Garro, Wilma Russo

DEIS – Università della Calabria, I-87036 Rende (CS), Italy
{g.fortino, garro, w.russo }@unical.it

Abstract

Simulation of agent-based systems is an inherent
requirement of the development process which provides
developers with a powerful means to validate both
agents’ dynamic behavior and the agent system as a
whole and investigate the implications of alternative
architectures and coordination strategies. In this paper,
we present a discrete-event simulation framework which
supports the validation activity of agent-based and multi-
agent systems which are modeled and programmed as a
set of event-driven agents by means of the Distilled
StateCharts formalism and related programming tools.
The simulation framework is equipped with a discrete-
event simulation engine which provides support for the
execution of agents by interleaving their events
processing, the exchange of events among agents, the
migration of agents, and the clustering of agents into
agent servers interconnected by a logical network. Using
this framework, an agent-based complex system can be
easily validated and evaluated by defining a simulator
program along with suitable test cases and performance
measurements.

1. Introduction

Agent-based and multi-agent systems (MAS), like
other complex software systems, must be tested and
evaluated before being deployed [10]. Simulation of
agent-based systems is an inherent requirement in all
phases of the development process. Modeling and
simulation help developers learn more about agents'
interactive behavior and investigate the implications of
alternative architectures and coordination strategies. In
particular, discrete-event simulators are highly required
for evaluating how complex agent-based systems work on
scales much larger than those achievable in real testbeds.

Currently few development processes for agent-based
systems which explicitly incorporate a simulation phase
have been proposed. In [13] an integrated development
environment for the engineering of MAS as Electronic
Institutions is presented. An Electronic Institution is a

performative structure of multi agent protocols (or scenes)
along with a collection of normative rules that can be
triggered off by agents’ actions. The development
environment is composed of a set of tools supporting the
design, validation through simulation, development,
deployment and the execution of MAS as Electronic
Institutions. Such a development environment is aimed at
facilitating the iterated and progressive refinement of the
development cycle of MAS. In particular, SIMDEI, a
simulation tool, allows for the animation and analysis of
the specification of the rules and protocols in an
Electronic Institution. In [12, 15] a modeling and
simulation framework (DynDEVS) for supporting the
development process of MAS from specification to
implementation is proposed. The authors advocate the use
of controlled experimentation in order to allow for the
incremental refinement of agents while providing rigorous
observation facilities. The benefits of using modeling and
simulation for the evaluation of cooperative agents is
illustrated through a simple example based on the
Contract Net Protocol. The exploited simulation
framework is JAMES, a Java Based Agent Modeling
Environment for Simulation, which aims at exploring the
integration of the agents paradigm within a general
modeling and simulation formalism for discrete-event
systems. JAMES follows a formal approach for discrete-
event simulation based on DEVS (Discrete Event Systems
Specification) which allows to specify (atomic and
coupled) models and execute them by sending typed
messages between simulator objects. In [11] a logic based
prototyping environment for multi-agent systems, CaseLP
(Complex Application Specification Environment Based
on Logic Programming) is presented. CaseLP integrates
simulation tools for visualizing the prototype execution
and for collecting the related statistics. The CaseLP
visualizer tool provides documentation about events that
happen at the agent level during the MAS execution.
Developers according to their needs can instrument the
code of some agents after it has been loaded by adding
probes to the code of agents. In this way, events related to
state changes and /or exchanged messages can be
recorded and collected for on-line and/or off-line
visualization. It is worth pointing out that from a

WOA 2005 75

simulation point of view CaseLP is a time-driven
centralized simulator with a global time known from all
the agents in the system.

In this paper, we present a Java-based discrete-event
simulation framework which supports the validation
activity of agent-based and multi-agent systems which are
modeled and programmed as a set of event-driven agents
by means of the Distilled StateCharts formalism and the
related programming tools [8]. The simulation framework
is organized in four layers: (i) low-level simulation
framework, which provides the basic mechanisms and
classes to simulate general purpose systems; (ii) agent
platform, which is built atop the low-level simulation
framework and provides a distributed infrastructure
formed by a network of interconnected agent servers; (iii)
ELA adapter, which allows to map event-driven DSC-
based lightweight agents onto the agent platform layer;
(iv) user, which provides abstractions representing
interacting users and users’ behaviors. Using this
framework, an agent-based complex system can be easily
validated and evaluated by defining a simulator program
along with suitable test cases and performance
measurements.

The remainder of the paper is structured as follows.
Section 2 overviews the Distilled StateCharts-based
approach for the modeling and validation of agent-based
system which adopts the proposed simulation framework
as validation tool. In section 3, the simulation framework
is described in detail whereas section 4 reports some
results concerning with the performance evaluation of an
agent-based e-Marketplace by means of the simulation
framework. Finally conclusions are drawn and directions
of future work delineated.

2. A Distilled StateCharts-based approach
for the modeling and validation of agent-
based systems: an overview

The Distilled StateCharts-based approach [5, 6], which
aims at supporting the modeling and validation of agent-
based and multi-agent systems, consists of the following
phases (Fig. 1): High-Level Modeling, Detailed Design,
Coding and Simulation.

High-Level
Modeling

AS

Detailed
Design Coding Simulation

Process Phase

Phase Workproduct

ASDSC C(ASDSC) ResultSet

Figure 1. Process schema of the DSC-based approach.

The High-Level Modeling phase can be supported by
well-established agent-oriented methodologies (such as
the Gaia methodology [17]) which cover the phases of
requirements capture, analysis and high-level design. The
product of this phase is the agent-based system model
(AS) defined as follows:

AS = <AT, LCL, act, serv, prot>,
where:

AT (Agent Types) is the set of types of agents
embodying activity, offering services and interacting with
each other;

LCL (Logical Communication Links) is the set of
logical communication channels among agent types which
embody interaction protocols;

act: AT → activity description is the activity relation
which associates one or more activities to an agent type;

serv: AT → service description is the service relation
which associates one or more services to an agent type;

prot: LCL → interaction description is the protocol
relation which associates an interaction protocol to a
logical communication channel.

The Detailed Design phase is enabled by a Statecharts-
based formalism, namely the Distilled StateCharts (DSC)
[8], which supports the specification of the behavior of the
agent types and the interaction protocols among the agent
types of AS. In particular DSC allow for the specification
of the behavior of lightweight agents (see §2.1) which are
event-driven, single-threaded entities capable of
transparent migration and executing chains of atomic
actions. The DSC-based specification of an AS, denoted
as ASDSC, can be expressed as follows:

ASDSC = {Beh(AT1), …, Beh(ATn)},

where Beh (ATi) = <SBeh(ATi), EBeh(ATi)> is the DSC-
based specification of the dynamic behavior of the i-th
agent type. In particular, SBeh(ATi) is a hierarchical state
machine incorporating the activity and the interaction
handling of the i-th agent type and EBeh(ATi) is the related
set of events to be handled triggering state transitions in
SBeh(ATi).

The Coding phase is carried out by using the Java-
based Mobile Active Object Framework (MAO
Framework) [8] and produces the work product C(ASDSC)
representing the code of ASDSC. In particular, Beh(ATi)
can be seamlessly translated into a composite object,
which is the object-based representation of SBeh(ATi), and
into a set of related event objects representing EBeh(ATi).

The Simulation phase is supported by MASSIMO, a
Java-based discrete-event simulation framework for multi-
agent systems (see §3). On the basis of the framework, a
simulator program can be implemented and executed to
obtain a ResultSet containing validation traces and
performance parameter values. The validation of agent
behaviors and interactions is carried out on execution

WOA 2005 76

traces automatically generated, whereas the performance
evaluation relies on the specific agent-based system to be
analyzed; the performance evaluation parameters are
therefore set ad-hoc. The ResultSet can also be used to
feed back the High-level Modeling and Detailed Design
phases.

2.1. The reference agent model

The agent model is based on the abstraction of event-
driven state-based lightweight agent [7] which can be
represented by the tuple:

<Id, Beh, DS, TC, EQ>,
where:
- Id is the unique identifier of the agent;
- Beh is the DSC-based dynamic agent behavior;
- DS is the data space hierarchically organized of the

agent;
- TC is the single thread of control supporting agent

execution;
- EQ is the event queue of the agent containing received

and to-be-processed events.
The event-driven state-based lightweight agent is

programmed by specifying its Beh through the FIPA-
compliant agent behavioral template [2], reported in
Figure 2, which is a Distilled StateChart [8] consisting of
a set of basic states (Initiated, Transit, Waiting,
Suspended, and Active) and transitions labeled by events.
In particular, the agent performs computations and
interactions in the Active Distilled StateChart (ADSC)
composite state, inside the Active state, which is to be
refined by the agent programmer. The presence of the
deep history connector (H*) inside the Active state allows
for a coarse-grained strong mobility-based agent
migration [9]. An event reaction can produce
computations, which can affect the DS, and/or the
generation of one or more events, or a migration. While
the reception of incoming events (or IN-events) is implicit
and decoupled by the EQ, the transmission of events is
explicitly carried out by means of the
generate(<event>(<parameters>)) primitive which
allows to asynchronously raise outcoming events (or
OUT-events). The execution semantics of the event-
driven state-based lightweight agent are defined in terms
of the Event Processing Cycle (EPC): the next available
event is cyclically fetched from EQ and is passed to the
Beh which can handle it so triggering one reaction. OUT-
and IN-events are classified in:
- internal events, which can be defined at programming

level for self-triggering active and/or proactive
behavior. In the case of internal events, IN and OUT
events coincide. In fact, an emitted internal event or

OUT-event is received as IN-event by the emitting
agent itself.

- management events, which include requests and
notifications of services at agent server level such as
agent lifecycle management, creation, cloning, and
migration.

- coordination events, which enable coordination acts
between agents according to a specific coordination
model. In this paper the considered coordination model
is the asynchronous Direct model, even though the
Tuple-based and the Publish/Subscribe event-based
models could also be exploited as shown in [7].

TOP STATE

INITIATED

Invoke

TRANSIT

Execute

Move

Quit Destroy

WAITING

Wake_UP

Wait

SUSPENDED

Resume

Suspend

ACTIVE

H*

Active Distilled
StateChart

Figure 2. The FIPA-based template of the event-driven
DSC-based lightweight agent.

In order to exemplify the DSC-based modeling of

agent behavior, the specification of the ADSC of a mobile
event-driven state-based lightweight agent is shown in
Figure 3; Table 1 reports state variables, methods and
events of the example agent specification. The agent
overall goal is that of moving across a set of agent servers
according to a predefined itinerary for monitoring a set of
remote processes. In order to fulfill its goal, the agent
alternates the following three phases:
- Data acquisition, which is performed by generating

DataRequest coordination events targeting N different
local agents which are controlling the local process. As
soon as the monitoring data are collected (after the
reception of all the DataReply coordination events), the
internal Reply event is generated.

- Data processing, which is performed upon reception of
the Reply event and carried out by means of the
process method. It can also occur upon reception of the
Process coordination event sent by another agent (e.g.
the owner agent) if data are enough (the guard g holds),
otherwise the agent returns in the substate of request
which abandoned most recently.

- Migration, which depends on the data processing
which, if successful, enables the agent to autonomously
migrate to another site according to its itinerary;
otherwise, the monitoring process is re-executed.

WOA 2005 77

|

REQUEST

DATA
REQUEST

H

/ ac1

Request
Process [g] / ac4

Process [!g]

Reply / ac5

DataReply / ac3Step / ac2

DATA
REPLY

PROCESS

DataReply / ac3

Step / ac2

|

Action expressions:
ac1:count=0;
 generate(new Step(0));
 generate(new DataRequest(recipients[0], 0));
ac2:i=((Step)e).getI();
 if (i<N-1) generate(new Step(i+1))
generate(new DataRequest(recipients[i+1], i+1));

ac3:i=((DataReply)e).getI();
 data[i]=((DataReply)e).getData();
 count++;
 if (count==N) generate(new Reply());
ac4:if (process()) {
 next=(next+1)%itinerary.length;
 generate(new Move(self(), itinerary[next]));}
 generate(new Request());
ac5:ac4;
Guards:
g:enough()

Figure 3. The Active Distilled StateChart
of the example agent.

VAR DESCRIPTION

N Number of requests the agent issues to the local monitoring
agents

itinerary List of agent servers to be visited
recipients List of identifiers of the interacting agents

data Collector of the data coming from the replying agents
next Index of the last visited agent server

count Number of replies received in a monitoring cycle
i Temporary integer variable
e Reference to the last received event instance

METHOD
process Specific method for processing data which returns true if the

processing was successful
enough Specific method for evaluating if there are enough data for

processing
self Method which returns the identifier of the agent

EVENT
Step Internal event pacing the generation of DataRequest

DataRequest Coordination event of the asynchronous Direct model sent by the
agent to the local monitoring agents for requesting data

DataReply Coordination event of the asynchronous Direct model sent by a
local monitoring agent for replying to DataRequest

Reply Internal event indicating data gathering completion
Process Coordination event enabling a forced processing
Request Internal event activating a monitoring cycle

Table 1. State variables, methods and events of the
example agent.

3. MASSIMO: a discrete-event simulation
framework for MAS

The Multi-Agent Systems SIMulation framewOrk
(MASSIMO) is a Java-based discrete-event simulation
framework which allows for the validation and evaluation
of:
- the dynamic behavior (computations, interactions, and

migrations) of individual and cooperating agents;
- the basic mechanisms of the distributed architectures

supporting agents, namely agent platforms;
- the functionalities of applications and systems based on

agents.
The architecture of MASSIMO (Fig. 4) is composed of

four basic layers:
(i) Low-level simulation framework, which provides

the basic mechanisms and classes to simulate general
purpose systems;

(ii) Agent platform, which is built atop the low-level
simulation framework and provides a distributed
infrastructure formed by a network of interconnected
agent servers;

(iii) ELA adapter, which extends the MAAF (Mobile
Agent Adaptation Framework) [8] and allows to map
event-driven DSC-based lightweight agents, provided by
the MAO Framework, onto the agent platform.

(iv) User, which provides abstractions representing
interacting users and users’ behaviors.

In the subsections 3.1-3.4 the four layers are described
in detail. In section 3.5, the basic structure of a MAS
simulator program is exemplified.

SimulationEngine

AgentMetaAgent Message Timer

*

1
*

1
*

1

1..2 * 1 1

VirtualNework AgentServer MSG

(i) Low-level Simulation
Framework

(ii) Agent Platform

(iii) ELA Adapter

ELA

*

1

1
1

11

(iv) User

UserAgent UserAgentGenerator

*

*

<<interface>>
IMobileAgentAdapter

(from MAAF)

1* Start Reporting

MAOBehavior
(from MAOFramewok)

MAOId
(from MAOFramewok)

Figure 4. The architecture of MASSIMO.

WOA 2005 78

3.1. The low-level simulation framework
The low-level simulation framework is composed of

the following base Java classes which support agent-based
programming and simulation of general-purpose systems:
- Agent, which represents a computational state-based

agent communicating through asynchronous messages.
- MetaAgent, which represents a meta-level agent able to

capture and constrain messages sent by computational
agents or by other meta-agents.

- Message, which represents a message sent by an agent
(source) to another agent (target).

- Timer, which is an object encapsulating a Message
instance and a timeout. The message is delivered to its
target at the timeout expiration.

The basic components of the simulation engine (Fig. 5)
are:
- Global System Message Queue (GSMQ), which stores

all the messages to be delivered.
- Global System Timer Queue (GSTQ), which stores all

the timers ranked by timeout value.
- Simulation Clock (SC), which represents the simulation

time. It is incremented every time that a timer expires.
- Filter (FT), which receives the messages generated by

the computational agents and insert them into GSMQ if
they are not subjected to the meta-level agent capture;
otherwise FT forwards the messages to their associated
meta-agents.

- Scheduler (SD), which cyclically extracts a message
from GSMQ and dispatches it to the target agent. If
there are not messages in GSMQ, SD forces a timer
(the one with the lowest timeout) to fire and dispatches
the associated message to its target.

GlobalSystemMessageQueue (GSMQ)

set(timer)

fire(timer)

dequeue(msg) enqueue(msg)

process(msg) send(msg)

Sim
Clock

FilterScheduler process(msg)

send(msg)

Simulation Engine

process(msg)

G
lo

ba
lS

ys
te

m
Ti

m
er

Q
ue

ue
(G

ST
Q

)

Agents

MetaAgents

Figure 5. The architecture of the simulation engine.

3.2. The agent platform
The agent platform layer, which is built atop the low-

level simulation framework, provides two basic
abstractions: the AgentServer, which represents the
infrastructure where event-driven lightweight DSC-based
agents (ELAs) run, and the VirtualNetwork, which
represents a network of hosts on which AgentServers can
be mapped.

The AgentServer, which is an extension of the Agent
class, provides the following functionalities:
- agent management lifecycle, which supports

(de)registration and execution of ELAs;
- agent migration, which supports the migration of an

ELA from one AgentServer to another;
- agent interaction, which supports the event-based

interaction among ELAs;
- inter-agent-server service signaling.

PROCESSOR

GENERAT OR

MSG

WHIT E PAGES (WP)

LookUp
Register
UnRegister

ELA SET (ES)

Event

MSG

Event

ELA MSG

ELA1 ELAN

ELAId ELARef

Figure 6. The architecture of the AgentServer.

The architecture of the AgentServer (Fig. 6) consists of
the following components:
- White Pages (WP), which keeps archived the ELAs

running in the AgentServer. It consists of pairs
<ELAId, ELARef>, where ELAId is the ELA identifier
and ELARef is either (i) the reference to the ELA
identified by ELAId and belonging to the set of ELAs
(ES) running in the AgentServer or (ii) the proxy of the
ELA identified by ELAId and migrated to another
AgentServer. A proxy is a triple <AS, MBX, active>,
where AS is the address of the AgentServer to which
the ELA migrated, MBX is the ELA mailbox
containing the events targeting the ELA during the
ELA migration transitory, and active is a boolean
variable indicating whether or not the forwarding
activity of the proxy is on.

- Processor, which receives and processes incoming
MSGs, extensions of the Message class, which can
contain one of the following objects:
(i) an Event targeting an ELA. The ELA target of the
Event is looked up and the Event passed to it if the
ELA is present in the AgentServer; otherwise, the ELA

WOA 2005 79

Proxy is returned and the Event is encapsulated in a
MSG and the resulting MSG redirected to the
AgentServer address contained in the proxy.
(ii) a created ELA. The created ELA is registered in
the WP.
(iii) an incoming migrating ELA. The incoming ELA is
registered in the WP. If it is not the first time that the
ELA is hosted by the AgentServer, the previously left
proxy is substituted by the incoming ELA.
(iv) an outcoming migrating ELA. The outcoming ELA
is encapsulated in a MSG and the resulting MSG is
transmitted to the target AgentServer. Finally, the
outcoming ELA is unregistered from the WP and its
associated Proxy is set.
(v) an inter-AgentServer service message. The basic
service messages are those for the management of the
MBX of the ELA proxy:
- GetMBX, which is a request issued by a remote

AgentServer to activate the proxy and obtain the
MBX of an ELA which migrated from the
AgentServer to the remote AgentServer. Upon
reception of GetMBX, the AgentServer first looks
up the proxy of the ELA whose identifier is
contained in the GetMBX; then, it retrieves the
MBX associated to the ELA and, if the MBX is not
empty, sends an MBX message containing the
MBX to the remote AgentServer. Finally, the
proxy forwarding is activated (active=true).

- MBX, which contains the mailbox of an ELA
previously requested from a remote AgentServer
by a GetMBX service request. Upon reception of
an MBX message, the AgentServer looks up the
ELA whose identifier is contained in the MBX
message and, if the ELA is present in the
AgentServer, encapsulates the events contained in
the MBX message in Messages targeting the
AgentServer itself and inserts them in the GSMQ.
If the ELA is not present in the AgentServer, MBX
is sent to the AgentServer where the ELA migrated
if the proxy is on; otherwise, the events contained
in the MBX message are inserted in the MBX of
the ELA proxy.

- Generator, which processes the following events
generated by the hosted ELAs:
(i) Internal self-triggering Event. The event is
encapsulated in a MSG whose target is the AgentServer
itself to which the MSG is then transmitted.
(ii) External Event. The event is encapsulated in a
MSG whose target is the AgentServer hosting the ELA
target of the event and the MSG is then transmitted to
the target AgentServer.
(iii) Creation Event. The event contains the identifier
and the dynamic behavior of an ELA created in the
AgentServer. These parameters are used to create a
new ELA agent which is then encapsulated in a MSG

whose target is the AgentServer itself to which the
MSG is then transmitted.
(iv) Timer Event. The event is encapsulated in a MSG
whose target is the AgentServer itself and the MSG
then is encapsulated in a Timer which is set to the
timeout contained in the timer event.

The VirtualNetwork, which is an extension of the
MetaAgent class, is able to set Timers on transmitted
MSGs. It relies on a graph-based network structure in
which a network link is completely reliable and based on
an end-to-end delay model by which the delay of
event/message transmissions [3] and agent migrations [14]
can be calculated. The calculated delay is used as timeout
value of a Timer containing a MSG.

3.3. ELA adapter

The ELA (Event-drive Lightweight Agent) adapter
(Fig. 7) allows to plug a MAOBehavior object
encapsulating the DSC-based behavior of an event-driven
lightweight agent into the simulation framework.

<<interface>>
IMobileAgentAdapter

+ void generate(MAOEvent)
+ void receive(MAOEvent)
+ MAOId getMAOId()
+ run()
+ onArrival()
+ onDeparture()

ELA

+ mbeh : MAOBehavior
+ mid : MAOId
+ as : AgentServer
+ setAgentServer(AgentServer)

MAOBehavior
(from MAOFramework)

+ mas : MAOActiveState
+ mid : MAOId
+ imaa : IMobileAgentAdapter
+ MAOBehavior(MAOActiveState)
+ generate(MAOEvent)
+ MAOId self()

MAOId
(from MAOFramework)

+ hlname : String
+ homeLocation : String
+ currentLocation : String

+ MAOId(String, String)
+ setCurrLocation(String)

Figure 7. The ELA adapter layer.

The ELA class is an extension of the MAAF (Mobile
Agent Adaptation Framework) [8] designed to provide the
basic support for the adaptation of a MAOBehavior to a
mobile agent class which is made available by a specific
Java-based mobile agent platform. The ELA class
implements the IMobileAgentAdapter interface and is
associated with a MAOBehavior and a MAOId
encapsulating the high-level agent identifier.
IMobileAgentAdapter declares the following methods for
adapting agent interaction, execution and migration:
- receive, which is invoked to pass MAOEvents to

agents;
- generate, which interprets the MAOEvents generated

within MAOBehavior and translates them into calls of
platform-dependent methods;

- run, which is the method supporting agent execution;
- onDeparture, which is invoked just before the

migration initiates;
- onArrival, which is invoked after the migration is

completed.

WOA 2005 80

To completely adapt an ELA to the agent platform layer
the ELA class needs only to implement the methods
receive and generate. The method receive is invoked by
the AgentServer to deliver MAOEvents to ELAs. The
method generate, which is invoked by the MAOBehavior,
passes a MAOEvent to the AgentServer.

3.4. User

The User level makes it available two abstract classes
UserAgent and UserAgentGenerator which are extensions
of Agent. UserAgent represents a user directly connected
to an AgentServer who can create, launch and interact
with ELAs. UserAgentGenerator models the generation
process of UserAgents. In particular, the
UserAgentGenerator is able to create and start UserAgents
according to a given logic (e.g. statistical distribution).
Moreover, the Start message allows for the activation of a
UserAgent or a UserAgentGenerator, whereas the
Reporting message which targets a UserAgent contains a
report sent from an ELA owned by the UserAgent.

3.5. Simulator programming

A MAS simulator can be programmed on the basis of
the simulation entities described in the previous
subsections: VirtualNetwork, AgentServer, ELA,
UserAgent and UserAgentGenerator. A general simulator
program can be constructed in the following steps:

1. creation of the VirtualNetwork;
2. creation of one or more AgentServers;
3. mapping of the created AgentServers onto distinct

nodes of the VirtualNetwork;
4. creation of the ELAs that will not be created,

directly or undirectly, by a UserAgent;
5. mapping of the created ELAs onto AgentServers;
6. creation of one or more UserAgentGenerators

and/or one or more UserAgents. In the latter case,
the created UserAgents are to be bounded to one
or more AgentServers;

7. generation of the Start messages targeting the
UserAgentGenerators and/or the UserAgents;

8. start of the simulation engine.
Figure 8 sketches the code of the simulator program of an
example MAS. The MAS is composed of N stationary
service agents (SA) distributed on N different
AgentServer, a UserAgent (UA) which creates and
launches a mobile agent (MA). MA travels along the N
different AgentServers, interacts with the N SAs and,
finally, comes back home by reporting to the UA.

//initialize the simulation engine
SimulationEngine.init();

//create an Homogeneous Small Network of N_AS+1 nodes
VirtualNetwork vn = new VirtualNetwork(N_AS+1, VirtualNetwork.HSN);

//add the VirtualNetwork to the set of MetaAgents
SimulatiomEngine.addMetaAgent(vn, MetaAgent.ALL_MSG);

//create N_AS agent servers
AgentServer [] ass = new AgentServer[N_AS];
String [] ass_url = new String[N_AS];
for (int i=0; i<N_AS; i++){
ass_url[i] = "agentserver"+i;
ass[i] = new AgentServer(ass_url[i], "typeX");
}

//map agent servers to network nodes
for (int i=0; i<N_AS; i++)
vn.map(ass[i], i);

//create the service agents and map them to the agent servers
for (int i=0; i<NUM_AS; i++)
ELA sa = new ELA(new MAOId(ass_url[i]+"#sa", null,

ass_url[i]), new MAOServiceActiveState(100));
Msg msg = new Msg(ass[i], ass_url[i], ass_url[i],

Msg.AGENT_CREATION, sa);
ass[i].process(msg);
}

//create the user agent and map it to the N_AS node
UserAgent ua = new UserItineraryAgent("useragentX", ass_url);
vn.map(ua, N_AS);

//send the Start message to the UserAgent
Agent.send(new Start(ua));

//start the simulation of a duration of 1000000
SimulationEngine.start(1000000);

Figure 8. An example MAS simulator program.

4. Performance evaluation of a consumer-
driven agent-based e-Marketplace

An Agent-based e-Marketplace (AEM) is a distributed
multi-agent system formed by both stationary and mobile
agents which provide e-Commerce services to end-users
within a business context. AEMs are distributed large-
scale complex systems which require tools which are able
to analyze not only the AEM at the micro level, i.e.
behaviors and interactions of their constituting agents, but
also the AEM at the macro level, i.e. the overall AEM
dynamics. Although useful insights about AEM micro and
macro levels can be acquired by playing e-Commerce
simulation games and, then, analyzing the obtained
results, or by evaluating real e-Commerce applications,
discrete-event simulators are essential for evaluating how
AEMs work on scales much larger than that achievable in
games or in applications which involve humans. This
section shows the application of the proposed discrete-
event simulation framework to the analysis of micro level
issues of a consumer-driven AEM, i.e. an e-Marketplace
in which the exchange of goods is driven by the
consumers that wish to buy a product.

4.1. An Agent-based Consumer Driven e-
Marketplace model

The modeled AEM, inspired by the systems presented
in [1] and [16], consists of a set of stationary and mobile
agents which provides basic services for the searching,
buying, selling, and payment of goods.

WOA 2005 81

The identified types of agents are:
- User Assistant Agent (UAA), which is associated

with users and assists them in: (i) looking for a
specific product that meets their needs; (ii) buying
the product according to a specific buying policy.

- Access Point Agent (APA), which represents the
entry point of the e-Marketplace. It accepts requests
for buying a product from a registered UUA.

- Mobile Consumer Agent (MCA), which is an
autonomous mobile agent dealing with the searching,
contracting, evaluation, and payment of goods.

- Vendor Agent (VA), which represents the vendor of
specific goods.

- Yellow Pages Agent (YPA), which represents the
contact point of the distributed Yellow Pages Service
(YPS) providing the location of agents selling a
given product. The organization of the YPS can be:
(i) Centralized (C), each YPA stores a complete list
of Vendor Agents; (ii) One Neighbor Federated
(1NF), each YPA stores a list of VAs and keeps a
reference to only another YPA; (iii) M-Neighbors
Federated (MNF), each YPA stores a list of VAs
and keeps a list of at most M YPAs.

- Bank Agent (BA), which represents a reference bank
supervising money transactions between MCAs and
VAs

The identified types of interactions between the agent
types are described below by relating them to the system
workflow triggered by a user’s request:

1. Request Input (UAA→APA): the UAA sends a
request to the APA containing a set of parameters
selected by the user for searching and buying the
desired product, i.e. the product description
(Prod_Desc), the maximum product price (PMAX) the
user is willing to pay, and the type of buying policy
(BP).

2. Service Instantiation (APA→MCA): the APA
creates a specific MCA and provides it with the set
of user’s parameters, the type of searching policy
(SP), and the location of the initial YPA to be
contacted. Upon creation, the MCA moves to the
initial YPA location.

3. Searching (MCA↔YPA): the MCA requests a
list of locations of VAs selling the desired product to
the YPA. The YPA replies with a list of VA
locations and, possibly, with a list of linked YPA
locations.

4. Contracting & Evaluation (MCA↔VA): the
MCA interacts with the found VAs to request an
offer (Poffer) for the desired product, evaluates the
received offers, and selects an offer, if any, for
which the price is acceptable (i.e., Poffer<=PMAX)
according to the type of BP.

5. Buying (MCA↔VA↔BA): the MCA moves to
the location of the selected VA and pays for the
desired product using a given amount of e-cash (or
bills) triggering the following money transaction: (i)
the MCA gives the bills to the VA; (ii) the VA sends
the bills to a BA; (iii) the BA validates the
authenticity of the bills, disables them for re-use,
and, finally, issues an amount of bills equal to that
previously received to the VA; (iv) the VA notifies
the MCA.

6. Result Report (MCA→UAA): the MCA reports
the buying result to the UUA.

4.2. Agent behaviors

A model of MCA is defined on the basis of the tuple:
<SP, BP, TEM>,

where:
- SP is a searching policy in {ALL, PA, OS}:

a. ALL: all YPAs are contacted;
b. Partial (PA): a subset of YPAs are contacted;
c. One-Shot (OS): only one YPA is contacted.

- BP is a buying policy in {MP, FS, FT, RT}:
a. Minimum Price (MP): the MCA first interacts

with all the VAs to look for the best price of the
desired product; then, it buys the product from
the VA offering the best acceptable price;

b. First Shot (FS): the MCA interacts with the VAs
until it obtains an offer for the product at an
acceptable price; then, it buys the product;

c. Fixed Trials (FT): the MCA interacts with a
given number of VAs and buys the product from
the VA which offers the best acceptable price;

d. Random Trials (RT): the MCA interacts with a
random number of VAs and buys the product
from the VA which offers the best acceptable
price.

- TEM is a task execution model in {ITIN, PAR}:
a. Itinerary (ITIN): the Searching and Contracting

& Evaluation phases are performed by a single
MCA which fulfils its task by sequentially
moving from one location to another;

b. Parallel (PAR): the Searching and Contracting
& Evaluation phases are performed by a set of
mobile agents in a parallel mode. In particular,
the MCA is able to generate a set of children
(generically called workers) and to dispatch them
to different locations; the workers can, in turn,
spawn other workers.

Thus, each one of the defined models implements the
product buying service differently.

An MCA task execution model is chosen by the Access
Point Agent (APA) when it accepts a user input request;
the choice can depend on the <SP, BP> pair selected by
the user and on the e-Marketplace characteristics. If the

WOA 2005 82

chosen task execution model is of the Parallel type then
the MCA is named PCA (Parallel Consumer Agent)
otherwise if the chosen task execution model is of the
Itinerary type then the MCA is named ICA (Itinerary
Consumer Agent). Therefore, a PCA model is defined by
a triple <SP, BP, PAR> whereas an ICA model is defined
by a triple <SP, BP, ITIN>.

The DSC-based behavior of the PCA models is
reported in [4] whereas the DSC-based behavior of the
ICA models, that can be seen as a particular case of the
PCA behaviour, is described in detail in [6].

4.3. Simulation parameters and results

The goal for which the simulation phase was
performed is twofold:
- to validate the behavior of each type of agent, the

different models of MCA agents on the basis of the
different YPS organizations, and the agent interactions.

- to gain a better understanding of the effectiveness of
the simulation for evaluating MAS performances.
In order to analyze and compare the MCA models, the

Task Completion Time (TTC) parameter was defined as
follows: TTC=TCREATION-TREPORT where, TCREATION is the
creation time of the MCA and TREPORT is the reception
time of the MCA report. The simulation scenario was set
up as follows:
- each stationary agent (UAA, APA, YPA, VA, BA)

executes in a different agent server;
- agent servers are mapped onto different network nodes

which are completely connected through links having
the same characteristics. The communication delay (δ)
on a network link is modeled as a lognormally
distributed random variable with a mean, µ, and, a
standard deviation, σ [3];

- each UAA is connected to only one APA;
- the price of a product, which is uniformly distributed

between a minimum (PPMIN) and a maximum (PPMAX)
price, is set in each VA at initialization time and is
never changed; thus the VAs adopt a fixed-pricing
policy to sell products;

- each YPA manages a list of locations of VAs selling
available products.

- an UAA searches for a desired product, which always
exists in the e-Marketplace, and is willing to pay a
price PMAX for the desired product which can be any
value uniformly distributed between PPMAX and
(PPMAX+PPMIN)/2.

Simulations were run by varying the organization of the
Yellow Pages (C, 1NF and 2NF organized as a binary tree
or 2NFBT), the number of YPA agents in the range
[10..1000] and the number of VA agents in the range
[10..10000]. These ranges were chosen for
accommodating small as well as large e-Marketplaces.
The duration of the performed simulations were set so as

to allow for the completion of the buying task carried out
by the MCA. The results obtained from the simulations
made it possible to:

(a) evaluate which task execution model is more
appropriate with respect to SP and BP policies (see §4.2)
and for the characteristics of the e-Marketplace;

(b) validate the analytical model proposed in [16]
regarding the sequential and parallel dispatching of
mobile agents.

With respect to point (a), the ICA performs better than
the PCA in the following cases:

- SP ={ALL, PA, OS}, BP =FS, YPS ={C, 1NF};
- SP ={PA, OS}, BP =FS, YPS =2NF.
Thus, the APA can choose the itinerary task execution

model if such cases occur.
With respect to point (b), the performance evaluation

focused on <ALL, MP, TEM> models (see §4.2) as these
are the only models of MCA which guarantee both a
successful purchase and the best purchase since they are
successful at identifying the VA selling the desired
product at the minimum price. In order to compare the
performances of PCA and ICA models, the results

1

10

100

1000

10000

100000

10 100 1000 10000

N VA

Tc
[t

.u
.]

ICA with N YPA=100
PCA with N YPA=100
ICA with N YPA=10
PCA with N YPA=10

1

10

100

1000

10000

10 100 1000

N YPA

Tc
[t

.u
.]

ICA with N VA=1000
PCA with N VA=1000
ICA with N VA=100
PCA with N VA=100

Figure 10. Performance evaluation of the <ALL,
MP, TEM > models for an e-Marketplace with

YPS=2NFBT, NVA ={100, 1000} and variable NYPA.

Figure 9. Performance evaluation of the <ALL,
MP, TEM> models for an e-Marketplace with

YPS=2NFBT, NYPA ={10, 100} and variable NVA.

WOA 2005 83

obtained for the <ALL, MP, TEM> MCA models
adopting a YPA organization of the 2NFBT type are
reported in Figures 9 and 10. The results shown in Figure
9 were obtained with NYPA={10, 100} and varying NVA,
whereas the results shown in Figure 10 were obtained with
NVA={100, 1000} and varying NYPA. In agreement with
the analytical model reported in [16], the PCA, due to its
parallel dispatching mechanism, outperforms the ICA
when NVA and NYPA are increased.

5. Conclusions

Validation tools for agent-based and multi-agent
systems are highly required before such systems get
completely deployed on distributed execution platforms.
In order to support the validation phase of agent-based
systems at different levels of granularity, from agent
behaviors, protocols and services (micro-level) to global
system behavior (macro-level), flexible and robust agent-
oriented, discrete-event simulation frameworks should be
carefully designed and developed. This paper has
proposed a Java-based discrete-event simulation
framework (MASSIMO – Multi-Agent Systems
SIMulation framewOrk) which aims at supporting the
validation activity of agent-based and multi-agent systems
modeled and programmed by using an integrated
approach based on the Distilled StateCharts formalism
and the related programming tools. In particular,
MASSIMO allows for the validation and the performance
evaluation of the dynamic behavior (computations,
interactions, and migrations) of individual and
cooperating agents, the basic mechanisms of the
distributed architectures supporting agents, namely agent
platforms, and the functionalities of applications and
systems based on agents. Finally, some results about the
exploitation of MASSIMO for the validation of a
consumer-driven agent-based e-Marketplace have been
reported. Current efforts are being devoted to applying
MASSIMO for the validation and performance evaluation
of workflow instances enacted by agent-based enactment
engines in the context of agent-based workflow
management systems.

Acknowledgements
The work reported in this paper was partially supported
by the M.I.U.R. (Italian Ministry of Instruction,
University and Research) in the framework of the
M.ENTE (Management of integrated ENTErprise)
research project PON (N°12970-Mis.1.3).

References
[1] D.J. Bredin, D. Kotz, and D. Rus. Market-based Resource
Control for Mobile Agents. Proc. of ACM Autonomous Agents,
May 1998.

[2] FIPA Agent Management Support for Mobility Specification,
DC00087C, 2002/05/10. http://www.fipa.org.
[3] S. Floyd, V. Paxson, Difficulties in simulating the Internet.
IEEE/ACM Transactions on Networking, 9(4), pp. 392-403,
2001.
[4] G. Fortino, A. Garro, and W. Russo. An Integrated Approach
for the Development and Validation of Multi Agent Systems.
Computer Systems Science & Engineering, 20(4), pp.259-271,
Jul. 2005.
[5] G. Fortino, A. Garro, W. Russo. Modelling and Analysis of
Agent-Based Electronic Marketplaces. IPSI Transactions on
Internet Research, 1(1), pp. 24-33, Jan. 2005.
[6] G. Fortino, A. Garro, W. Russo. E-commerce Services based
on Mobile Agents. in Mehdi Khosrow-Pour, editor,
Encyclopedia of E-Commerce, E-Government and Mobile
Commerce, Idea Publishing Group, Hershey (PA), USA, 2006,
to appear.
[7] G. Fortino, W. Russo. Multi-coordination of Mobile Agents:
a Model and a Component-based Architecture. Proc. of the ACM
Symposium on Applied Computing, Special Track on
Coordination Models, Languages and Applications, Santa Fe,
New Mexico, USA, 13-17 Mar, 2005.
[8] G. Fortino, W. Russo, and E. Zimeo. A Statecharts-based
Software Development Process for Mobile Agents. Information
and Software Technology, 46(13), pp. 907-921, Oct. 2004.
[9] N.M. Karnik and A.R. Tripathi. Design Issues in Mobile-
Agent Programming Systems. IEEE Concurrency, 6(3), 52-61,
1998.
[10] M. Luck, P. McBurney, and C. Preist. A Manifesto for
Agent technology: Towards Next Generation Computing.
Autonomous Agents and Multi-Agent Systems, 9(3), pp. 203-
252, 2004.
[11] M. Martelli, V. Mascardi, and F. Zini. Specification and
Simulation of Multi-Agent Systems in CaseLP. Proc. of Appia-
Gulp-Prode Joint Conf. on Declarative Programming, L'Aquila,
Italy. M.C. Meo and M. Vilares-Ferro (eds), pp. 13-28, 1999.
[12] M. Röhl, A. M. Uhrmacher. Controlled Experimentation
with Agents - Models and Implementations. Proc. of the 5th
International Workshop “Engineering Societies in the Agents
World”, 20-22 October 2004, Toulouse, France.
[13] C. Sierra, J. A. Rodríguez-Aguilar, P. Noriega, M. Esteva,
and J. L. Arcos. Engineering Multi-agent Systems as Electronic
Institutions. Novática, 170, July-August 2004.
[14] M. Strasser and M. Schwehm, A Performance Model for
Mobile Agent Systems, Proc. of the Int’l Conf. on Parallel and
Distributed Processing Techniques and Applications
(PDPTA’97), June 1997, 1132-1140.
[15] A.M. Uhrmacher, M. Röhl, and B. Kullick. The Role of
Reflection in Simulating and Testing Agents: An Exploration
Based on the Simulation System James. Applied Artificial
Intelligence, (9-10):795-811, October-December, 2002.
[16] Y. Wang, K-L. Tan, and J. Ren. A Study of Building
Internet Marketplaces on the Basis of Mobile Agents for Parallel
Processing. World Wide Web: Internet and Web Information
Systems, 5(1): 41-66, 2002.
[17] M. Wooldridge, N. R. Jennings, and D. Kinny. The Gaia
methodology for agent-oriented analysis and design. Journal of
Autonomous Agents and Multi-Agent Systems, 3(3):285–312,
2000.

WOA 2005 84

On the Role of Simulation
in the Engineering of Self-Organising Systems:

Detecting Abnormal Behaviour in MAS
Luca Gardelli Mirko Viroli Andrea Omicini

DEIS, Alma Mater Studiorum–Università di Bologna,
via Venezia 52, 47023 Cesena, Italy

Email: {luca.gardelli, mirko.viroli, andrea.omicini}@unibo.it

Abstract— The intrinsic complexity of self-organising multi-
agent systems calls for the use of formal methods to predict
global system evolutions at early stages of the design process.
In particular, we evaluate the use of simulations of high-level
system models to analyse properties of a design, which can
anticipate the detection of wrong design choices and the tuning
of system parameters, so as to rapidly converge to given overall
requirements and performance factors.

We take abnormal behaviour detection as a case, and devise
an architecture inspired by principles from human immune
systems. This is based on theTuCSoN infrastructure, which
provides agents with an environment of artefacts—most notably
coordination artefacts and agent coordination contexts. We then
use stochasticπ-calculus for specifying and running quantita-
tive, large-scale simulations, which allow us to verify the basic
applicability of our ID and obtain a preliminary set of its main
working parameters.

I. I NTRODUCTION

The trend in today information systems engineering is
toward an increasing degree of complexity and openness,
leading to rapidly changing requirements and highly dynamic
environments. Since the cost of system management is be-
coming comparable to the cost of the system itself [1] we
need new engineering methodologies and tools. In that sense
social and natural sciences are recognised as rich sources of
inspiration: e.g. the Autonomic Computing initiative tries to
face complexity applying self-regulating mechanisms typical
of biological processes [1], [2].

Self-organisation is a promising theoretical framework to
reduce complexity of systems engineering. A system if said
to beself-organisingif it is able to re-organise itself upon envi-
ronmental changes, by local interaction of its parts without any
explicit pressure from the outside [3]. A system built according
to this principle is usually able to perform complex tasks even
though its components are far simpler when compared to a
monolithic solution.

In this paper we continue along the line discussed in [4] in
order to explore methodological aspects of the engineering of
self-organising MASs. Because of the complexity inherent in
these systems, and the difficulties in predicting their behaviour
and properties, we find it crucial to exploit formal tools for
simulating systems dynamics at the early stages of design.
In the case of self-organising MASs, in fact, this approach
appears to be almost unavoidable in order to nurture evolving

ideas and design choices, and to effectively tune parameters
of the final system.

Among the various formal models to specify quantitative
aspects of MASs we promote the use of the stochasticπ-
calculus process algebra [5]—see [4] for more details on that
decision. This language is basically unexplored in the context
of self-organising MASs: on the one hand, its simulation
tools are relatively recent (see e.g. [6]), and on the other,
it was primarily inspired by the need to model biological
systems [7]. However, we show it can be fruitfully applied
to the MAS paradigm as well: as far as stochastic aspects are
concerned, the typical complexity of agent internal machinery
can be suitably abstracted away, focussing instead on agent
interactions and high-level activity changes.

For this purpose tools like SpiM (Stochastic PI-calculus
Machine [6]) can be effectively used to track the dynamics of
global system properties in stochastic simulations, validating
design directions, inspiring new solutions, and determining
suitable system parameters.

In this paper, we apply these ideas to the study of an intru-
sion detection (ID) infrastructure for open MASs. In particular
our focus is on detecting anomalies in agents behaviour: the
solution we describe here is inspired by principles of human
immune system [8]. The infrastructure we devise is based on
the TuCSoN technology [9]1. This allows us to structure a
MAS not only in terms of agents, but also withtuple centres
[10] as coordination artefacts[11] and agent coordination
contexts[12](ACC) asboundary artefacts[13]. Coordination
artefacts are used to model resources in the environment on
which agents act upon. ACCs specify and enact the access
policies which each agent is subject to, and can be used to
both (i) reify relevant information about the agent/artefacts
interaction, and(ii) to deny malicious agents to access the
MAS environment.

To evaluate the impact of different design choices and pa-
rameters of the ID infrastructure—such as inspection/detection
rates, number of inspectors, and the like—we simulate the
behaviour of different scenarios using SpiM specifications.

The rest of the article is structured as follows. In Section
II we briefly highlight the main mechanisms and properties of
intrusion detection and the human immune system. In Section

1http://tucson.sourceforge.net

WOA 2005 85

III we describe our general architecture for a MAS based on
TuCSoN, and show how to develop an anomaly detection
application. Section IV motivates the use ofπ-calculus and its
stochastic extension, providing a simulation related to our ID
domain using SpiM. Finally, Section V concludes by providing
final remarks, and by listing some of the main directions for
our future research.

II. I NTRUSION DETECTION AND IMMUNE SYSTEM

In this section we first depict the main aspects of intrusion
detection systems (IDSs), and then describe the structure and
main principles regulating the human immune system. We
are not concerned about accurately modelling or mimicking
an immune system, instead we gather from there inspiration
and principles for the engineering of secure self-organising
applications.

A. Security and IDSs in Information Systems

There are several mechanisms used to protect information
systems, but usually only the basic ones are implemented:(i)
authentication, the identity is proved by the knowledge of
a secret (e.g. password) or a physical unique property (e.g.
fingerprint, retina, voice);(ii) authorisation: user actions on
the system are constrained by its role and the policy linked to
that role.

However, applications flaws typically cause these methods
not to be sufficient alone [8]. For instance, protection at
the host level is achieved using additional software such as
firewalls, antivirus and many other specific tools. Further-
more authorisation policies cannot account for all possible
sequences of actions, and a specific sequence might exhibit
unexpected side-effects. In particular, it is in general too
expensive and impractical (or even unfeasible) to intercept all
emergent harmful paths at design-time.

Hence automated tools are a very useful support for the
detection of malicious behaviour. In this direction, many
efforts have already been spent in developing IDSs. An IDS
tries to detect intruders and misuse of a target software system
by observing users behaviour and deciding wether actions
performed are symptomatic of an attack.

Efficiency of an IDS is evaluated by three parameters:
accuracy (rate of false-alarms),performance(rate of audit
processing), andcompleteness(rate of missed detection).
Misuse-based IDSstry to detect intruders matching the actual
user behaviour with known signatures of malicious behaviour.
Anomaly-based IDSstry to detect behaviours that are different
from what it is considered to be the normal activity. There has
been already a lot of work for both approaches to deal with
security issues either at the application, host and network level
[8], [14], [15]. We are more concerned about the neat impact
of such techniques, expressed in a stochastic manner, and how
they can influence the design of a protection layer for a multi-
agent system.

B. Human Immune System Overview

The human immune system protects the body against anti-
gens, i.e. foreign molecules that trigger an immune response.

It is composed by reactive non-specific barriers such as the
skin, and by active mechanisms, i.e. theinnate and the
acquiredimmune system. The innate immune system protects
the body against known antigens, i.e. it is not adaptive,
while the acquired immune system improves during individual
life, discovering and memorising new antigens. The acquired
immune system is composed of different types of cells: here
we consider onlylymphocytessince they are responsible for
the main form of immune response. The mix of lymphocytes,
which changes over time, defines the set of detectable antigens:
this let the immune system cover a larger space of antigens—
a phenomenon calleddynamic coverage. Lymphocytes can
become a “memory” if they bind to several antigens: this
mechanism allow for a faster response if an antigen is met
again.

It is easy to notice that we can define a parallel be-
tween human immune system and security for electronics
systems. Static non-specific barriers are realised by authenti-
cation mechanism, firewalls etc. The innate immune system is
mapped into authorisation policies, antivirus, trojan removers,
and misuse-detection. The acquired immune system instead
is mapped into anomaly-detection systems, which are able to
discover new threats.

III. SECURITY IN MAS

In the following we describe our reference architecture for
MASs, and discuss how to devise a security layer drawing
useful concepts and techniques from previous works on IDS,
as well as principles from the human immune system.

A. A General Architecture for MASs

In this section we describe a general architecture for MASs
based on theTuCSoN coordination infrastructure [9], showing
an approach to ensure security applying principles of the
immune system.

We consider a system that provides agents with services
encoded in terms of coordination artefacts, i.e. runtime ab-
stractions encapsulating and providing a coordination service,
to be exploited by agents in social contexts expressed by coor-
dination rules and norms [11]. Following the general model for
artefacts [16], a coordination artefact could be characterised
by a usage interface, a set of operating instructions, and a
coordination behaviour specification, which can be exploited
by cognitive agents to rationally use a coordination artefact.

Accesses of agents to these resources is restricted by an
authentication procedure. When an agent enters the system an
authorisation policy limits its actions allowing the exploitation
of a limited set of services and resources—e.g. those it has
payed for. This is accomplished by the notion of Agent
Coordination Context (ACC) [12], [13]. An ACC works as
agent interface towards the environment: it is like a control
room providing e.g. buttons and displays to an human, which
are the only means by which he/she can interact with the
environment. Thus, the ACC enables and rules the interaction
between the agent and the environment [12], and it is then
able to capture security and organisation aspects in MASs.
In particular, the ACC is the right place to put authorisation

WOA 2005 86

Fig. 1. A general architecture for a multi-agent system.

Fig. 2. The statistical approach for anomaly detection relies on the fact
that the abnormal behaviour is distinguishable from the normal one. This can
be restated inthe behaviour distribution of abnormal agents (right) is very
different—at least for the critical actions—from the distribution of normal
ones (left).

policies, typically specified using a Role Based Access Control
model (RBAC) [17]. The whole architecture is depicted in
Figure 1.

Usually the two mechanisms of authentication and autho-
risation are considered to guarantee a sufficient degree of
protection. However we promote the idea—as pointed out in
the intrusion detection community—that a dynamic system is
better protected by additional dynamic mechanisms. Corre-
spondingly, we introduce a layer aimed at detecting anomalies
in agents behaviour inspired by the immune system as well as
by previous works on IDSs [8], [14].

B. Anomaly Detection in MASs

Let us consider agents willing to exploit a specific artefact:
we can trace their behaviour “for a while” and then create
an average distribution of actions over that resource. We
can consider that distribution to be the “normal” way for
agents to interact with a particular artefact (Figure 2 left).
From now on it is possible to observe an agent in order to
build its particular distribution of actions: the deviation from
the average distribution might be a symptom of intrusion or
abnormal activity. For instance, if the action C is critical then
the agent X (Figure 2 right) should be inspected to decide
wether he is acting properly or might cause problems.

In order to support the process described above, a mecha-
nism to observe the agent behaviour is needed, e.g. by using
logging tools. This approach is valid under two hypotheses:

1) the number of traces is such that the data is statistically
significant

2) the percentage of agents exhibiting abnormal behaviour
is sufficiently low during the initial observation stage

The former hypothesis is quite straightforward and must hold
true every time dealing with statistical data. The latter is very
difficult to prove because one would have to check every action
and in most situations this might be unfeasible or simply not
affordable without automated tools. But we can reasonably
argue that most of users of a system are interested in exploiting
a resource rather than to hack it. Furthermore the second
hypothesis affects the threshold value used to decide wether
an agent is dangerous or not: this value is as reliable and
accurate as the number of anomalies is low during the initial
stage. Since we are performing the detection task on-line, the
actions distribution might changes over time, so we should
also consider some tolerance ranges.

Referring to section III-A we describe now how the secu-
rity layer fits into the general architecture. First we need a
way to provide observability of the interaction agent-artefact:
basically we have two choices:

• providing inspectors with access to ACCs
• reifying the action in a specific artefact for logging

Since we need two kinds of information, the average behaviour
and the individual one, we can exploit both mechanisms: e.g.
we can log the individual behaviour in the ACC while the
average behaviour can be handled by another shared artefact.
If agents privacy is not a main concern we can also reify both
information using another artefact, which aggregates actions
to define the average and individual signature.

Since observability mechanisms have been provided, now
we need a set of agents whose goal is to observe periodically
the use of resources. The actualnumber of agents inspecting
and the rate of inspectionare parameters of the security
systems that should be dynamically tunable. When an agent
detects abnormal behaviour, it should report it to the proper
authority, which then decides wether to invalidate the ACC or
not: invalidating the ACC means denying any further access to
resources. This authority might be a human or artificial agent
depending on the complexity and criticality of the decision
process.

C. An Artefact for Logging Purpose

After we described the scenario, the architecture and the
principles, we aim now at actually designing the artefact that
could support the anomaly-detection task. For the sake of
simplicity, our hypothesis is that there are no concerns of
privacy for agents, i.e. it is not a problem to publish all agent
actions: thus, in order to adopt the second approach described
in section III-B, we only need to worry about the artefact
design.

We use TuCSoN infrastructure [9] as our main source
for artefacts: in particular, artefacts for logging are suitably-
programmedReSpecT tuple centres [10]. Hence what we
need for a complete description of such an artefact are the
templates for all the tuples used for the representation, and
the ReSpecT specifications for handling the log tuples.

In particular, we only need three templates, respectively (i)
for actions logging, (ii) for the individual behaviour signature,
and (iii) for average behaviour signature.

WOA 2005 87

%1) This reaction is executed only the first time the
% action identified by ActionID is performed for the
% first time over a specific artifact
reaction(out_r(action(AgentID, ActionID)), (

in_r(action(AgentID, ActionID)),
no_r(average_signature(ActionID, Count)),
out_r(average_signature(ActionID, 1)),
out_r(individual_signature(AgentID, ActionID, 1))

)).

%2) This reaction is triggered by an action identified by
% ActionID has already been performed the agent
% identified by AgentID
reaction(out_r(action(AgentID, ActionID)), (

in_r(average_signature(ActionID, Count)),
in_r(individual_signature(AgentID, ActionID, Counti)),
in_r(action(AgentID, ActionID)),
Count1 is Count + 1,
Counti1 is Counti + 1,
out_r(average_signature(ActionID, Count1)),
out_r(individual_signature(AgentID, ActionID, Counti1))

)).

%3) This reaction is triggered by an action identified
% by ActionID has already been performed from other
% agents, but it’s the first time for the agent
% identified by AgentID
reaction(out_r(action(AgentID, ActionID)), (

in_r(action(AgentID, ActionID)),
in_r(average_signature(ActionID, Count)),
no_r(individual_signature(AgentID, ActionID, Counti)),
Count1 is Count + 1,
out_r(average_signature(ActionID, Count1)),
out_r(individual_signature(AgentID, ActionID, 1))

)).

%4) This reaction should never be triggered in normal
% situation but it’s useful to recover from inconsistencies
reaction(out_r(action(AgentID, ActionID)), (

in_r(action(AgentID, ActionID)),
no_r(average_signature(ActionID, Count)),
in_r(individual_signature(AgentID, ActionID, Counti)),
Counti1 is Counti + 1,
out_r(average_signature(ActionID, 1)),
out_r(individual_signature(AgentID, ActionID, Counti1))

)).

Fig. 3. ReSpecT specification for the logging artefact behaviour.

1) action(agentID, actionID)
2) individual_signature(agentID,actionID, count)
3) average_signature(actionID, count)

The system provides the first tuple each time an action
is performed: this tuple triggersReSpecT reactions which
update signature tuples, then it is discarded. Each signature
tuple is a counter for an action, which is incremented each
time that action is performed by an agent: recording such
information for each action makes is possible for an agent
to build the actual signature.

Each time an artefact is introduced in the environment the
signature of normal behaviour it is automatically built, which
becomes significant only when the number of request exceeds
a certain threshold. Figure 3 includes the whole specification2.

Now that we have the anomaly detection support we must
decide the parameters of the security systems: number of
inspecting agents and rate of inspection—see section III-B
for details. Given the computational cost of inspection and
assuming a certain percentage of abnormally-behaving agents,
we can simulate the system in order to predict the good
values for system parameters. In the next section we describe
Stochasticπ-Calculus and how to exploit it for such purpose.

IV. SIMULATIONS IN π-CALCULUS

In this section we briefly introduceπ-calculus [18] and its
stochastic extension [5]. Then we present the results obtained
by simulating a Stochastic Pi-Calculus specification using the
Stochastic Pi Machine (SpiM) [6].

2The source code for the experiments in this paper can be downloaded from
http://www.alice.unibo.it/download/spim/woa2005.zip .

A. Theπ-Calculus

Theπ-calculus is a formal model developed to reason about
concurrency [18]: it is a language for describing and analysing
systems consisting of agents (or processes) which interact
with each other. The basic entity is aname, which is used
as an unstructured reference to a synchronous channel where
messages can be sent and received. In its simpler version, a
process is built from names according to the syntax:

P ::= 0 |
∑
iεI

πi.Pi | (P |Q) | !P | (νx)P (1)

0 is the empty process. The summation
∑

iεI πi.Pi means
that an agent might perform any prefix actionπi, and cor-
respondingly continues asPi behaviour: prefix formsπi are
of the kind ȳx (send the namex at channely), y(x) (wait for
a name at channely and rename it asx), and τ (perform
a silent action). A compositionP |Q representsP and Q
executed in interleaved concurrency. A replication!P means
that (infinitely) many copies ofP can be executed concurrently
(like P |P |....). Restriction (νx)P creates the new namex
and bounds its use inP . The semantics ofπ-calculus can be
described by a transition system, where the transition relation
P −→ P ′—a processP moving to P ′ by the occurrence of
an inner interaction—is defined by operational rules [18].

B. On Stochastic Models

In general, each formal model whose semantics is given by
a transition system can be extended to a stochastic version,
resorting to the idea of Markov transition system. There, each
transitionP

r−→ P ′ is labelled with arate r, a non-negative real
value which describes how the transition probability between
P and P ′ increases with time. Stochastic models allow for
quantitative simulations, for rates can be used to express
aspects such as probability, speed, delays, and so on.

However, from an engineering perspective the choice of
which language is used for describing processes is a crucial
one, for the system to be simulated is to be effectively
represented in the language.

Three basic options are available:(i) automata, like finite-
state ones, where the system is described by state changes and
by supporting data structures (such as stacks);(ii) nets, like
Petri Net, where the system is described by a marking of to-
kens spread over a graph; and finally(iii) process algebras, like
π-calculus, where the system is described by a composition of
interacting entities. We find the third approach to be the best
suited for describing quantitative aspects of complex MASs—
such as self-organising ones. On the one hand, differently
from automata, process algebras allow to express concurrent
activities (agents in this case). On the other hand, differently
from nets, process algebras allow for full compositionality: this
property is a particularly relevant one, as it allows to express
agents (and artefacts) with different roles separately, and then
simply reuse such definitions to express the whole system
model by composition (parallel composition, summation and
replication).

WOA 2005 88

C. Stochasticπ-Calculus andπ-Machine

Priami [5] introduced a stochastic extension toπ-calculus.
Each channel name is associated with an activity rater: the
delay of an interaction through that channel (representing the
use of a resource [5]) is then a random variable with an
exponential distribution defined byr. Exponential distributions
are used because they enjoy the memoryless property, i.e.
each transition is independent from the previous one. Given a
channel namex, the probabilitypi of a transitionP

ri−→ Pi

representing an interaction throughx is the ratio between its
rate ri and the sum of rates of then transitions throughx
enabled by P:

pi =
ri∑

j=1..n rj
, 1 ≤ i ≤ n . (2)

In the following, we consider the SpiM [6] implementation
for the stochasticπ-calculus interpreter.

D. Simulating Anomaly Detection

In this section we discuss how to exploit Pi-Calculus for
simulating the previously described security system. We are
not going to describe here how to write stochastic pi-calculus
specifications since it has already been widely covered by
the literature, e.g. see [7], [6]. In order to give an insight
of the specification process, we have mapped an agent to a
set of concurrent processes which are able to send/receive
signal to/from other agents: a more detailed description of our
approach is available in [4].

We consider an environment in which agents can enter
and leave after being authenticated and authorised: since we
want to keep the average number of agents constant we set
the entering and leaving rates to be equal. The simulation
parameters are(i) the number of agents within the system
at t = 0, (ii) the “concentration” of normal vs. abnormal
agents,(iii) the rates at which normal behaving agents enter
the system,(iv) the rates at which abnormally-behaving agents
enter the system,(v) the duration of the simulation.

Then we add inspector agents to the system, which observe
the behaviour of external agents: each inspector performs the
same task but independently from the others. The anomaly
detection system parameters are

• the number of inspectors
• the rate of inspections

Both parameters should be dynamically adjustable, e.g. if the
system is under attack it can raise its defences: for the whole
duration of the simulation we consider them to be constant.

The results are plotted in Figure 4. With the chosen values
for the parameters, this chart let us observe that the system is
able to exclude agents behaving abnormally within about 400
time units. If that is acceptable—i.e. the system still working
at the target quality level—we can choose those parameters
value for tuning the actual system. Since these results have
been obtained by simulation they must be validated by the
actual system: this last step is going to be addressed soon in
the future.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 200 400 600 800 1000 1200

nu
m

b.
 o

f a
ge

nt
s

time

Normal agents
Abnormal agents
Excluded agents

Fig. 4. A simulation of a simple system where normally- and abnormally-
behaving agents can enter and leave. Inspectors limit the activity of abnormal
agents.

V. CONCLUSION AND FUTURE WORKS

This paper is based on a previous work [4] where we started
putting together the elements of a framework for engineering
self-organising applications. While in [4] we focused on the
applicability of stochastic pi-calculus, in this paper have given
more details on domain specific issues, programming artefacts
to support anomaly detection for MAS and targeting the
simulations to the specific case. We consider MASs composed
by agents and artefacts [13], [11], and we build simulations
in a stochastic process algebra setting able to tune system
parameters at design time. We are developing an anomaly
detection system forTuCSoN and in parallel we consider this
application as a case to assess the impact of simulation in
engineering self-organising system.

The system depicted is based on theTuCSoN coordination
infrastructure, it features the remarkable notion of ACCs,
which enable to control agent actions, reify information on
action sequences (to be read by the infrastructure and/or other
agents), prevent agent actions from a given point in time.
For the architecture and general principles we took inspiration
from the human immune system and previous works on IDSs.
For the methodology, we relied on formal simulation and
modelling via stochasticπ-calculus, which—even though is a
quite new language in the context of the MAS community—
showed its effectiveness as a design tool.

Whereas our experiments need to be further detailed, we
believe they generally emphasise the ability of the proposed
approach to help the MASs developers to anticipate design
decisions and strategies at the early stages of design—before
actually developing prototypes and testing them.

We have a basic prototype of anomaly detection systems
on top ofTuCSoN-based MASs, but we need to further detail
and test it in order to validate simulation results. Other than
testing security at the artefact level, we also plan to explore
the implications of extending this approach to a network of
nodes hosting the same sort of artefacts.

Finally, in this paper we have only been concerned with

WOA 2005 89

self-organisation mechanisms. In future works we intend to
explore the dynamics that causes system properties to emerge.
For example, the uniqueness of the human immune system
provide the human species with a greater probability to survive
to a specific antigen: this emergent property could be very
important for distributed system.

REFERENCES

[1] P. Horn, “Autonomic computing: IBM’s perspective on the state
of information technology,” IBM Corporation, Tech. Rep., 15 Oct.
2001. [Online]. Available: http://www.research.ibm.com/autonomic/
manifesto/autonomiccomputing.pdf

[2] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, Jan. 2003. [Online]. Available:
http://portal.acm.org/citation.cfm?id=642200

[3] F. Heylighen, “The science of self-organization and adaptivity,” in
Knowledge Management, Organizational Intelligence and Learning, and
Complexity, ser. The Encyclopedia of Life Support Systems. EOLSS
Publishers, 2003.

[4] L. Gardelli, M. Viroli, and A. Omicini, “On the role of simula-
tions in engineering self-organizing MAS: the case of an intrusion
detection system inTuCSoN,” in 3rd International Workshop “En-
gineering Self-Organising Applications” (ESOA 2005), S. Brueckner,
G. Di Marzo Serugendo, D. Hales, and F. Zambonelli, Eds., AAMAS
2005, Utrecht, The Netherlands, 26 July 2005, pp. 161–175.

[5] C. Priami, “Stochastic pi-calculus,”Computer Journal, vol. 38, no. 7,
pp. 578–589, 1995.

[6] A. Phillips, “The stochastic Pi machine (SPiM),” 2005. [Online].
Available: http://www.doc.ic.ac.uk/˜anp/spim/

[7] A. Phillips and L. Cardelli, “Simulating biological systems in the
stochastic pi-calculus,” Microsoft Research, Cambridge, UK, Tech. Rep.,
July 2004.

[8] S. Forrest, S. A. Hofmeyr, and A. Somayaji, “Computer immunology,”
Commun. ACM, vol. 40, no. 10, pp. 88–96, 1997.

[9] A. Omicini and F. Zambonelli, “Coordination for internet application
development,”Autonomous Agents and Multi-Agent Systems, vol. 2,
no. 3, pp. 251–269, 1999.

[10] A. Omicini and E. Denti, “From tuple spaces to tuple centres,”Science
of Computer Programming, vol. 41, no. 3, pp. 277–294, Nov. 2001.

[11] A. Omicini, A. Ricci, M. Viroli, C. Castelfranchi, and L. Tummolini,
“Coordination artifacts: Environment-based coordination for intelligent
agents,” in 3rd international Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2004), N. R. Jennings,
C. Sierra, L. Sonenberg, and M. Tambe, Eds., vol. 1. New York,
USA: ACM, 19–23 July 2004, pp. 286–293. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1018409.1018752

[12] A. Omicini, “Towards a notion of agent coordination context,” inProcess
Coordination and Ubiquitous Computing, D. C. Marinescu and C. Lee,
Eds. CRC Press, Oct. 2002, ch. 12, pp. 187–200.

[13] A. Ricci, M. Viroli, and A. Omicini, “Agent coordination context: From
theory to practice,” inCybernetics and Systems 2004, R. Trappl, Ed.,
vol. 2. Vienna, Austria: Austrian Society for Cybernetic Studies, 2004,
pp. 618–623, 17th European Meeting on Cybernetics and Systems Re-
search (EMCSR 2004), Vienna, Austria, 13–16 Apr.2004. Proceedings.

[14] A. Somayaji, S. Hofmeyr, and S. Forrest, “Principles of a computer
immune system,” in1997 Workshop on New Security Paradigms (NSPW
’97), T. Haigh, B. Blakley, M. E. Zurbo, and C. Meodaws, Eds. New
York, NY, USA: ACM Press, 23–26 Sept. 1997, pp. 75–82. [Online].
Available: http://portal.acm.org/citation.cfm?id=283699.283742

[15] H. Inoue and S. Forrest, “Anomaly intrusion detection in dynamic
execution environments,” in2002 Workshop on New Security Paradigms
(NSPW ’02), C. Serban, C. Marceau, and S. Foley, Eds. New York,
NY, USA: ACM Press, 23–26 Sept. 2002, pp. 52–60. [Online].
Available: http://portal.acm.org/citation.cfm?id=844112

[16] M. Viroli, A. Omicini, and A. Ricci, “Engineering MAS environment
with artifacts,” in2nd International Workshop “Environments for Multi-
Agent Systems” (E4MAS 2005), D. Weyns, H. V. D. Parunak, and
F. Michel, Eds., AAMAS 2005, Utrecht, The Netherlands, 26 July 2005,
pp. 62–77.

[17] A. Omicini, A. Ricci, and M. Viroli, “RBAC for organisation and
security in an agent coordination infrastructure,”Electronic Notes in
Theoretical Computer Science, vol. 128, no. 5, pp. 65–85, 3 May 2005,
2nd International Workshop on Security Issues in Coordination Models,
Languages and Systems (SecCo’04), 30 Aug. 2004. Proceedings.

[18] R. Milner, J. Parrow, and D. Walker, “A calculus of mobile processes,
part I/II,” Information and Computation, vol. 100, no. 1, 1992.

WOA 2005 90

A Methodology for Crowd Modelling with
Situated Cellular Agents

Stefania Bandini, Mizar Luca Federici and Giuseppe Vizzari
Dipartimento di Informatica, Sistemistica e Comunicazione

Università degli Studi di Milano–Bicocca
Via Bicocca degli Arcimboldi 8, 20126 Milano, Italy

{bandini, mizar, vizzari}@disco.unimib.it

Abstract— This paper introduces a research activity aimed at
the definition of a methodology to provide a solid conceptual
framework for the development of simulation systems focused on
crowd dynamics and based on the Situated Cellular Agent (SCA)
model. After a brief introduction of the SCA Model, the general
methodological approach is described. The main steps provide
the definition of the spatial abstraction of the environment, the
definition of its active elements, and the specification of types of
mobile agents, the related behaviours with particular attention
to their movement by means of the notion of utility. A case study
is also briefly described in order to show how the methodology
was applied in the modelling of crowd behaviour in a subway
station.

I. INTRODUCTION

The Situated Cellular Agents (SCA) model [1] is a formal
and computational framework for the definition of complex
systems characterized by the presence of a set of autonomous
entities interacting in an environment whose spatial structure
represents a key factor in their choices on their actions and in
determining their possible interactions. The model has been
successfully applied in different contexts, and in particular
its focus on the modelling of the environment as well as
its inhabiting agents and their interactions, make it partic-
ularly suitable for simulation of actual physical systems. In
particular, crowd modelling and simulation requires to model
the autonomous behaviour of individuals interacting among
themselves (e.g. because they compete over a shared resource,
but also because of crowding effects) and the interaction
among pedestrian and the environment. In fact in this situation
the concept of perception must have a very precise meaning,
and it influences the modelling activities as well as the design
and implementation of the simulation system.

There are several computational approaches to crowd mod-
elling, ranging from analytical ones, which generally consider
humans as particles subject to various forces modelling inter-
actions among pedestrian (see, e.g., [2]), to Cellular Automata
(CA) based models which provide a discrete abstraction of the
environment, whose cells encapsulate the possible presence of
pedestrian and whose transition rules represent the rules that
govern pedestrian movement (see, e.g., [3], [4]). Agent based
models are more suited than the previous ones to be applied
to situations characterized by a certain degree of heterogeneity
and dynamism of agents and environment. Moreover, several
indirect interaction models provide the possibility of situated

agents to leave marks in the environment to influence the
behaviour of other mobile entities. This metaphor has been
often exploited to model the movement of animals but also
humans (see, e.g., [5]). Also situated agents were successfully
applied in this context, and in particular the Situated Cellular
Agents model (SCA) [6], but to our knowledge a methodology
for the analysis, modelling and design of crowd simulations
through situated agent models does not exist.

Several methodologies for the analysis and design of multi-
agent systems have been defined (see, e.g., GAIA [7], IN-
GENIAS [8] and SODA [9]) but they are more focused
to the design of general purpose software systems analyzed
and structured using the notion of agent, and thus they lack
focus to simulate specific issues. Some specific methodolog-
ical approaches to multi–agent simulation can also be found
(see, e.g., [10]) but they are still very abstract and do not
provide specific support to crowd modelling. In this paper
the first proposal of a methodology for the modelling of
SCA based crowd simulations is introduced. In particular, the
methodology provides a set of phases for the definition of an
abstraction of the structure of the simulated environment, the
specification of active elements of the environment able to
generate signals facilitating the movement of pedestrian, and
types of agents, with the related perceptive capabilities and
behavioural specifications. The following Section will briefly
introduce the SCA model, while the proposed methodology
is defined in Section III. A specific case study focused on
the modelling of pedestrian in a subway station adopting
the proposed methodology is described in Section IV. This
scenario was chosen in the wider domain of crowd modelling
and simulation because it presents very complex behaviours
that are not easily found in other typical simulation scenar-
ios such as room evacuation. Preliminary results and future
developments will end the paper.

II. SITUATED CELLULAR AGENT MODEL

The Situated Cellular Agent model is a specific class of
Multilayered Multi-Agent Situated System (MMASS) [11]
providing a single layered spatial structure for agents environ-
ment and some limitations to the field emission mechanism.
A thorough description of the model is out of the scope of
this paper, and this aim of Section is to briefly introduce it to
give some basic notion of the elements that are necessary to
describe the methodology.

WOA 2005 91

A Situated Cellular Agent system is defined by the triple〈
Space, F, A

〉
where Space models the environment where the

set A of agents is situated, acts autonomously and interacts
through the propagation of the set F of fields and through
reaction operations.

Space is defined as a not oriented graph of sites. Every site
p ∈ P (where P is the set of sites of the layer) can contain
at most one agent and is defined by the 3–tuple

〈
ap, Fp, Pp

〉
where:

• ap ∈ A ∪ {⊥} is the agent situated in p (ap = ⊥ when
no agent is situated in p that is, p is empty);

• Fp ⊂ F is the set of fields active in p (Fp = ∅ when no
field is active in p);

• Pp ⊂ P is the set of sites adjacent to p.
A SCA agent is defined by the 3–tuple < s, p, τ > where

τ is the agent type, s ∈ Στ denotes the agent state and can
assume one of the values specified by its type (see below
for Στ definition), and p ∈ P is the site of the Space
where the agent is situated. As previously stated, agent type
is a specification of agent state, perceptive capabilities and
behaviour. In fact an agent type τ is defined by the 3–tuple〈
Στ , P erceptionτ , Actionτ

〉
. Στ defines the set of states

that agents of type τ can assume. Perceptionτ : Στ →
[N × Wf1] . . . [N × Wf|F |] is a function associating to each
agent state a vector of pairs representing the receptiveness
coefficient and sensitivity thresholds for that kind of field.
Actionτ represents instead the behavioural specification for
agents of type τ . Agent behaviour can be specified using a
language that defines the following primitives:
• emit(s, f, p): the emit primitive allows an agent to start

the diffusion of field f on p, that is the site it is placed
on;

• react(s, ap1 , ap2 , . . . , apn
, s′): this kind of primitive al-

lows the specification a coordinated change of state
among adjacent agents. In order to preserve agents’
autonomy, a compatible primitive must be included in the
behavioural specification of all the involved agents; more-
over when this coordination process takes place, every
involved agents may dynamically decide to effectively
agree to perform this operation;

• transport(p, q): the transport primitive allows to define
agent movement from site p to site q (that must be
adjacent and vacant);

• trigger(s, s′): this primitive specifies that an agent must
change its state when it senses a particular condition in
its local context (i.e. its own site and the adjacent ones);
this operation has the same effect of a reaction, but does
not require a coordination with other agents.

For every primitive included in the behavioural specification
of an agent type specific preconditions must be specified;
moreover specific parameters must also be given (e.g. the
specific field to be emitted in an emit primitive, or the
conditions to identify the destination site in a transport) to
precisely define the effect of the action, which was previously
briefly described in general terms.

Each SCA agent is thus provided with a set of sensors

that allows its interaction with the environment and other
agents. At the same time, agents can constitute the source
of given fields acting within a SCA space (e.g. noise emitted
by a talking agent). Formally, a field type t is defined by〈
Wt,Diffusiont, Comparet, Composet

〉
where Wt denotes

the set of values that fields of type t can assume; Diffusiont :
P ×Wf × P → (Wt)+ is the diffusion function of the field
computing the value of a field on a given space site taking into
account in which site (P is the set of sites that constitutes the
SCA space) and with which value it has been generated. It
must be noted that fields diffuse along the spatial structure of
the environment, and more precisely a field diffuses from a
source site to the ones that can be reached through arcs as
long as its intensity is not voided by the diffusion function.
Composet : (Wt)+ → Wt expresses how fields of the same
type have to be combined (for instance, in order to obtain
the unique value of field type t at a site), and Comparet :
Wt × Wt → {True, False} is the function that compares
values of the same field type. This function is used in order
to verify whether an agent can perceive a field value by
comparing it with the sensitivity threshold after it has been
modulated by the receptiveness coefficient.

III. METHODOLOGY FOR SCA-BASED CROWD
MODELLING

In SCA agents’ actions take place in a discrete and finite
space. Entities populating the environment are classified in
types, which represent templates for the specification of active
elements of the environment. The latter are not only mobile
entities, but also specific elements of the environment which
the modeller wishes to exploit to influence the former (e.g.
with attraction or repulsion effects). To model an agent type in
SCA means to define the allowed states, perceptive capabilities
and behavioural specification. In the proposed methodology,
agent’s states represent attitudes, in terms of perceptions (in
fact, as previously introduced, the state determines the current
agent’s perceptive capabilities), but also conditions which
determine its choices on actions to be selected and carried out.
These actions include the definition of influences of the agent
on other entities of the environment (e.g. crowding effects)
by means of field emissions, the specification of its motory
system and movement preferences by means of the notion
of movement utility, but also the transitions from one state
to another (i.e. a change of attitude towards the perception
and action in the environment). While some agents related to
active parts of the environment may present a very simple
type specifications, mobile entities with different possible
movement attitudes might require several states and complex
behavioural specifications.

The diagram shown in Figure 1 shows the main phases of
the methodology, while in the following subsections the steps
that bring to the definition of a complete model for crowding
simulations will be introduced. It must be emphasized that the
first three steps lead to the development of a computational
model which can be adopted in several experiments on an
analogous scenario. The last two phases are those that effec-
tively characterize the specific experiment. Section IV will

WOA 2005 92

Abstract scenario
specification

Definition of the MMASS
spatial structure

Definition of active elements
of the environment and

field types

Definition of mobile agents
(types, states, perceptive

capabilities and behavioural
specification)

Specific simulation configuration
(number, type, position and

initial state of mobile agents,
other parameters)

Definition of monitored
parameters and specification
of monitoring mechanisms

Experiment-specific
parameters

Computational model
for the scenario

Fig. 1. A diagram showing the main phases of the methodology.

then present a concrete case study in which the proposed
methodology has been applied.

A. SCA spatial structure

In order to obtain an appropriate abstraction of space
suitable for the SCA model, we need a discrete abstraction
of the actual space in which the simulation will take place.
This abstraction is constituted of nodes connected with non-
oriented arcs (i.e. a non oriented graph). Nodes represent the
positions that can be occupied by single pedestrian once per
time. Some of the nodes can be occupied by some agents
that constitute part of the environment (doors, exits, shops
etc), and that cannot be occupied by other individuals. Arcs
connect nodes, representing the adjacency of one node to
another. Individuals can move by single steps only from one
node to other nodes that are in its immediate adjacency, so
arcs and adjacency constraint agents’ movement. However, as
previously mentioned, the spatial structure of the environment
also constraints field diffusion.

SCA space represents thus an abstraction of a walking
pavement, but it has to be sufficiently detailed to be considered
a good approximation of the real environment surface, and it
allows a realistic representation of the movements and paths
that individuals would follow. As for other crowd modelling
and simulation systems we assume that a single node is
associated to the space occupied by a still person [3], but
the choice on the dimension of what must be considered the
atomic element of the environment (a single cell) depends on
the specific simulation scenario and on the related goals.

B. Active Elements of the Environment

As previously introduced, in this framework we assume
that specific elements of the environment can be perceived
as reference points influencing (or even determining) the
movement of pedestrians. The SCA model provides a simple
mean of generating at-a-distance effects that can be exploited
to generate attraction or repulsion effects: the field diffusion-
perception-action mechanism. However, only an agent can be
the source of a field, and thus the proposed methodology
requires the reification of objects or abstractions exploited to
generate attraction/repulsion effects as immobile agents that
are able to emit fields.

In this phase active objects in the environment have to be
selected, and field types have to be assigned. Attention must
be paid not only to physical objects of the environment which
constraint agent movement (and that can thus be considered as
reference points), but also to objects that somehow transmit
conceptual information (e.g. exit signs or indications). This
phase comprises two main operations:
• selection of active elements: the objects of the environ-

ment that are considered relevant for our simulation have
to be identified. An element is considered relevant if, by
a process of abstraction from reality, it can be considered
as representing a target, or if it is possible to assume that
it does exert an influence on the individuals that act in
the environment;

• assignment and design of field types: the type of the fields
emitted by the objects must be specified, in terms of
emission intensity, diffusion and composition function,
in relation to the desired extent of influence.

It must be noted that a field represents a signal and per
se it does not imply an effect on agents’ behaviours, in fact
the possible reaction to the perception of a signal is provided
by the agent type specification; moreover the actual behaviour
of an agent is influenced by its current state. In this way, it
is possible to model an environment as a source of different
indications that are exploited in different ways by different
agents to determine their paths. For instance, the window of
a shop could be modelled as the source of a field diffusing
outside the shop; such a field could cause a movement towards
the shop for agents which consider interesting the represented
goods, but could also be completely ignored by other agents.
Moreover, different fields can be spread over the environment,
and thus agents may perceive them and combine their effects
according to a private criteria for action selection. In this
way agents are not provided with a sort of script specifying
their movement paths, a predefined map, or in general a
strict behavioural specification, but they are provided a simple
mean for evaluating the available actions against their current
attitude in a more autonomous way.

C. Mobile Agents

Once the spatial abstraction has been defined, and the active
elements of the environment and the related fields have been
specified, the third phase of the methodology is to define
the behaviour of the pedestrian. The model allows to define
heterogenous agents thanks to the notion of agent type, which
comprises the definition of related state, perceptive capabilities
and behavioural specification. However, the modelled behav-
iour can be quite complex, as an individual may be endowed
with several distinct attitudes towards movement and action
selection that are activated in different contexts.

The behaviour of an agent type can thus be segmented in
relevant states. The more complex is the behaviour that we
want to capture, the higher will be the number of states that
an agent can assume. This definition can be summarized in
the two phases below:
• definition of agent type’s states: in this phase of the

modelling it must be established the number of states

WOA 2005 93

that each agent can assume. Each state represents diverse
priorities, and a different attitude of the agent. For each
state must be determined the field emissions of the agent
type (i.e. the influence of agents of this type towards other
entities in the system), and the sensitivity to fields emitted
by other agents. In addition to these elements, that are
required for every SCA agent type, this methodology also
provides the definition of the utility value for every field
type, as a measure of the relevance of the perception of
this field on agent’s choices on its own movement;

• definition of conditions for states transition: the change
of the state of an agent is related to the perception of a
specific condition in its current context that determines a
transition from a movement attitude towards a different
one. These conditions must thus be carefully defined and
modelled by means of a react or a trigger operation.

As previously introduced, in this framework possible atti-
tudes of that type of agent are reified as states in order to
specify the actions that can be selected only for agents. In
these states its perceptive capabilities can be differentiated, but
also its preferences on possible available moves. This can be
modelled by means of a utility function which computes a sort
of “desirability” value for every site in which the agent might
move, in relation to its current state. Utility functions represent
a flexible mean of combining different aspects influencing the
selection of actions [12] and in this specific case these aspects
are represented by different fields. In fact, fields are related to
entities, either mobile (i.e. other pedestrian) or immobile (e.g.
doors), that influence mobile agents’ motion in a different way
according to their context. It is thus necessary to specify, for
each agent state, what is the impact of the perception of each
field type on the desirability of the related place. The overall
utility of a place is the aggregation of all these influences, that
can have a positive, negative or null impact on the total value.
The basic agent strategy for the choice on single movement
action is thus to select the adjacent free place with highest
utility value. According to the specific scenario, the possibility
to remain still could be considered acceptable, penalized or
even not allowed.

Before the conclusion of this paragraph we must specify
that the utility values and the action modelling are not properly
phases, but are activities that permeate the whole process of
the construction of a simulation, and are subject to constant
revision (a process that in some cases is referred to as
simulation calibration).

D. Specific Simulation Configuration
The configuration for an experiment in a specific simulation

scenario, not only in the case of crowd simulation, is a crucial
phase that has to be performed carefully. In particular the
effort of conceptualization carried out in the previous passages
is wasted unless a realistic configuration for the experiment
is defined. In fact, the data that are obtained through the
execution of simulations are obviously strongly dependant on
the starting conditions, as well as on the modelling of the
simulated reality.

To configure a crowd simulation means to set the following
parameters:

• agents number and starting positions: the number of the
mobile agents that will populate the simulation must be
decided in relation to the crowd scenery that is being
represented; their positions must also be specified;

• agents’ initial states: the initial state of every agent has to
be specified. The decision to assign to an agent an initial
state or another is taken in relation to the goals of the
specific simulation: in fact, this parameter determines the
initial movement attitude of the agent in the environment;

• field emission intensity: field emission intensity is a
parameter that allows to modulate stronger or weaker
influence effects; the choice on this parameter (together
with the diffusion functions to be adopted for various
field types) also determines the extent of the effects. The
possibility to tune these parameters is a key factor in
the definition of specific effects, both at individual level
(e.g. amplifying or attenuating the field emission intensity
of a specific agent) as well as on the collective scale
(for instance modifying the intensity of fields related to
elements of the environment).

E. Monitored Parameters and Mechanisms

This phase represents a formal statement of what is the
goal of the simulation, a precise specification of what has to
be observed and how. When simulating crowd dynamics in
an evacuation scenario, the average number of turns required
for agents to exit from a room is a crucial parameter to
be monitored, while it can be of no interest when the goal
of simulation is to observe the behaviour of pedestrian in a
shopping centre. Other possible observable parameters could
be average crowd density, average (or maximum) number of
people waiting in a queue, occurrence of specific events, and
many others dependant on the specific simulation context.

The variety of possibly monitored parameters, and thus
also the number and heterogeneity of distinct monitoring
mechanisms, does not allow to define specific guidelines for
this phase.

IV. A CASE STUDY: THE UNDERGROUND STATION

An underground station is an environment where various
crowd behaviours take place. In such an environment passen-
gers’ behaviours are difficult to predict, because the crowd dy-
namics emerges from single interactions between passengers,
and between single passengers and parts of the environment,
such as signals (e.g. current stop indicator), doors, seats and
handles. The behaviour of passengers changes noticeably in
relation to the different priorities that characterize each phase
of their trips. That means for instance that passengers close
to each other may display very different behaviours because
of their distinct aims in that moment. In a crowd dynamic
behaviours of the singles can also constitute a hindrance for the
purpose of someone else. Passengers on board may have to get
off and thus try to reach for the door, while other are instead
looking for a seat or standing beside a handle. Moreover when
trains stop and doors open very complex crowd dynamics
happen, as people that have to get on the train have to
allow the exit of passengers that are getting off. Passengers

WOA 2005 94

Fig. 2. Discretization of a portion of the environment

have to match their own priority with the obstacles of the
environment, with the intentions of other passengers, and with
implicit behavioural rules that govern the social interaction
in those kind of transit stations, in a complex mixture of
competition over a shared resource and collaboration to avoid
stall situations. Given the complexity of the overall scenario,
we decided to focus on a specific portion of this environment
in which some of the most complex patterns of interaction take
place: the part of platform in presence of a standing wagon
from which some passengers are attempting to get off while
other waiting travellers are trying to get on.

However the value of the realized simulation is not the
main goal of this work, as our main aim is to show how the
proposed methodology was applied in this case study. The goal
of a complete simulation system in this context would be the
possibility to support expert users in the detection of critical
problems of the structure of the station, as bottlenecks, wrong
disposition of the exits and so on, by offering the modelling
instruments able to capture interaction between passengers
and the environment, simultaneously on board and on the
waiting platform. Such a tool would be of great aid for the
prediction of security measure in situations of overcrowding
or in presence of an unexpected hazard.

To build up our simulation we made some behavioural
assumptions, now we will make some brief examples of
the kind of behaviours we wanted to capture. Passengers
that do not have to get off at a train stop tend to remain
still, if they do not constitute obstacle to the passengers that
are descending. Passengers will move only to give way to
descending passenger, to reach some seat that has became
available, or to reach a better position like places at the side of
the doors or close to the handles. On the other hand in very
crowded situations it often happens that people that do not
have to get off can constitute an obstacle to the descent of other
passengers, and they “are forced to” get off and wait for the
moment to get on the wagon again. Passenger that have to get
off have a tendency to go around still agents to find their route
towards the exit, if it is possible. Passengers on the platform
enter the station from the ingress points (station entrances)
and tend to distribute along the threshold line while waiting
for a train. Once the train is almost stopped they identify the
entrance that is closer to them and move towards it. If they
perceive some passenger bound to get off, they first let them
get off and then get on the wagon.

Fig. 3. Immobile active elements of the environment.

A. Environment Abstraction: a Metro Station

To build an environment suitable for SCA platform, first of
all we need to define a discrete structure representing the actual
space in which the simulation is set. In our case study we
started from an available diagram of an underground wagon. A
discrete abstraction of this map was defined, devoting to each
node the space generally occupied by one standing person, as
shown in figure 2. Arcs connecting nodes are not necessarily
uniform across the space: in fact we decided to allow some
specific movement opportunities to agents in critical positions
of the environment. However a thorough analysis of the effects
of this kind of heterogeneity in the spatial structure on field
diffusion is needed, and will be the object of future works.

B. Active Elements of the Environment: Train and Station

In our simulation fields are generated by elements of the
environment but also by agents that represent passengers.
We identified the following objects as active elements of the
environment: Exits, Doors, Seats and Handles (see figure 3
for their disposition). Now we give a brief description of the
kind of fields that those static agents emit. Station exits emit
fixed fields, constant in intensity and in emission, that will
be exploited by agents headed towards the exit of the station.
Exits could also constitute ingress points for agents that arrive
on the platform. Agent-doors emit another field which can
guide passengers that have to get off towards the platform,
and passengers that are on the platform and are bound to get
in the wagon. Seats may have two states: occupied and free. In
the second state they emit a field that indicates their presence.
An analogous field is emitted by handles, which however are
sources of fields characterized by a minor intensity.

C. Mobile Entities: Passengers

We have identified the following states for agent of type
passengers: waiting (w), passenger (p), get-off (g), seated (s),
exiting (e). In relation to its state, an agent will be sensitive to
some fields, and not to others, and attribute different relevance
to the perceived signals. In this way, the changing of state
will determine a change of priorities. A state diagram for
passenger agents is shown in figure 4. State w is associated
to an agent that is waiting to enter in the wagon. In this state
agents perceive the fields generated by the doors as attractive,
but they also perceive as repulsive the fields generated by

WOA 2005 95

E

W

G

SP

Fig. 4. A diagram showing various states of agent type passenger.

passengers that are getting off, in other words those in state
g. In state w the agent “ignores” (is not sensitive to) the
fields generated by other active elements of the environment,
such as exits’ attractive fields, chairs attractive field and so
on. Once inside the wagon, the agent in state w changes its
state in p (passenger), through a trigger function activated by
the perception of the maximum intensity of field generated
by agent-door type. Agent in state passenger is attracted by
fields generated by seats and handles, and repulsed by fields
related to passengers that are getting off. It does not have
any sensitivity for the attraction field of the doors. In state
g the agent will instead emit a field warning other agents of
its presence, while it is attracted by fields generated by the
doors. Once passed through the wagon door, or in immediate
proximity (detected by means of specific thresholds on related
field intensity), the agent in state g changes its state to e
(exiting) and its priority will become to find the exits of the
station. The agent in state e is thus attracted by fields related
to exits.

Table I summarizes the sensitivity of the passenger to
various fields and it also sketches a first attribution of the
utility of the presence of these field types on empty nodes
considered as destination of a transport action. In particular,
cells provide the indication of the fact that the related field is
perceived as attractive or repulsive and the priority level (i.e.
relevance) associated to that field type.

All passengers except those in state g emit a presence field
that generally has a repulsive effect, but a lesser one with
respect to the “exit pressure” generated by agents in get-off
state.

V. PRELIMINARY RESULTS

A simulator implementing the previously introduced model
was realized exploiting the MMASS framework [13] (please
note that SCA is a particular class of MMASS model): only a
subset of the overall introduced model was implemented, and
more precisely active objects of the environment and passenger
agents in state w, g, e, p. Figure 5 shows a screen-shot of this
simulation system, in which waiting agents move to generate
room for passenger agents which are going to get off the
train. The system is synchronous, meaning that every agent
performs one single action per turn; the turn duration is about
one second of simulated time.

The goal of this small experimentation was to qualitatively
evaluate the modelling of the scenario and the developed
simulator. The execution and analysis of several simulations
showed that the overall system dynamics and the behaviour

Fig. 5. Two screenshots of the metro simulation. On the first one light gray
agents are inside the train and going to get off, while dark agents are standing
outside and are going to get on. On the second, the latter have made some
rooms for the former to get off.

of the agents in the environment is consistent with a realistic
scenario, and fits with our expectations. In particular, we exe-
cuted over 100 simulations in the same starting configuration,
which provides 6 passengers located on a metro train in state
g (i.e. willing to get off), and 8 agents that are outside the train
in state w (i.e. waiting to get on). This simulation campaign
is motivated by the fact that an agent having two or more
possible destination sites characterized by the same utility
value makes a non deterministic choice. In all simulations the
agents achieved their goals (i.e. get on the train or get out of
the station) in a number of turns between 40 and 80, with an
average of about 55 turns.

Nonetheless we noticed some undesired transient effects and
more precisely:

• oscillations and “forth and back” movements;
• static forms providing “groups” facing themselves for

a few turns, until the groups dispersed because of the
movement of a peripheral element.

These phenomena, which represent minor glitches under the
described initial conditions, could lead to problems in case of
high pedestrian density in the simulated environment. This
points out the need of additional mechanisms correcting the
movement utility. In particular, some possible improvements
to the basic movement utility mechanisms are:

• introduce a notion of agent facing: the SCA model
does not provide an explicit facing for agents because
is not always relevant or even applicable (consider for
instance the modelling of immune system cells [14]);

WOA 2005 96

State Exits Doors Seats Handles Presence Exit press.
W (getting on) not perc. attr. (2) not perc. not perc. rep. (3) rep. (1)
P (on board) not perc. not perc. attr. (1) attr. (2) rep. (3) rep. (2)
G (getting off) not perc. attr. (1) not perc. not perc. rep. (2) not perc.
S (seated) not perc. attr. (1)* not perc. not perc. not perc. not perc.
E (exiting) attr. (1) not perc. not perc. not perc. rep. (2) not perc.

* = The door signal also conveys the current stop indication.

TABLE I
THE TABLE SHOWS, FOR EVERY AGENT STATE, THE RELEVANCE OF PERCEIVED SIGNALS.

however in this specific simulation scenario this is a
relevant factor for agents’ choices on their movement.
Instead of modifying the general model, a possible way
of introducing this notion is to allow agents to keep track
of their previous positions, in order to understand if a
certain movement is a step back. The utility of this kind
of movement should be penalized, in order to discourage
this choice;

• penalize immobility: in order to avoid stall situations, or
simplify the solution of this kind of situation, an agent
should generally move, unless it has attained the goal
for a movement attitude (i.e. agent state), such as to be
adjacent to a handle for an agent in state p. To achieve
this effect, the memory of the past position, introduced
in the previous point, could also be exploited to penalize
the utility of the site currently occupied by the agent
whenever it was also its previous position.

These correctives were introduced in the behavioural spec-
ification of mobile agents, and a new campaign of tests was
performed to evaluate the effect of these modifications in the
overall system dynamics. Once again, in all simulations the
agents were able to achieve their goals, but the number of
turns required to between 28 and 60, with an average of about
35 turns.

However, this reduction of time required for the completion
of agents’ movements, is not the only improvement obtained
by introducing these correctives in agent behaviours. In fact
another relevant part of the project in which this work has
been developed provides the generation of effective forms of
visualization of simulation dynamics to simplify its analysis
by non experts in the simulated phenomenon. In particular, the
developed simulator can be integrated with a 3D modelling
and rendering engine (more details on this integration can be
found in [15]), and a sample screenshot of the animation of
the simulation dynamics is shown in Figure 6. In this kind
of visualization the issues that were caused by the uncor-
rected movement utility specification brought to confusing,
unrealistic and thus ineffective rendering of system dynamics.
By introducing these correctives, the occurrence of oscillating
agent movement was drastically reduced, and the penalization
of immobility simplified the solution of stall situations among
facing groups.

While these correctives can be easily modelled and imple-
mented, to apply this approach to problems in larger scale sce-
narios, such as those related to malls or multi-floor buildings,
it could be necessary to introduce some additional elements
for the specification of agents’ behaviours. In particular, in

order to endow agents with the possibility to select in a more
autonomous way those signals that are relevant to direct their
movement, it could be necessary to introduce some form of
abstract map of the environment. However the introduced
methodology is focused on supporting the modelling of sit-
uations in which there is a strong focus on specific spots of a
spatial structure, such as a hall or a part of a building floor,
in specific situations (e.g. evacuation).

VI. CONCLUSIONS AND FUTURE DEVELOPMENTS

This work has presented the first proposal of a methodology
for the modelling of crowds through the SCA model. The main
phases of this methodology were introduced, and in particular
the first two provide the definition of an “active environment”,
able to support simple reactive agents in the navigation of its
spatial structure according to their behavioural specification.
A case study related to a complex modelling scenario was
introduced in order to show how the proposed methodology
can be applied in a concrete case study.

Future developments are aimed at refining both the method-
ology and the MMASS platform, in order to better support
the modeller/user, in the construction of complex simulation
scenarios. In particular the platform still does not provide
specific user interfaces and modules aimed at supporting the
definition of an active environment, and parameters for specific
simulations. Moreover specific libraries for active objects and
paradigmatic pedestrian behaviours could be defined after a
thorough analysis of psycho/sociological studies of crowd
behaviors.

Fig. 6. A screenshot of the 3D modelling of the simulation dynamics.

WOA 2005 97

ACKNOWLEDGEMENTS

This work is preliminary result of the Social Mobile Entities
in Silico (SMES) project, and was partly funded by the New
and Old Mobility Analysis and Design for the Information
Society (NOMADIS) laboratory, in the context of the Quality
of Life in the Information Society (QUA SI) multi-disciplinary
research programme in Information Society.

REFERENCES

[1] S. Bandini, G. Mauri, and G. Vizzari, “Supporting Action-at-a-distance
in Situated Cellular Agents”, Fundamenta Informaticae, 2006 (in press).

[2] D. Helbing, “A Mathematical Model for the Behavior of Pedestrians”,
Behavioral Science, no. 36, pp. 298–310, 1991.

[3] A. Schadschneider, A. Kirchner, and K. Nishinari, “CA Approach to
Collective Phenomena in Pedestrian Dynamics.” in Cellular Automata,
5th International Conference on Cellular Automata for Research and
Industry, ACRI 2002, ser. Lecture Notes in Computer Science, S. Ban-
dini, B. Chopard, and M. Tomassini, Eds., vol. 2493. Springer, 2002,
pp. 239–248.

[4] J. Dijkstra, J. Jessurun, and H. J. P. Timmermans, Pedestrian and
Evacuation Dynamics. Springer–Verlag, 2001, ch. A Multi-Agent
Cellular Automata Model of Pedestrian Movement, pp. 173–181.

[5] D. Helbing, F. Schweitzer, J. Keltsch, and P. Molnár, “Active Walker
Model for the Formation of Human and Animal Trail Systems”, Physical
Review E, vol. 56, no. 3, pp. 2527–2539, January 1997.

[6] S. Bandini, S. Manzoni, and G. Vizzari, “Situated Cellular Agents:
a Model to Simulate Crowding Dynamics”, IEICE Transactions on
Information and Systems: Special Issues on Cellular Automata, vol. E87-
D, no. 3, pp. 669–676, 2004.

[7] F. Zambonelli, M. J. Wooldridge, and N. R. Jennings, “Developing
Multiagent Systems: The GAIA Methodology”, ACM Transactions on
Software Engineering and Methodology, vol. 12, no. 3, pp. 317–370,
2003.

[8] J. Pavón and J. J. Gómez-Sanz, “Agent Oriented Software Engineering
with INGENIAS” in CEEMAS, ser. Lecture Notes in Computer Science,
V. Marı́k, J. Müller, and M. Pechoucek, Eds., vol. 2691. Springer-
Verlag, 2003, pp. 394–403.

[9] A. Omicini, “SODA: Societies and Infrastructures in the Analysis and
Design of Agent-Based Systems”, in Agent-Oriented Software Engineer-
ing: First International Workshop, AOSE 2000, ser. Lecture Notes in
Computer Science, P. Ciancarini and M. Wooldridge, Eds., vol. 1957.
Springer-Verlag, 2001, pp. 185–193.

[10] A. M. C. Campos, A. M. P. Canuto, and J. H. C. Fernandes, “Towards
a Methodology for Developing Agent-Based Simulations: The MASim
Methodology”, in 3rd international Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2004). Washington, DC, USA:
ACM Press, 2004, pp. 1494–1495.

[11] S. Bandini, S. Manzoni, and C. Simone, “Dealing with Space in Multi–
Agent Systems: a Model for Situated MAS”, in Proceedings of the first
international joint conference on Autonomous agents and multiagent
systems. ACM Press, 2002, pp. 1183–1190.

[12] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach
(2nd ed.). Prentice Hall, 2002.

[13] S. Bandini, S. Manzoni, and G. Vizzari, “Towards a Platform for
Multilayered Multi-Agent Situated System Based Simulations: Focusing
on Field Diffusion”, Applied Artificial Intelligence, vol. 20, no. 4–5,
2006 (in press).

[14] S. Bandini, F. Celada, S. Manzoni, R. Puzone, and G. Vizzari, “Mod-
elling the Immune System with Situated Agents”, in International
Workshop on Natural and Artificial Immune Systems, ser. Lecture Notes
in Computer Science. Springer–Verlag, 2005 (in press).

[15] S. Bandini, S. Manzoni, and G. Vizzari, “Crowd Modelling and Simu-
lation: Towards 3D Visualization’,’ in Recent Advances in Design and
Decision Support Systems in Architecture and Urban Planning. Kluwer
Academic Publisher, 2004, pp. 161–175.

WOA 2005 98

Towards the Interpretation of Emergent Spatial
Patterns through GO Game:

the Case of Forest Population Dynamics
Stefania Bandini, Sara Manzoni, Stefano Redaelli

Dept. of Computer Science, Systems, and Communication
University of Milan–Bicocca

via Bicocca degli Arcimboldi 8, 20126 Milan, Italy
{bandini,manzoni,redaelli}@disco.unimib.it

Abstract— In this paper we present the preliminary results
of an ongoing research that aims at supporting ecosystem
management in the study of forest systems according to a distrib-
uted modeling and simulation approach. The Cellular Automata
For Forest Ecosystems (CAFFE) project is an interdisciplinary
research involving computer scientists of the Department of
Computer Science, Systems and Communication of the University
of Milano–Bicocca and urban planners, biologists and ecosystem
managers of the System Research Department of Austrian
Research Center (ARC). In particular, we focus here on the
part of CAFFE project that concerns the design of a method to
support the analysis step of simulations of forests according to a
distributed approach (such as those based on Cellular Automata
or Situated Multi–Agent Systems). To this aim an innovative
analysis method inspired by the Chinese Go game is under design.
The originality of the approach concerns the detection within
system configurations of known patterns whose interpretations
are well–known by expert Go players. In this paper, after a brief
presentation of the CA–based model of forests, we focus first on
the set of Go patterns that we currently studied, then we present
some preliminary results on experiments we conducted to validate
the proposed approach to spatial patterns interpretation.

I. INTRODUCTION

The CAFFE (Cellular Automata For Forest Ecosystems)
project is an interdisciplinary research that involves computer
science, biology, and ecosystem management. It started about
one year ago and involves the Artificial Intelligence Lab
(L.INT.AR.) of the Department od Computer Science, Systems
and Communication of the University of Milano–Bicocca
and the System Research Department of Austrian Research
Center (ARC). The main aim of this ongoing research is
the development of methods for sustainable afforestation and
management of forests.

A central role is played in this project by computer sup-
ported simulations of the dynamics of the forest system. The
modeling approach adopted by CAFFE for the forest system
is based on Cellular Automata and describes the forest as
the result of competition between heterogeneous vegetable
populations. After a preliminary implementation of the CA–
based model (see [1]), we are currently developing a software
simulation platform for sustainable afforestation and manage-
ment of forests in which both model improvements (i.e. a new
model of the forest based on Multilayered Situated MAS [2],
[3] is under design) and new software functionalities. One of

these functionalities will concern an innovative interpretation
approach for patterns that can be detected as emerging from
the dynamics of forest systems.

In this paper, we focus on the part of the CAFFE project
that aims at designing a method to support the analysis step
of software simulations of vegetable populations in the forest
model. This goal is particularly relevant (and ambitious) due
to the distributed modelling approach that is at the basis of
the forest system simulation and modelling. According to [4],
we refer here to distributed modelling approaches in order
to indicate all those approaches that allow the representation
of complex systems (and problems) whose evolution (and
solution) results from the interactions between autonomous
and interacting entities (more often indicated as based on
Multi–Agent Systems - MAS). For this reasons, analyzing
the dynamics of complex systems modelled and simulated
according a distributed approach is still a challenging issue. In
fact in a simulation of a forest composed by a lot of different
species, we have a very complex behavioral dynamics, and it is
very difficult to recognize all the collective emergent behaviors
occurring during the simulation.

The work here presented concerns the model of a forest
system according to a Cellular Automata (CA) approach. CA
can be considered a simple case of MAS in which each cell
of the automaton represents an agent and the CA dynamics is
based on the behavior (change of state of cell) and on local
interaction among cells (transition function of CA cells usually
includes the state of adjacent cells). Obviously CA can only be
considered as a very simple class of reactive MAS. However,
they can be a suitable and very promising approach for the
aims of CAFFE project (both for modelling and simulation, but
also for the design of a novel analysis method). The CA–based
model of forests that has been adopted by CAFFE project is
derived by the one presented in [5], in which different plant
species can inhabit the forest area and compete for the same
resources (i.e. water, light, nitrogen, and potassium). The area
is divided into cells and it is reproduced by the CA. The state
of each cell of the CA is defined by a flag denoting whether
or not it contains a tree, the amount of each resource present
in the cell, and a set of variables defining the features of the
tree (possibly) growing in it. The update rule of the automaton
mainly depends on the presence of a tree in a cell. In case a

WOA 2005 99

Fig. 1. The Ko rule in the Go game.

tree is present, part of the resources present in it (and in the
neighboring ones, if the tree is large enough) are absorbed by
the tree. Every cell also produces at each update step a given
amount of each resource (that in any case cannot exceed a
maximum threshold value). The production of resources in
the cells is determined by a set of global parameters, and
reproduces environmental factors such as rain, presence of
animals in the area, and so on. The effect of the presence
of a tree in a cell on the neighboring ones has been modelled
by making resources flow from richer cells to poorer ones (that
possess less resources since a part of them is consumed by the
tree).

In the following Section, we introduce the proposal for
a method for pattern detection in the dynamics of forest
populations based on the detection of spatial patterns whose
interpretation is suggested by the ones of similar spatial
patterns occurring on a Go board during a game. In Section
III we then show first experiments conducted to validate the
proposal. Some remarks and future works conclude the paper.

II. GO–BASED INTERPRETATION OF SPATIAL PATTERNS

Most of the available approaches to analyze the behavior
of complex systems are based on statistics and probability
theory and they aim at deriving macro level interpretations
by aggregating and correlating variables of the micro level(s).
Within the context of forest ecosystems for instance, the
dynamics of the forest (e.g. biomass) is computed aggregating
the features of living trees taking into account different age and
dimensions of trees [6]. Another common approach to complex
system analysis concerns the detection and interpretation of
recurring patterns [7]. These approaches are of course domain
independent for what concerns pattern detection (usually the
focus is in the searching of structural similarities within system
configurations). On the other hand, when the model concerns
a real world system and the analysis of its dynamics is
oriented to verify or anticipate peculiar phenomena (e.g., in
the forest ecosystem domain, deforestation of a given area), it
is inevitable the necessity of domain dependent interpretation
of the detected patterns. In order to reconcile the need of
defining domain independent method with the detection and
interpretation of a specific natural phenomenon, we started
from the latter. In particular we noticed that several simulation
scenarios provided recurrent dynamic configurations that were
very similar to specific situations occurring in the Go game.
Go game, due to the simplicity of its playing rules but
also to the complexity of possible configurations and the

Fig. 2. Geta (on the left side) and Schicho (on the right side) in Go game.

consequent complexity of playing tactics and strategies, has
already inspired several models (e.g. in economy, military, art,
semiology, culture, and many others [8]). In the Go game there
are two populations (i.e. black and white stones) that compete
for survival in a territory with limited space and resources.
During the game, black and white stones situated on the Go
board cannot move, but they can be put onto a board site,
survive or die as result of a metaphorical competition on the
local territory with neighboring stones. The effect of the death
of the stone is its removal from its site. A key concept for the
survival of Go pieces is the notion of liberty: if a group of
pieces have no liberties (i.e. none of its elements is adjacent
to a free site), it is removed from the game.

The analogies between Go game and the CA–based model
of forests above sketched are going to be formalized. Very
broadly in the CA–based model of forests, trees of different
species live in a territory, compete for limited territory re-
sources, can born, die, and they cannot change their position.
Moreover, the concept of liberty for plants can refer to fa-
vorable conditions for growth and reproduction. Starting from
this analogies, our proposal suggests to exploit this game to
study emergent patterns in the dynamics of complex systems,
by studying some spatial patterns well–known by advanced
Go players [9], and to verify whether their interpretation can
be suitably and fruitfully applied to interpret similar spatial
patterns occurring in dynamics configurations of the CA–based
forest model.

We introduce now some common spatial patterns that can
emerge during Go games and that are well–known by Go
players. Each spatial pattern is interpreted by Go players
in terms of game competition, and we briefly describe how
the interpretation of Go patterns can be applied to interprete
spatial patterns that emerge from the evolution of the CA–
based model of forests.

A. Spatial Patterns Emerging in Go Game ...

1) Ko pattern. Ko is the configuration of Go stones such
that a little free territory (i.e. a set of board positions
not occupied by stones) belongs to the influence zone
of two or more pieces of the same team (see Figure 1).

2) Geta pattern. Geta pattern corresponds to the local
capture of a group of adversary pieces by a set of stones
that surrounds it (see the left side of Figure 2).

3) Shicho pattern. Shicho is pattern in which a group
of stones expands itself towards another side of the
Go board. Shico does not imply the movement of

WOA 2005 100

Fig. 3. Example of Go game. We can notice a lot of connected groups.

Fig. 4. Ko interpretation for forest ecosystems. Different species are
competing for the domain in a little area

single stones that are part of the moving group. Group
movement occurs in time–space that is, group movement
is the result of stones removal from some positions and
the positioning of others in adjacent ones (see the right
side of Figure 2).

4) Iki pattern. A peculiar pattern that can emerge during a
Go competition is Iki, a pattern that can not be captured
by the adversary. Iki corresponds to a part of Go board
surrounded by stones of the same color, with some free
positions in its inner side to form two ‘eyes’, in Go
jargon. This formation has two internal liberties that can
not be occupied by adversary.

5) The Tsugi pattern. Tsugi is a Japanese word that
means ‘connection’. Connections are very important in
Go competition, because two stones connected to form
a group are stronger than they alone (see Figure 3). In
fact, it is more difficult for the adversary to build a group
able to surround connected stones (i.e. it may require a
lot of stones).

B. ... Their Application to Interpret Forest Population Dynam-
ics

1) Ko pattern. In a CA configuration similar to a Ko
pattern (see Figure 4), none of the the involved species
(in the example we considered only two plant species)
can control the territory in a stable way. In this type of
situations, it is usually observed a continuous replace-
ment of trees by others of another specie.

2) Geta pattern. Similarly to Go game, we can consider
that if a group of trees is surrounded by plants of another
specie and it is forced to be limited within a little and
close territory zone, sooner or later it will die. In fact,
trees and plants that are forced in a little zone have little

Fig. 5. Geta (on the left side) and Schicho (on the right side) interpretation
for forest populations.

space to harvest the needed resources for survival and
reproduction (see the left side of Figure 5).

3) Shicho pattern. In forests Shicho occurs when an
homogeneous group of plants is situated in a zone
where resources are not suitable related to population
requirements, or in an area that is controlled by another
specie (see the right side of Figure 5). Since new born
trees are more likely to survive if they grow up on
suitable areas, we can observe as emergent phenomenon,
a group shifting in space–time.

4) Iki pattern. A spatial pattern in forest dynamics similar
to Iki is characterized by a strong group that can survive
for long time assuring part of the territory to its indi-
viduals (see Figure 6). This pattern is particularly strong
because plants on the group border have a lot of space
in the inner side and this guarantees the availability of
space and resources for their survival and reproduction.

5) Tsugi pattern. Tsugi phenomenon occurs in a natural
way also in forests. Each group of plants expands
itself by reproduction, and when two groups expand
toward one another, there is the possibility to create a
connection between them. As in Go game, two con-
nected groups of plants are stronger because they can
support each other. When a plant dies neighboring ones
can replace it, and when two groups are connected,
neighbors increase in number. Beside this aspect, an
isolated little group of trees can easily fall in the Geta
phenomenon but if it is connected to another group, it
is no more possible to surround it.

III. EXPERIMENTATIONS

In this section we present some experiments performed in
order to validate the proposed approach and in particular to
verify wether the hypotheses on the evolution of forest systems
based on Go spatial patterns are confirmed by experimental
simulations. To this aim, we exploited FORESTE [1], a
simulation software developed according to the CA–based
model of vegetable populations presented in [5].

In order to verify the occurrence of a spatial patterns in
the experiments we adopted a method mainly based on the
concepts of group and neighborhood. If we refer to neigh-
borhood of a cell i as the set Ni, and we consider a trivial
group composed by only one element the set {i}. We define
a connection between to cells t and s (i.e. t is connected to
s, and vice versa) if t ∈ Ns. We indicate connection between
t and s with t → k. Moreover, given a cell t and a group of

WOA 2005 101

Fig. 6. Iki in Go game and its interpretation for forest ecosystems.

cells A, we say that t belongs to A (i.e. t ∈ A), if ∃k ∈ A
such that t → k.

According to this model, the general aim of the experiments
we conducted was to verify the correct evolution of Go–
like patterns with reference to the forest simulation scenario.
We define the starting conditions that represent a suitable
situation for the occurrence of the pattern. Then we let start
the simulation observing if the patterns evolve toward the final
expected configuration. In this simulation experiment process
we divide the patterns in two groups: static patterns (Geta and
Iki), where it is easier to establish a good starting point for the
phenomenon occurrence; and dynamic patterns (Ko, Shicho,
Tsugi), where it is more difficult to find the initial situation
that guarantees the occurrence of these phenomena.

A. Experiments on the Occurrence of Geta and Iki patterns

The aim of the first experiment we conducted was to verify
the formation of Geta and Iki patterns. We consider the
formation of Geta when it occurs the complete disappearance
of surrounded specie. Geta pattern is perhaps the easiest
pattern to study: starting from a given configuration, we can
let evolve the CA and detect resulting configurations.

Three important elements can influence the Geta formation
(i.e. involved populations, spatial dimensions of the pattern
and resource distribution), and for each combination of them
we conduct a set of simulations.
• Involved populations: we simulated Geta formation be-

tween both two groups of the same vegetal population
and two heterogeneous species.

• Spatial dimension of Geta pattern: we considered a small
(2×2), a medium (3×2) and a large (4×3) neighboring
area. In general a small area is easier to attack, while a
large one is more likely to survive.

• Resources distribution on the territory: we considered a
uniformly favorable terrain and a less favorable one. The
terrain resources state strongly influence the evolution of
the specie competition.

According to the performed experiments we can conclude
that Geta is a spatial pattern that occurs in all the studied cases.
In Figure 7 we can see an example of simulations.

To verify the formation of Iki pattern, we started from
an initial Iki pattern and we observe its evolution in time.
We considered an Iki success if after 250 time steps we can
establish that the specie involved has still a certain influence
over the given territory area. We chose to consider 250 time
steps because Geta complete its evolution in a maximum of

160 time steps. Therefore we think that this time period can
be sufficient for a specie to take control over a territory.
We consider four important elements that influence the Iki
formation and we conducted experiments in all the conditions
resulting from the combinations

As in the case of Geta, we considered important elements
that can influence the Iki formation and we conducted a set
of simulations for each combination of them.
• Involved populations: we simulated Iki between two

homogeneous groups and between two heterogeneous
species.

• Not–Iki specie state: we considered a first situation (re-
ferred as normal) where an Iki pattern is surrounded by
a random distribution of trees of another specie, and a
second one where Iki is not surrounded by another specie.
In the first case we put in the simulation area a quantity
of trees of the not–Iki specie that is approximately double
respect to the number of trees involved in the Iki pattern.

• Iki pattern spatial dimension: we considered a small (5×
5), a medium (5×6) and a large (6×7) neighboring area
dimension.

• Resources distribution on territory: we considered two
territory types, a uniformly favorable terrain and a terrain
uniformly worse in the average.

In this experiments, we observed that the type of terrain has
a great influence (better results occur when a specie is situated
on a favorable terrain). Also in the cases where Iki pattern is
destroyed in a given time period, the trees involved in the Iki
pattern survive in their position for long (of course, due to the
abundance of resources).

B. Experiments on the Occurrence of Ko, Shicho and Tsugi
patterns

Simulation in the Ko case (turn over in a shared area) is
more difficult because it is not guaranteed the formation of this
pattern starting from a given initial situation. We considered
the formation of a Ko pattern, when it can be observed a quick
change of plant distribution in a local area occurs, while in the
rest of the territory the same vegetal patterns do not change
for long time.

In the case of Shicho pattern (a group shifts toward more
suitable area), we defined a starting suitable situation and than
we observed its evolution. We considered the formation of a
Shicho pattern when the shift of the influence area of a given
group can be observed.

To verify the occurrence of Tsugi pattern (formation of
connections) starting from a suitable situation, we considered
two groups of different species with their influence on opposite
sides of the territory. We put a little group of the second specie
in the territory of the first one and we observe whether the two
groups of the same specie connect to each other and if this
connection allows to save the influence over a given space
portion. From the performed experiments, we observed that
as one specie tries to connect two groups (reaching the Tsugi
pattern) the other one tries to divide adversary groups with an
infiltration in the middle. According to our Go game metaphor,
a player tries always to divide enemy groups to surround them
separately.

WOA 2005 102

Fig. 7. An example of experimental simulation of Geta pattern: after some simulation time steps the surrounded specie is completely disappeared.

Fig. 8. Results of simulation experiments on pattern expected occurrence.

C. Simulation results

In accordance with experiments done we can conclude the
Go–like patterns validity at least in the described domain.
All the patterns described occur in a simulation scenario and
they have the expected evolution. This first results encouraged
us in continuing this research also looking for new other
applications of this method. The scheme in Figure 8 shows
the ratio of pattern occurrence, that in general very high. The
results shown in the ratio are referred approximately to a 20
experiments for each pattern.

IV. CONCLUSIONS AND FUTURE WORKS

Detecting all patterns of emergent phenomena is very dif-
ficult for a human operator that analyzes the simulation, in
particular for very large scenarios involving a lot of different
species. Therefore the main future work that starts from these
results is the realization of a detection algorithm capable of
recognizing and interpreting the patterns during a simulation.
A first prototype of this automatic detection method is already
realized and it is based on the groups recognition method as we
explained in section III. Our main efforts in the future is going
toward the improvement of functionalities for the automatic
detection method, and the implementation of a simulator with
these automatic tools for pattern detection and analysis.

All these methods and tools will allow us to use the
defined patterns for a meaningful interpretation of important
phenomena in some simulation scenarios. In particular they
can be useful, for example, in the case of artificial repopulation
of forest in a given area with the introduction of new species.

In this case it is important to understand if the new specie can
survive and what are the reactions of the other living species.
But while the occurrence of Ko phenomenon means a good
equilibrium between species, the frequency of Iki and Tsugi
indicates the formation of a strong dominance presence in the
area, and Geta and Shicho mean the disadvantage of a specie
in comparison with the others. All these considerations can
support the decision maker in the illustrated domain problem.

Surely another important future development of the this
research can be the study of new patterns for the interpre-
tation of other phenomena in different scenarios obtained, for
example, with the introduction of other important elements in
the system: the human presence (urbanization or pollution) or
other natural interaction phenomena (desertification).

REFERENCES

[1] S. Bandini and G. Pavesi, “A model based on cellular automata for
the simulation of the dynamics of plant populations”, in Proceedings of
the International Conference on Environmental Modelling and Software
Society (iEMSs) – 14-17 June 2004 University of Osnabruck, 2004, pp.
277–282.

[2] S. Bandini, S. Manzoni, and C. Simone, “Heterogeneous agents situated
in heterogeneous spaces”, in Cybernetics and Systems 2002, Proc. of the
16th European Meeting on Cybernetics and Systems Research, R. Trappl,
Ed. Vienna: Austrian Society for Cybernetic Studies, 2002, pp. 641–646.

[3] Stefania Bandini and Sara Manzoni and Carla Simone, “Enhancing
cellular spaces by multilayered multi agent situated systems”, in Cel-
lular Automata, Proceeding of 5th International Conference on Cellular
Automata for Research and Industry (ACRI 2002), Geneva (Switzerland),
October 9-11, 2002, ser. Lecture Notes in Computer Science, S. Bandini,
B. Chopard, and M. Tomassini, Eds., vol. 2493. Berlin: Springer-Verlag,
2002, pp. 156–167.

[4] J. Ferber, Multi-Agent Systems. Harlow (UK): Addison-Wesley, 1999.
[5] S. Bandini and G. Pavesi, “Simulation of vegetable populations dynamics

based on cellular automata”, in Cellular Automata, Proceeding of 5th
International Conference on Cellular Automata for Research and Industry
(ACRI 2002), Geneva (Switzerland), October 9-11, 2002, ser. Lecture
Notes in Computer Science, S. Bandini, B. Chopard, and M. Tomassini,
Eds., vol. 2493. Berlin: Springer-Verlag, 2002.

[6] D.G.Green, “Modelling plants in landscape”, in Plants to Ecosystem –
Harek T. Michalewicz, ed. CSIRO, Lollingwood Ans., 1997.

[7] S.Wolfram, “Cellular automata as models of complexity”, in Nature,
311:419-424, 1984.

[8] P. Reysset, Le Go: aux sources de l’avenir. Chiron, 1994.
[9] G. Soletti, Note di Go. FIGG (Federazione Italiana Giuoco Go).

WOA 2005 103

Abstract—Despite the growing interest in pheromone-based

interaction to enforce adaptive and context-aware coordination,
the number of deployed systems exploiting digital pheromones to
coordinate the activities of application agents is very limited. In
this paper, we present a real-world, low-cost and general-
purpose, implementation of pheromone-based interaction. This is
realized by making use of RFID tags to store digital pheromones,
and by having humans and robots to spread/sense pheromones
by properly writing/reading RFID tags populating the
surrounding environments. We exemplify and evaluate the
effectiveness of our approach via an application for object-
tracking. This application allows robots and humans to find
"forgot-somewhere" objects by following pheromones trails
associated with them. In addition, we sketch further potential
applications of our approach in pervasive computing scenarios.

Index Terms—Pervasive computing, Pheromone-based
coordination, RFID tags

I. INTRODUCTION
heromone-based interaction, exploited by social insects to
coordinate their activities [BonDT99], has recently

inspired a vast number of researches in pervasive and
distributed computing systems [BabM02, MenT03, ParBS04,
SveK04]. In these works, application agents (e.g., software
agents, humans carrying on a PDA, or autonomous robots)
interact in an indirect way by leaving and sensing artificial
pheromones, digital analogues of chemical markers, in the
environment. Pheromones, by encoding application-specific
information in a distributed way and by uncoupling the
activities of application agents, enable to enforce adaptive and
context-aware coordination activities [Par97].

Despite the growing interest in pheromone-based
interaction, the number of implemented systems exploiting
pheromones for coordinating the activities of distributed
applications situated in pervasive computing scenarios is very
limited. The great majority of the proposals have only been
simulated [BabM02, BonDT99, MenT03], only few of them

Manuscript received November 2, 2005. This work was supported in part
by the Italian MIUR and CNR in the “Progetto Strategico IS-MANET,
Infrastructures for Mobile ad-hoc Networks”.

Marco Mamei is with the Dipartimento di Scienze e Metodi
dell’Ingegneria. Università di Modena e Reggio Emilia, Italy; e-mail:
mamei.marco@unimore.it.

Franco Zambonelli is with the Dipartimento di Scienze e Metodi
dell’Ingegneria. Università di Modena e Reggio Emilia, Italy; e-mail:
franco.zambonelli@unimore.it.

have been concretely implemented by deploying pheromones
in shared virtual data spaces [ParBS04], other few realize
pheromones by means of ad-hoc physical markers such as
special ink or metal dust [SveK04]. In any case, none of them
proposes valid solutions to actually spread pheromones in
real-world everyday environments. Discarding centralized –
not scalable – solutions, as well as power-hungry and costly
sensor networks [EstC02, LiR03], it is not easy to find a
suitable – cheap, not intrusive, and at the same time flexible –
distributed infrastructure on which to store digital pheromones
in pervasive environments.

Inspired by this challenge, we propose a novel approach
exploiting RFID technology [Wan04] to enforce pheromone-
based interaction in pervasive computing scenarios. The key
idea of our approach is to exploit RFID tags dispersed in an
environment as a sort of distributed memory in which to store
digital pheromones. RFID readers, carried by humans or by
robots, could deploy pheromone trails in the environment
simply by writing pheromone values in the RFID tags around.
Also, they could sense such pheromone-trails by simply
reading pheromone values in in-range RFID tags. Clearly,
such an approach is extremely low cost ad not intrusive, as
RFID tags will soon be present in any case, in any
environment.

Relying on our simple yet flexible approach, a wide range
of application scenarios based on pheromone interaction can
be realized, ranging from multi-robot coordination [SveK04]
to monitoring of human activities [Phi04]. Here, after having
illustrated our approach, we detail and evaluate an application
to easily find – by following proper pheromone trails –
everyday objects forgot somewhere in our homes.

II. PHEROMONE-BASED INTERACTION
Ants and other social insects interact by spreading chemical

markers (i.e., pheromones) as they move in the environment,
and by being directed in their actions by the perceived
concentration of pheromones. This simple mechanism enables
ants to globally self-organize their collective activities in a
seemingly intelligent way despite the very limited abilities of
individuals of acquiring and processing contextual
information in a cognitive way. For this reason, systems of
social insects are said to be characterized by “swarm
intelligence”, to emphasize the difference with “individual”
intelligence [BonDT99, Par97].

Pervasive Pheromone-based Interaction with
RFID Tags

Marco Mamei, Franco Zambonelli

P

WOA 2005 104

The classical example to show the power of pheromone-
based interaction is ant foraging. Ants in a colony, when in
search for food, leave the nest and start wandering around.
When some food is found, they start spreading a pheromone
and try to get back to the nest, thus creating a trail leading to
the food source. When an ant is looking for some food, it can
indirectly exploit the past experience of other ants by
following an existing pheromone trail to reach previously
discovered food sources. This also contributes to re-enforce
the pheromone trail in that such ant spreads pheromones in its
turn. To some extent, the environment becomes a sort of
distributed repository of contextual information holding the
paths’ information to all the discovered food sources. The
natural tendency of the pheromones to evaporate if not
reinforced, allows the pheromone network to remain up-to-
date and to adapt to changing conditions: when some ants
discover a shorter path to food, longer paths tend to be
abandoned and disappears; analogously, when a food source is
extinguished, the corresponding pheromone trail disappears
because no longer reinforced [BonDT99].

Despite its simplicity, pheromone-based interaction
presents several features that makes it suitable in a lot of
distributed and pervasive applications:

it completely decouples agent (i.e., ant) interactions, which
occur indirectly via the mediation of pheromones. This is a
very desirable feature in open and dynamic scenarios where
agents do not know each other in advance and can come and
go at any time;

it naturally supports application-specific context awareness,
in that pheromones provide a representation of the
environment in terms of paths leading to food sources;

it naturally supports adaptation of activities, in that
pheromones represent a contextual information that, when no
longer updated, tends to vanish;

the algorithms underlying pheromone-based interaction are
simple and involve only local interactions (each ant locally
deposits and follows pheromones without any clue – and
associated burden/complexity – of being involved in a
distributed task).

Given these features it is not surprising that several research
proposals, in area as diverse as routing in networks
[BonDT99], P2P computing [BabM02, MenT03], robotics
[ParBS04, SveK04], self-assembly [SheS02], and (as in our
approach) pervasive computing, incorporate and exploit
pheromone-based interaction mechanisms.

III. DEPLOYING PHEROMONES WITH RFID TECHNOLOGY
At the core of our approach for deploying digital

pheromones in an environment is the technology of Radio
Frequency Identification (RFID). RFID tags are small wireless
radio transceivers that can be attached unobtrusively to objects
as small as a watch or a toothbrush. Tags can be purchased off
the shelf, cost roughly €0.20 each and can withstand day-to-
day use for years, in fact, being battery-free, they do not have
power-exhaustion problems. Each tag is marked with a unique

identifier and provided with a tiny memory (up to some Kb)
allowing to store data. Suitable devices, called RFID readers,
can be interfaced with portable computers and can be used to
access RFID tags by radio for read or write operations. The
tags respond or store data accordingly using power scavenged
from the signal coming from the RFID reader. RFID readers
divide into short- and long-range depending on the distance
within which they can access RFID tags, from a few
centimeters up to some meters.

A. Scenario Assumptions
Our approach requires a scenario in which the operational

environment is densely enriched with RFID tags. Tags can be
attached at any – even small – object (we refer to these
generically as object-tags). Also, tags are assumed to be
attached at fixed locations (e.g. doors, corridors, etc.) and at
unlikely-to-be-moved objects (e.g. beds, washing machines,
etc.). We refer to these tags as location-tags. Tagging a
location or a fixed object involves sticking a RFID tag on it,
and making a database entry mapping the tag ID to a name
and a spatial location. RFID readers accessing one of these
tags can lookup the tag ID into the database and infer to be
close to a specific object or location. Thus, beside
pheromones, RFID can be used to enforce a simple yet
effective localization mechanism for RFID readers (i.e., for
the users or robots carrying them) [Hah04, Sat05].

It is worth emphasizing that current trends indicate that (i)
within a few years, many household objects and furniture will
be RFID-tagged before purchase and (ii) handheld devices
provided with embedded RFID read and write capabilities will
have an increasing diffusion (for instance, the Nokia 5140
phone can be equipped with a RFID reader). These factors
will make our assumption become a de facto situation, and
will make our approach become directly deployable at nearly
zero cost.

B. Pheromone Deployment
As anticipated in the introduction, pheromones are created

by means of data-structures stored in RFID tags. The basic
scenario consists of human users and robots carrying handheld
computing devices, provided with a RFID reader, and running
an agent-based application.

The agent, unobtrusively from the user/robot, continuously
detects in range location-tags to infer its current location as it
roams across the environment. Moreover, the agent controls
the RFID reader to write or read on need pheromone data
structures (consisting at least in a pheromone ID) in the tags
encountered. This process can create digital pheromone trails
distributed across the location-tags.

More formally, let us call L(t) the set of location-tags being
sensed at time t. It is easy to see that an agent can infer that
the user/robot is moving when L(t) ≠ L(t-1). Thus, if instructed
to spread pheromone O, the agent will write O in all the L(t)-
L(t-1) tags as it moves across the environment.

For the majority of applications a pheromone trail
consisting of only the pheromone ID is not very useful. Like

WOA 2005 105

in ant foraging, most applications involve agents to follow
each other pheromone trails to reach the location where the
agents that originally laid down the pheromone were directed
(or, on the contrary, to reach the location where they came
from). Unfortunately, an agent crossing an-only-ID-trail
would not be able to choose in which direction to go. To
overcome this problem, for each pheromone O, agents store in
the location-tags not only its ID but also an ever increasing
hop-counter C(O) associated with O. If an agent decides to
spread pheromone O at time t, the agent reads also the counter
C(O) in the L(t). If C(O) is not present, the agent sets C(O) to
a fixed value zero. Upon a movement, the agent will store O
and C(O)+1 in the tags belonging to L(t+1) that do not have
O or have a lower C(O).

In addition, to support pheromone evaporation (as
described later on), each pheromone has also an associated
value T(O) representing the time where the pheromone O has
been stored.

The above pheromone data structures are stored in the
limited memory of RFID tags. RFID tags, other than with an
unchangeable unique identifier, are typically provided with an
array of cells, each consisting of few bits. We organize such
memory by allocating 3 slots for each pheromone. The first
slot will hold the pheromone identifier. The second slot will
hold the associated counter. The third will hold the above
mentioned timestamp.

C. Pheromone Reading and Evaporation
To read pheromones, an agent trivially accesses neighbor

RFID location-tags reading their memories. Given the result,
the agent will decide how to act on the basis of the perceived
pheromone configuration.

To realize pheromone evaporation, since the passive nature
of RFID tags does not enable them to directly enforce
evaporation, we have adopted the following solution. After
reading a tag, an agent checks, for each pheromone O it reads,
whether the associated timestamp T(O) is, accordingly to the
agent local time, older than a certain threshold T. If it is so, the
agent deletes that pheromone from the tag. This kind of
pheromone evaporation leads to two key advantages:

1. Since the data space in RFID tags is severely
limited, it would be most useful to store only those
pheromone trails that are important for the
application at a given time; old, unused
pheromones can be removed.

2. If an agent does not carry its personal digital
assistant or if it has been switched off, it is
possible that some actions will be undertaken
without leaving the corresponding pheromone
trails. This cause old-pheromone trails to be
possibly out-of-date, and eventually corrupted.

In this context, it is of course fundamental to design a
mechanism to reinforce relevant pheromones not to let them
evaporate. With this regard, an agent spreading pheromone O,
will overwrite O-pheromones having an older T(O). From
these considerations, it should be clear that the threshold T has

to be tuned for each application, to represent the time-frame
after which the pheromone is considered useless or possibly
corrupted.

IV. PHEROMONE-BASED OBJECT TRACKING
The application we present to exemplify our approach aims

at facilitating the finding of everyday objects (glasses, keys,
etc.) forgot somewhere in our homes. The application allows
everyday objects to leave virtual pheromone trails across our
homes to be easily tracked afterwards. Overall, the application
works as follows:

1. As from the assumptions, the objects to be tracked
are tagged with proper object-tags, distinguished
from the location-tags identifying locations in the
environment (object and location tags can be
distinguished by their ID).

2. Users (or robots) are provided with a handheld
computing device, connected to a RFID reader,
and running the object tracking application.

3. The application can detect, via the RFID reader,
object-tags carried on by the user. Exploiting the
mechanism described in the previous section, it
can spread a pheromone identifying such objects
into the available memory of near location-tags.

4. This enables to spread pheromone trails associated
with the objects across the location-tags of the
environment.

5. When looking for an object, a user can instruct the
agent to read in-range location-tags searching the
object’s pheromone in their memory. If such
pheromone is found, the user can follow it to
reach the object current location.

6. Once the object has been reached, if it moves with
the user (i.e. the user grabbed it), the application
automatically starts spreading again the
pheromone associated with the object, to keep
consistency with the new object location.

7. This application naturally suits a multi-user
scenario where an user (or a robot), looking for an
object moved by another user, can suddenly cross
the pheromone trail left before by the object.

A. Spreading Object Pheromones
To spread pheromones, the application needs first to

understand which objects are currently being carried (i.e.
moved around) by the user. To perform this task
unobtrusively, it accesses the RFID reader to detect in-range
RFID tags once per second.

Let us call O(t) the set of object-tags being sensed at time t,
L(t) the set of location-tags being sensed at time t. If the agent
senses an object-tag O such that O∈O(t), O∈O(t-1), but L(t)
≠ L(t-1), then the agent can infer that the user picked-up the
object O and the object is moving around. In this situation, the
agent has to spread O pheromone in the new location. To this
end, the agent writes O in the available memory space of all
the L(t) location-tags that do not already contain O. This

WOA 2005 106

operation is performed, for every object O, upon every
subsequent movement. Similarly, if the agent senses that an
object-tag O ∈O(t-1), but O∉O(t), then the agent infers that
the user left the object O. When this situation is detected the
agent stops spreading the O pheromone.

These operations create pheromone trails of the object
being moved around.

B. Tracking Objects
Once requested to track an object O the agent will start

reading, once per second, nearby location-tags looking for
an O-pheromone within the sensed location-tags L(t). If such
a pheromone is found, this implies that the user crossed a
suitable pheromone trail.

There are two alternatives: either L(t) contains only one
location-tag, or L(t) contains at least two location-tags having
O-pheromones with different C(O).

In the former case, the application notifies the user about
the fact he has crossed a pheromone trail, but nothing else. In
such situation, the user has to move in the neighborhood,
trying to find higher C(O) indicating the right direction to be
followed (this is like dowsing -i.e. finding underground water
with a forked stick – but it works!). We refer to this as local-
search.

In the latter case, the agent notifies the user about the fact
he has crossed a pheromone trail and it suggests to move
towards those location-tags having the higher C(O). In the
following, we will refer to this as grad-search, since it is like
following a gradient uphill. With this regard, it is important to
emphasize that grad-search is likely to be available only with
RFID readers with a range long enough to include in L(t) at
least two tags storing the pheromone trail. Moreover, since we
do not require the presence of localization devices, the agent
suggests the user to get closer to the location having higher
C(O), by naming the location – e.g., walk to the “front door” –
and the user has to know how to get there without further
help.

In either cases, following the agent advices, the user gets
closer and closer to the object by following its pheromone
trail, until reaching it.

V. EXPERIMENTS
To assess the validity of our approach and the effectiveness

of the object tracking application, we developed a number of
experiments, both adopting the real implementation and an ad-
hoc simulation (to test on the large scale).

A. Real Implementation Set-Up
The real implementation consisted in tagging places and

objects within our department (Figure 1a). Overall, we tagged
100 locations within the building (doors, hallways, corridors,
desks, etc.) and 50 objects (books, laptops, cd-cases, etc.).
Locations have been tagged with ISO15693 RFID tags, each
with a storage capacity of 512 bits (each tag contains 60 slots,
1 byte each, thus it is able to store 20 pheromones). Objects
have been tagged with ISO14443B RFID tags, each with a

storage capacity of 176 bits (each tag contains only the object
ID).

For users, we exploited HP IPAQ 36xx PDAs, each running
Familiar Linux 0.72 and J2ME (CVM – Personal Profile) and
provided with a WLAN card and an Inside M21xH RFID
reader (Figure 1b).

In addition, mobile robots have been realized by installing
one PDA connected to a RFID reader onboard of a Lego
Mindstorms robot (www.legomindstorms.com). The IPAQ
runs an agent controlling both the RFID reader and the robot
microprocessor (Figure 1c).

Finally, a wirelessly accessible server holds a database with
the associations between tag IDs and places’ and objects’
description (i.e. ID 001 = Prof. Smith’s office door). The
IPAQ can connect, via WLAN, to the database server to
resolve the tag ID into the associated description. Each IPAQ
runs the described application

a) b)

c)
Figure 1. (a) Some tagged objects. (b) The test-bed PDA

hardware. (c) The Lego Mindstorms robots with a PDA
and an RFID reader mounted aboard.

B. Simulation Set-Up
To test more extensively and on the large scale, we realized

a JAVA-based simulation of the above scenario. The
simulation is based on a random graph of places (each
associated to a location-tag), and on a number of objects (each
associated to an object-tag) randomly deployed in the
locations-graph. Each tag has been simply simulated by an
array of integer values.

WOA 2005 107

A number of agents are simulated wandering randomly
across the locations-graph, collecting objects, releasing
objects, and spreading pheromones accordingly. At the same
time, other simulated agents are looking for objects in the
environment eventually exploiting pheromone trails
previously laid down.

For the sake of comparison, we tested both the local-search
algorithm in which the agents perceive the pheromones in
their current node, but cannot see the direction in which the
pheromones increase, and the grad-search algorithm, in which
the agents perceive pheromones together with the directions in
which they increase. Also, these have been compared with a
blind-search algorithm, in which agents wander randomly
fully disregarding pheromones.

C. Results of the Experiments

a)

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
time

lo

ca
tio

ns
 s

ea
rc

he
d

be
fo

re

fin
di

ng
 a

n
ob

je
ct

BLIND SEARCH LOCAL SEARCH GRAD SEARCH

b)

0

200

400

600

800

1000

1200

1400

1600

500 550 600 650 700 750 800 850 900 950 1000 1050 1100
time

lo

ca
tio

ns
 s

ea
rc

he
d

be
fo

re

fin
di

ng
 a

n
ob

je
ct

BLIND SEARCH LOCAL SEARCH GRAD SEARCH

c)

0
10

20
30

40
50

60
70

80

5 15 25 35 45 55 65 75 85 95 105 115 125 135 145
time

lo

ca
tio

ns
 s

ea
rc

he
d

be
fo

re

fin
di

ng
 a

n
ob

je
ct

BLIND SEARCH LOCAL SEARCH GRAD_SEARCH

Figure 2. (a-b) Number of places visited before finding a

specific object plotted over time in environments
consisting of: (a) 100 tagged places, and (b) 2500 tagged
places. (c) Number of visited places before finding a
specific object plotted over time, when tags tend to
saturate.

A first group of experiments aims at verifying the general

effectiveness of our approach and of the object-tracking
application. We report results from two different simulation

scenarios: the first consisting in 100 tagged places with 100
objects (Figure 2a); the second consisting in 2500 tagged
places with 500 objects (Figure 2b). A number of 10 agents
have been simulated to populate these environments
wandering around moving objects and spreading pheromones
and, at the same time, looking for specific objects. In the
experiments, we report the number of places visited before
finding specific objects, for different search methods, plotted
over time. The reported results are average of about 300
simulations and qualitatively in line with the results obtained –
on a smaller scale and on a more limited number of
experiments – on the real implementation.

Starting from a scenario free of pheromones (time zero in
Figure 2a), the more time passes the more pheromone trails
get deployed. Blind-search does not take advantage of
pheromone trails: objects are found after visiting on the
average half of the places. Grad-search takes a great
advantage of pheromones: after an initial period, and when
several pheromone trails have been deployed less than 10% of
the places need to be visited before finding the object. Local-
search, at least in the small-scale scenario of Figure 2a,
appears not to take any relevant advantage of pheromones.
This is due to the cost of orienting in the environment to find
the proper direction.

The situation changes when getting to larger-scale scenarios
(as in Figure 2b, reporting experiments from a time past the
initial transitory). There, both local-search and grad-search
appears reasonably effective. The performance improvement
of local-search is due to the fact that the cost of “orienting” in
a local neighborhood becomes negligible when the
environment is large. Thus, although the grad-search
algorithm is always preferable, in large-scale scenarios our
approach is effective even when using short-range RFID
reader enabling to enforce the local-search algorithm only.

A second group of experiments aims at exploring the
effects of RFID tag storage saturation upon pheromone
spread. This of course represents a big problem, in fact, it can
happen that pheromone trails can be interrupted, because there
is not available space left on neighbor location-tags, while the
object to be tracked moves away. This creates a broken
pheromone trail leading to a place that is not the actual
location of the object.

In Figure 2c, we report an experiment conducted in the 100-
tagged-places-environment described before. This time the tag
capacity has been fixed to 50 pheromones (150 bytes), and we
plot the number of places visited before finding specific
objects, for different search methods, over time. Let us focus
on the grad-search behavior. It is easy to see that, when time
is close to zero, grad-search works equal to blind-search,
since no pheromone trails have been already laid down. After
some time, grad-search works considerably better than blind-
search, since pheromone trails drive agents. However, as time
passes, tags capacity tend to saturate, the objects are moved,
but no pheromone trails can be deployed. This situation
rapidly trashes performance leading back to blind-search
performance. In our real implementation (tags with a 512 bits

WOA 2005 108

capacity) the above problem leads to broken trails when more
than 30 objects are tracked.

In conclusion, it is rather easy to see that the limited storage
capacity of the RFID tags represents a problem for our
approach. Basically, if the number of objects to be tracked is
greater than the available slots on the RFID tag, in the long
run, the problem is unavoidable. Sooner or later, a new object
will cross to an already full tag, breaking the pheromone trail.
The pheromone evaporation mechanism that we implemented
did not help this situation. In another set of experiments, we
verified that performance remains more or less the same of
Figure 2c, independently on the parameters used to control
and tune the evaporation mechanisms.

We still do not have a solution for this problem. Our
research is leading in two main directions: (i) we are currently
researching more advanced pheromone evaporation
mechanisms. (ii) We are considering the idea of spreading
pheromone trails not only in location-tags but also on object-
tags. The advantage would be that the more objects are in the
system, the more storage space is available for pheromones,
letting the system to scale naturally. The problem is how to
manage the fact that object-tags containing pheromones can
be moved around, breaking the pheromone trail structure. As a
partial relief from this problem, it is worth reporting that
recent RFID tags have a storage capacity in the order of
several of KB, making possible to track hundreds of objects
without changing our application.

VI. OTHER APPLICATION SCENARIOS
Pheromone interaction and stigmergy have attracted more

and more researches due to their power in supporting agent
coordination in a variety of scenarios. Thus, it is not
surprising that even our proposal for RFID pheromone
deployment could find a number of additional applications,
beside the presented object-tracking.

In general, RFID tags in an environment and associated to
objects can be used to improve Context-Awareness. The use of
RFID tags as a simple tool for localization (i.e., for location-
awareness) has already be outlined. More in general, RFID
tags can be used to help users (as well as robots) in getting
aware of what’s in the environment more than their natural
and artificial senses can do, by reading the additional
information provided by tags. One of the most interesting
work in this direction has been presented in [Phi04]: a
software application is able to infer the users’ daily activities
on the basis of the objects he touches (e.g. if the user touches
a teapot and a cup, the application can infer that he is
preparing tea). All these facets of context-awareness – which
mostly exploit information assumed to be already stored in
tags, can be enriched by the ideas presented in this paper,
suggesting to: (i) exploit RFID tags in the environment as a
sort of distributed shared memory for writing contextual
information; (ii) exploit pheromones to keep a traceable
distributed track of past environmental activities. For instance,
in the application for inferring daily activities, one could think

that – once the application recognize that some tea has been
prepared, the teapot start spreading a pheromone trail leading
to the fridge and indicating that some tea has already been
prepared and is there to cool down.

In line with these ideas is the concept of Pervasive
Workflow Management. Standard workflow management
systems are rooted on a software engine keeping track of the
status of the workflow being carried on. Workers notify to this
engine the tasks being completed and the engine in turn
notifies the subsequent tasks that have to be carried on. RFID
tags and pheromone-based interaction could remove the need
for a centralized engine in pervasive computing environments
and lead to more situated and adaptive scenario. For instance,
the RFID tags associated to the items to be processed could
store a marker identifying the operations that the item
undertook. Workers with RFID readers could simply read the
state of the item and process it further. This approach could be
employed in traditional manufacturing scenarios as well as in
more mundane domestic workflow (e.g. store in the pet’s
collar a pheromone indicating if it has already eaten or not).

Of course, taking inspiration from the way pheromones are
used by ants to let them coordinate their collective movements
in an unknown environment toward food sources, we could
think at exploiting RFID pheromones to enable a group of
users and robots to coordinate on-the-fly their movement in an
environment (consider, e.g., a rescue team in a disaster area).
For instance, if users spread pheromones around as they walk
and are instructed to stay away from existing pheromone
trails, one can have reasonable guarantees that the whole
environment is explored in an effective way by the group
[SveK04].

In this context, it is important to remark that our approach
clearly requires the presence of RFID tags before pheromones
can be spread. Although RFID tags are likely to be soon
densely present in everywhere (embedded in tiles, bricks,
furniture, etc.), one cannot rely on this in sensible situations
like in a disaster area. In these cases, however, it is possible to
conceive solutions where users or robots physically deploy
RFID tags on-the-fly while exploring the environment, to be
used for subsequent coordination.

VII. CONCLUSIONS
While a preliminary prototype implementation shows the

feasibility of our approach, a number of research directions
are still open to improve its practical applicability. In
particular, more experiments are required to verify the
scalability of the proposed architecture to very large-scale
scenarios, and more effective solutions must be found to the
problem related to broken pheromone trails.

REFERENCES
[BabM02] O. Babaoglu, H. Meling, A. Montresor, “A Framework for the

Development of Agent-Based Peer-to-Peer Systems”,
Proceedings of the IEEE International Conference on Distributed
Computing Systems, Vienna (A), IEEE CS Press, May 2002.

[BonDT99] E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence,
Oxford University Press (Oxford, UK), 1999.

WOA 2005 109

[EstC02] D. Estrin, D. Culler, K. Pister, G. Sukjatme, “Connecting the
Physical World with Pervasive Networks”, IEEE Pervasive
Computing, 1(1):59-69, Jan.-March 2002.

[Hah04] D. Hähnel, W. Burgard, D. Fox, K. Fishkin, M. Philipose,
“Mapping and Localization with RFID Technology”,
Proceedings of the IEEE International Conference on Robotics
and Automation, Barcelona (ES), IEEE Press, April 2004.

[LiR03] Q. Li, M. De Rosa, D. Rus, “Distributed algorithms for guiding
navigation across a sensor network”, Proceedings of the ACM
Conference on Mobile Computing and Networking, San Diego,
CA (USA), ACM Press, October 2003.

[MenT03] R. Menezes, R. Tolksdorf, “A New Approach to Scalable Linda-
systems Based on Swarms”, Proceedings of the ACM
Symposium on Applied Computing, Orlando, FL (USA), ACM
Press, March 2003.

[Par97] V. Parunak, “Go to the Ant: Engineering Principles from Natural
Agent Systems”, Annals of Operations Research, 75:69-101,
1997.

[ParBS04] V. Parunak, S. Brueckner, J. Sauter, “Digital Pheromones for
Coordination of Unmanned Vehicles”, Proceedings of the 1st
International Workshop on Environments for Multi-agent
Systems, LNAI 3374, Springer Verlag, 2004.

[Phi04] M. Philipose, K. Fishkin, M. Perkowitz, D. Patterson, D. Fox, H.
Kautz, D. Hahnel, "Inferring Activities from Interactions with
Objects", IEEE Pervasive Computing, 3(4):50-57, 2004.

[Sat05] I. Satoh, “A Location Model for Pervasive Computing
Environments”, Proceedings of 3rd IEEE International
Conference on Pervasive Computing and Communications,
Kauai Island, HW (USA), IEEE CS Press, March 2005.

[SheS02] W. Shen, B. Salemi, P. Will, “Hormone-Inspired Adaptive
Communication and Distributed Control for CONRO Self-
Reconfigurable Robots”, IEEE Transactions on Robotics and
Automation, 18(5):1-12, Oct. 2002.

[SveK04] J. Svennebring, S. Koenig, "Building Terrain Covering Ant
Robots: a Feasibility Study", Autonomous Robots, 16 (3):313-
332, May 2004.

[Wan04] R. Want, “Enabling Ubiquitous Sensing with RFID”, IEEE
Computer, 37(4):84-86, April, 2004.

Marco Mamei is an associate researcher at the University of Modena and
Reggio Emilia, where he received the PhD in computer science. His current
research interests include distributed and pervasive computing, swarm
intelligence, and self organization. He is a member of the IEEE, AIIA, and
TABOO. Contact him at Dipartimento di Scienze e Metodi dell’Ingegneria,
Università di Modena e Reggio Emilia, Via Allegri 13, Reggio Emilia, Italy;
mamei.marco@unimore.it.

Franco Zambonelli is a professor of computer science at the University of
Modena and Reggio Emilia. His research interests include distributed and
pervasive computing, multiagent systems, and agent-oriented software
engineering. He received his PhD in computer science from the University of
Bologna. He is a member of the IEEE, the ACM, AIIA, and TABOO. Contact
him at Dipartimento di Scienze e Metodi dell’Ingegneria, Università di
Modena e Reggio Emilia, Via Allegri 13, Reggio Emilia, Italy;
franco.zambonelli@unimore.it.

WOA 2005 110

Abstract—This paper proposes CASMAS: an agent-based

model to design an environment of collaborative applications by
taking into account the notion of community. Within this model,
communities are characterized by declarative rules that express
and shape the participative behavior of the community members.
The degree of participation of each member can dynamically
change according to her physical location and her position in the
logical space of the applications used within the community. The
paper shows how this approach can facilitate the design of
collaborative applications that are community-aware, that is
augmented with mechanisms by which to manage different levels
of participation of the community members.

Index Terms—Computer-supported cooperative work, Multi-
agent systems, Pervasive Computing

I. BACKGROUND AND MOTIVATIONS
S widely recognized in the specialistic literature [1] the
multi-agent approach makes easier to define a clear

separation between the units of computation and the
interactions among them in order to achieve some application
goals through "separation of concern" and modularity [2].
Moreover agents can be conceived of as useful tools to
describe (complex) systems from a systemic point of view.
Because of the complexity of systems to design, it is
impossible to predict (and design) in advance all the possible
behaviors of the running system: hence agents are provided
with simple behaviors and interaction capabilities and let
interact within some computational environment so that the
system is able to cope with unpredictable patterns of
conditions by exhibiting an overall behavior that is an
emerging property of the system itself [3]. The relevance of
these approaches is also due to some important characteristics
that they provide to designers: distributedness, openness,
scalability, incremental design. In fact, agents are inherently
distributed, and this makes the system more easily open, in
terms of the possibility to add new elements given that they
behave according to the established protocol; and robust, in
terms of easy substitution of malfunctioning agents and of
modification of incrementally designed agents.

More recently the characteristics of agent-based approaches

have been also considered in the light of the design of
applications that support collaboration among people [4]. In
the area of computer supported cooperative work (CSCW)
cooperative applications pose strong requirements in terms of
flexibility, adaptability, openness to environment in order to
reflect the complexities of real work settings, that is of
environments (or workplaces) where people work distributed
in space, and can freely join and leave dynamically
collaboration spaces, where collaborative behaviors can
change according to the context. Agent-based approaches
have been proposed to support different aspects of human
collaboration: some of them are focused on the management
of workflows which require adaptivity and dynamicity in
dealing with a flow of work (representing either tasks to be
accomplished or documents) among team members (see for
instance [5]). Other agent-based approaches deal with
coordination issues, ranging from support to not very
structured interactions among members of small groups like
the ones occurring in meetings [6] to more prescriptive
interactions among distributed actors mediated by appropriate
coordination mechanisms [7]. One of the most critical aspects
concerning human collaboration is about how people act,
learn, and interact together within the so-called communities
of practice. In our view, the notion of community (in the sense
initially proposed, and denoted as Community of Practice, by
Wenger [8] and further articulated by Andriessen [9]) is a
good mean to conceptualize how people mutually recognize,
gather together, interact, collaboratively access and share
resources, and move around to meet other people and exploit
further resources. In fact, a community is spontaneously built,
grows and evolves legitimating various degrees of
participation of incoming members on the basis of its internal
rules, conventions and practices: this is usually called
“legitimate peripheral participation”. The degree of
participation of an actor is proportional to its distance from the
center of the community, i.e., from the locus where the
(physical and/or logical) ties which link its members together
are stronger.

In our view, the possibility of considering different degree
of participation of community members is a crucial aspect to
be taken into account so as to design applications supporting

CASMAS: An Agent-Based Support
for Modulated Participation in

Cooperative Applications
Federico Cabitza, Marco P. Locatelli and Marcello Sarini

University of Milano – Bicocca {cabitza, locatelli, sarini}@disco.unimib.it

A

WOA 2005 111

collaboration among community members or, in other words
to build a new typology of applications which are more
community-aware in terms of support based on their inner
membership and participation mechanisms. With community-
aware applications we hint to the fact that applications
conceived as supportive of cooperative work can also play a
significant role in supporting community life and community-
oriented activities. We think this can be made possible if these
applications are embedded within a network of interactions
and information flows that occur between the human actors,
their personal devices and the applications they use. In this
common and shared information space (cf. later the concept of
Fulcrum) the cooperative applications can then become aware
of the way different levels of participation are managed with
respect to the users' ability to get accustomed and align with
the practices, conventions, artifacts, and knowledge sharing
(learning) modalities of the community they belong to.

Taking into account the above considerations about agent-
based approaches and the relevance of modulating community
participation, we aim at defining an agent-based model, the
CASMAS (Community-Aware Situated Multi-Agent
Systems), which could be used to design community-aware
applications. This model results from an extension of Santana,
a framework for the management of distributed inference
based on reactive behaviors programming [10], with the main
features of MMASS (Multi-layered Multi-Agents Situated
Systems), a model that has been proposed for managing and
modulating awareness information in cooperative applications
[11, 12]. In fact, our model should be able to recognize and
support modulated participation of members of a community
where modulated participation calls for a notion of metrics
and the latter for a notion of topological space. For this
reason, the Santana framework, which is able to model

distributed computational capabilities together with the
sharing of information and reactive behaviors through rules
mobility, has been integrated with the MMASS model in
which the topological space and the consequent modulated
diffusion of information are first-class objects.

Other agent-based models like Co-Field [13] implemented
by TOTA [14] could be used to modulate the different degree
of participation of community members since they take into
account concepts of topological space, distance and
propagation of information which is modulated within the
space itself. But in those cases the modulation of information
is influenced according to only a topological structure usually
representing the underlying network architecture rather than
one or more topological structures representing also logical
aspects of the domain. Indeed, CASMAS allows for the
definition of general criteria by which to establish the level of
membership of people in a community through the notions of
topological space and of field diffusion, which can represent a
combination of both physical and logical aspects that
dynamically characterize the community membership.
Moreover, the same notions allow for the computation and
modulation of different levels of participation. Hence by our
model, we provide designers with a richer semantics in
defining different metrics expressing possible levels of
participation since the model makes possible to combine the
mutual physical position of users, as well as their logical
location, in order to define how the information can be
modulated through the environment and according to the
relationships among members. The paper is organized as
follows. The next section presents the CASMAS
(Community-Aware Situated Multi-Agent Systems) model,
which integrates the main features of Santana and of MMASS.
Then, a high-level software architecture to implement the

Fig. 1. The CASMAS model.

WOA 2005 112

model is presented. Next the model is illustrated through a
scenario. The state of its current implementation and its
foreseen developments conclude the paper.

II. MMASS AND SANTANA IN A NUTSHELL
MMASS is a multi-agent model based on the perception-

reaction paradigm. Agents are located on sites that constitute
a topological space determining the agents mutual perception.
In fact, agents can directly interact when they are located in
close sites or can remotely interact when they are sensitive to
the signals emitted by other agents. These signals within the
MMASS model are called fields and their intensity is
modulated by space according to a diffusion function, which
takes into account the space topology. A sensitivity function
characterizes each agent type and takes its current state as
argument. The perception of a field by an agent triggers a
reaction that can cause a change of the perceiver’s state or
position or the emission of a field by the perceiving agent. A
system can be composed of several topological spaces (multi-
layers), each characterized by its agents and their behaviors;
layers communicate by means of exported-imported fields. Ad
hoc layers that fictitiously represent applications can send
information to the MMASS by means of imported fields and
in so doing awareness information about those applications
can be properly managed (more details on this architecture can
be found in [12]).

Santana is a methodological framework conceived for the
development of distributed inference systems in the Pervasive
Computing application domain. The Santana framework is
grounded on the interconnection metaphor in that any
Intelligent Environment is conceived as a web of
computational sites where devices of different computational
and interactional capabilities interact. Interaction is realized
(or better yet, mediated) through a blackboard mechanism,
that is through a common space where devices share
contextual information (called facts) as well as reactive
behaviors (called rules), which can be acquired by or moved
across the computational sites. In this way, the pervasive
environment can reach an intelligent behavior as a result of
synchronous inference activities exhibited by distributed

computational sites. Moreover, a blackboard approach makes
the computational environment quite flexible towards dynamic
situations: new devices, new actors leaving and joining the
system, interaction patterns varying according to the context
can be dynamically managed by means of suitable meta-rules
that act as bridges between concepts (represented by
declarative facts) and rules and that hence allow for the
(de)activation of behaviors on an event-driven basis (i.e., the
local, as well as the “global”, control flow is not completely
predetermined by the programmers of the devices and
applications involved in the same pervasive environment).

A. Their integration into CASMAS
Grounding on the two models outlined above, we then

propose CASMAS: a model by which to conceive a “loose”
integration between collaborative applications so that they can
become more “community-aware”. To reach such high-level
goal, CASMAS combines the MMASS functionality of
modulating information between agents and the Santana
functionality of supporting cooperating agents in sharing
information and behaviors (e.g., tasks and ways to accomplish
them). The combination of these two approaches fits the
requirements of a cooperative intelligent environment that in
CASMAS is interpreted as a constellation of dynamically
defined and interacting communities. On one hand,
cooperation requires the notion of agent as entity able to
perceive context and propagate information on that context, as
well as the notion of modulated mutual perception
(awareness) among agents, that is a first-class concept of
MMASS. On the other hand, cooperation in an Intelligent
Environment requires the functionality of Santana to manage
disparate and scattered devices, private and common
information spaces as well as agents that are aware of context
and endowed with behaviors that are adaptive and reactive to
context [15]. Accordingly, the rationale behind CASMAS is to
model a cooperative Intelligent Environment as composed of
two main parts. First, a set of common information spaces,
called fulcra, by which information and behaviors concerning
communities practices and individual actors are managed
(respectively, cooperative fulcra and private fulcra - see
Figure 1). Each fulcrum is accessed by S-agents, one for each

Fig. 2. The CASMAS’ software architecture.

WOA 2005 113

(human) actor involved in the (cooperative) application(s) in
use by the community1. Through the fulcrum, S-agents can
share both declarative representations of context (facts) and
reactive behaviors that characterize the community in terms of
conventions, practices or shared knowledge. Accordingly,
these behaviors are called community rules since, by being
shared and followed by all the community members they
literally make and demarcate the community. As a
community-oriented specialization of Santana, CASMAS
provides the designer with two transparent mechanisms to
manage community rules that are implemented through
suitable CASMAS meta-rules. The first is called community
enforcing and it is used to manage inhibition of community
rules, as well as updating and overwriting once they have been
fetched within each S-agent. By means of this mechanism,
community rules can dynamically change to reflect a more
context-aware alignment of the community members towards
common and ever-changing cooperative goals. The second
mechanism is called community participating. Through this
mechanism, according to the number of members that activate
a community rule and the number of activations of that rule,
the salience of that rule is dynamically changed (that is, it is
modified the rule attribute expressing the probability of the
rule to be chosen, activated and then executed at a certain
contextual condition). This participating mechanism allows a
community to change dynamically its nature and policies, also
according to the contextual response of its members to these

1 The behavior of S-agents can either fully define the cooperative

application associated to the collaborative fulcrum or, more realistically,
define an interface between the cooperative application and the pervasive
environment in which it is activated.

policies. In this way a rule that has been first “injected” into a
fulcrum with a low salience (and that hence can be seen as just
a suggestion) can become a (shared) practice and then even a
prescriptive direction according to its changing and growing
salience.

All S-agents that stand proxy for a human actor2 (e.g., A) in
some collaborative fulcra are also connected with the private
fulcrum associated to A: this allows a smooth interaction
between private and cooperative tasks and information
repositories, thus fulfilling a well known requirement of
cooperation.

The second part of a CASMAS model encompasses a set of
topological spaces that are “inhabited” by M-agents whose
behavior is defined according to the MMASS model;
CASMAS spaces can have a dynamic structure, a feature
inherited by MMASS, but this feature is not used in the
scenarios described later. Besides conveying contextual
information, the role of M-agents is to compute the degree of
participation of human actors in the communities that are built
around the collaborative fulcra. The interplay between
sensitivity to fields and fields propagation, which depends on
M-agents state and position, “shapes” the M-agents mutual
perception and computes how tight their mutual proximity is.
This information flows towards the fulcra described above;
these “react” to this flow by implementing the desired degree
of participation through the adaptive behavior capability
provided by Santana. This flow of information, modelled in

2 In principle, when we refer to human actors also artificial ones could be

considered. However, since the focus of the paper is on human cooperation,
we will refer to human actors; if cooperation involves artificial actors as well,
the extension of the illustrated mechanisms to them is immediate.

Fig. 3. Examples of configuration of the CASMAS architecture.

WOA 2005 114

terms of exported fields, is the basic means by which the
integration between Santana and MMASS is realized, and it
makes the interaction with the external environment bi-
directional. In order to realize this integration, while keeping
the frameworks both fully decoupled and autonomous in their
use and implementation, at each fulcrum is associated a
special S-agent, called Manager. This agent is characterized
by some rendering rules, that is rules that transform
topological representations of the MMASS model into
declarative representations (facts) by which the
communication between the fulcrum and the M-agents
populating the topological space(s) is managed. The following
section illustrates the CASMAS functionalities through two
scenarios: a simple scenario will show the communication
patterns in some detail, while a more complex one will more
clearly describe the CASMAS expressive power.

III. CASMAS SOFTWARE ARCHITECTURE
As stated in the previous sections, CASMAS is a model by

which to conceive a “loose” integration between collaborative
applications so that they can become more “community-
aware”. Accordingly the model must be open to the software
applications and to the environment as well. Due to these
requirements, the points of interaction between the model
architecture, the applications and the devices must be
identified, so to characterize the high-level software
architecture of CASMAS (see Figure 2). The architecture is
composed of a Santana module, which includes S-agents (S in
Figure 2), a Manager, a private fulcrum and the community
fulcra; and of a MMASS module, which includes M-agents
(M in Figure 2) and a topological graph. In our view, the
interaction between the environment and the CASMAS
architecture is delegated to the S-agents in that they can
interact both with the software applications and the
environment (arrows b and c in Figure 2). Conversely, the
Manager can only interact with the environment (arrow d in
Figure 2) and specifically only with the localization devices in

order to acquire the physical location of the person that they
are associated with. Software applications, which are entities
outside the CASMAS architecture, can interact directly with
the environment (arrow a in Figure 2).

The interaction between an S-agent (or the Manager) and
the devices in the environment can be bidirectional and it is
mediated by a proxy fact, i.e., a fact that represents the visible
state of a device and that is declared in the private fulcrum
associated to the device’s user. The S-agent that interacts with
the device owns those rules that can be fired by changes in the
proxy fact; by modifying the proxy fact, this agent is also able
to modify the state of the corresponding device. In this way,
the S-agent and the device are fully decoupled but the strict
relationship between them is preserved by putting the rules
only in the interested S-agent. This approach has several
benefits: first, the device is potentially visible to all the S-
agents linked to the private fulcrum; in this way, two S-agents
can interact with two different non-overlapping functionalities
of the same device. Secondly, the S-agent that owns the rules
by which to interact with the device can delegate this
interaction to another S-agent (linked to the same private
fulcrum) simply by sending it the related rules; thirdly, the
system is more fault tolerant in that, e.g., if the S-agent that
interacts with the device stops working, another S-agent could
manage the interaction with the device.

A. CASMAS at Work
To illustrate how the CASMAS model achieves its goal of

supporting collaboration, we describe a scenario and the
related CASMAS mechanisms.

The PerCom University is endowed with ID emitters that
allow the identification of different zones of its building and
with wall-monitors that show information about ongoing
initiatives. Every member always carries at least one
localization device (eventually embedded in something that
the person carries always with her, e.g., the wrist-watch) that
is able to perceive area IDs.

Today the University hosts a workshop entitled “PCC:

Fig. 4. The described scenario at the University. PCC workshop is located in room A51.

WOA 2005 115

Pervasive Computing Challenges” that is scheduled for 10
a.m. Sue, Sarah and Mark (see configuration of the CASMAS
architecture in Figure 3) are three people working at the
PerCom University: Sue and Mark are interested in the PCC
workshop. Currently Sue is in the corridor close the workshop
room while Mark and Sarah are far from it (see Figure 4).
Moreover, Mr. Brown (see configuration of the CASMAS
architecture in Figure 3), the workshop speaker, is in the
coffee room having a cup of good coffee.

Since Mr. Brown had previously set the commitment in his
Agenda, at 9.45 a.m. his Smart Phone vibrates and shows a
message reminding the scheduled event. When Mr. Brown
arrives at the workshop room, his Agenda infers that the
workshop is going to start and publishes this information. In
order to reduce the information overload in the spirit of calm
technologies [16], the information is showed on the wall-
monitors (see configuration of the CASMAS architecture of a
wall-monitor in Figure 3) close to the workshop room and
notified only to the persons who are far from it. Therefore,
Mark’s personal device perceives the information “workshop
PCC is starting” while Sue and Sarah’s personal devices do
not perceive it because of two different reasons: Sarah is not
interested in the workshop, while Sue is interested but she is
close the workshop room so she can see the notification on the
wall-monitor.

When persons interested in the workshop approach the
workshop room, they become member of the PCC workshop
community (in this scenario the degree of participation to the
community is limited to being or not member of the
community, next we provide more information about
modulated participation) and share rules and information that
characterize it: for example, any “ringing device” owned by
participants must be turned to silent mode. This happens to
Mark and Sue when they enter in the workshop room. In
addition, the PCC community states that the workshop speaker
can publish his Curriculum Vitae (CV) and that members of
the community can retrieve it if they like. Before the
workshop begins, Mr. Brown publishes his CV to the
community through his personal device; since Sue and Mark
are members of the community their device either

automatically retrieves the speaker’s CV or asks them if they
want it, according to their preferences, through the “Document
Sharing” collaborative application (see Figure 3).

 In order to model the illustrated scenario in CASMAS, a
localization graph (see Figure 5) is needed to take into account
the physical location of the different entities (people, devices,
activities) and model the information modulation accordingly.
The M-agent of the PCC workshop, which is an activity, emits
a field on the localization graph to notify that the workshop is
occurring.

Moreover, the model encompasses as many private fulcra as
many human actors are using an instance of the Agenda
application, and a single collaborative fulcrum that manages
the workshop policies.

When Mark schedules in his Agenda that he will take part
in the PCC workshop, his Agenda’s S-agent asserts in his
private fulcrum the fact (see Figure 6)

1) X is interested in the PCC workshop

(where X is a parameter that represents the person) so that

the Agenda’s Manager forwards this information to Mark’s
M-agent through the filtering rule

2) if X is interested in the PCC workshop then send the

external field “PCC workshop fields” to the X’s M-agent

The same holds for Sue.
According to the scenario, the sensitivity function of wall-

monitors’ M-agents let them perceive only fields about
workshops happening in the areas close to them.

When Mr. Brown enters the PCC workshop room, his M-
agent perceives the PCC workshop field and emits the “PCC
workshop is starting” field on the graph; Figure 7 illustrates
the field diffusion and the perception by M-agents which
represent persons and wall-monitors in their various locations.
Hence, the wall-monitors close to the workshop room show
this information, because their M-agents have perceived the
field. This happens also to Mark because his M-agent
communicates to the Manager of his private fulcrum that the

Fig. 5. Localization graph and M-agents located on it.

WOA 2005 116

PCC workshop is starting; the Manager declares the fact

3) the PCC workshop is starting

in the private fulcrum so the S-agent related to his Agenda

can react to it, due to the rule

4) if the PCC workshop is starting and X is interested in the

PCC workshop then send the message “the PCC workshop is
starting” to the X’s Agenda

and the Agenda notifies Mark accordingly. Instead, Sue’s

personal device does not inform her although her M-agent is
sensible to the “workshop is starting” field, because she is
near to the workshop room and the field intensity is lower
than the perception threshold.

Becoming aware that the PCC workshop begins, Sue and
Mark move to the workshop room. Since their M-agents
perceive the workshop field with the highest intensity, each of
them sends this information to the Manager of the private
fulcrum; consequently, it infers that the person is participating
to the workshop and asserts the fact

5) X is member of the PCC workshop community

This fact is transferred from the private fulcrum to the

workshop fulcrum, through rules (provided by Santana) that
allow exchanging facts between fulcra, and triggers the
Manager of the PCC workshop fulcrum to add an S-agent for
the new member to the workshop fulcrum, as stated by the
community rule

6) if X is member of the PCC workshop community then

create an S-agent for X in the PCC workshop fulcrum

 As members of the workshop community, Sue and Mark’s

proxies are endowed with the community rules

7) if X is member of the PCC workshop community then

quiet all X’s “ringing devices”

8) if the speaker’s CV is available and X is interested in it

then retrieve it

so their “ringing devices” automatically switch to silent

mode; in addition, their S-agent acquire inferential rules to
perceive and retrieve the CV of the speaker. When Mr. Brown
publishes his CV, i.e. his S-agent asserts the fact

9) the speaker’s CV is available

in the PCC workshop fulcrum, rule 8) fires on the device of

the members of the fulcrum; hence, Mr. Brown’s CV is
retrieved by and presented on Sue and Mark’s device if they
have declared an interest in it, through the fact

10) X is interested in the speaker’s CV

This scenario illustrates some central aspects of our

approach to support collaboration. First, the environment is
proactive, i.e., it is able to sense the location of the actors,
make them aware of events and activate services accordingly.
Secondly, to this aim the environment manages the
(interaction with existing) single-user and cooperative
applications as well as a mechanism to compute different
degrees of participation in them. To better describe modulated
participation –a first-class concept of CASMAS- let us come
back to the previous scenario, which illustrates a basic use of
the field diffusion mechanism, namely the joining of members
to the workshop community when they enter the room. A
more sophisticated use of field diffusion would use
modulation to realize a more articulated notion of
participation. In fact, the different values of a diffused field
can trigger the activation of different behaviors of S-agents in

Fig. 6. Distribution of rules and facts on S-agents and fulcra.

WOA 2005 117

the receiving fulcra. This is realized through a mechanism that
involves the M-agent linked to the graph where the field is
diffused and the Manager. Manager owns rules to evaluate the
degree of participation to the community based on the field
perceived and exported by the M-agent; once they are
executed, these rules assert into the private fulcrum facts that
represent the degree of participation of the S-agent linked to
the related community (e.g., rules sensible to the PCC
workshop fields assert facts for the S-agent linked to the PCC
workshop community). These facts are checked in the if-side
of the community rules (already loaded in the corresponding
S-agent); when the intensity of the field changes, new facts
expressing the degree of participation are asserted;
consequently different community rules can fire within the S-
agent, and hence make it to participate to the community in a
different way. In the scenario, the workshop field can be
perceived with low intensity by agents located further away in
the topological graph since the corresponding people are late
and approaching the workshop room. In this case, they could
be considered members of the community but with a more
peripheral degree of participation: for example, they could
listen on their Smart Phone to the voice of the speaker but
with a limited access to the presented material or the speaker’s
CV; in this case, the Manager asserts the fact that represents a
peripheral participation of the S-agent to the community, so
that the rule that retrieves the CV is prevented from firing.
The CV however will become available to them when they
enter the room, because the perceived workshop field would
get the highest intensity; consequently the fact that represents
a full participation to the community is asserted, and then the
rule to retrieve the CV can fire on it.

This example of modulated participation uses again the
physical distance as a parameter. One could conceive
situations in which the topology expresses logical distance
between entities and modulates participation according to it.
For example, suppose that the collaborative environment
contains different fulcra that support a community in
combination with different cooperative applications (e.g.,
workflow, co-authoring, shared repositories, distributed
systems); moreover, S-agents that access those fulcra contain

rules that capture the interactions occurring in each of them
between any two participating actors. This kind of information
can be transmitted and organized in a topological space
(usually called social network [17]) where the distance
between the M-agents corresponding to any pair of actors
expresses the degree of interaction among them. Moreover,
M-agents own a sensitivity function expressing their
availability to help an actor’s request to solve an unexpected
problem: for example, availability can be computed in terms
of work overload or single actor’s preferences, by means of
the same rule-based mechanism described in the workshop
scenario.

 The environment, which could include several fulcra, a
logical space associated to many of them as well as a physical
one, can be modeled and managed by applying the integrated
approach of CASMAS: the approach has the obvious
advantage to manage uniformly the physical and logical
features characterizing the environment and to support actors
in their private and collaborative interaction by means of
mutual perception and modulated participation to the
applications that are available within the environment.

IV. CONCLUSION
This paper presented CASMAS, an agent based model for

the design of collaborative community-aware applications.
With community-aware we intend cooperative applications
that - by means of the CASMAS constructs - are augmented
with mechanisms managing different levels of participation of
actors as members of communities. In order to let cooperative
application become community-aware, the CASMAS model
combines and integrates two models that were previously
proposed within the multi-agent system research: Santana and
MMASS. The former has been adopted for its ability to
support the design of applications for Intelligent
Environments, i.e., environments encompassing distributed
and heterogeneous devices whose computational power can be
combined together in order to build a context-aware
environment that is able to react more aptly to the users'
needs. CASMAS can be seen as an extension of Santana

Fig. 7. Diffusion of the "PCC workshop is starting" field (hatched line) on the graph and perception by M-agents

(colored agents perceive the field).

WOA 2005 118

aimed at supporting the design of cooperative applications that
could be used also in those domains whose requirements are
characterized within the Ambient Intelligence and Ubiquitous
Computing research fields. The latter one is a multi-agent
model that has been adopted for its ability to conceive of
agents as entitities situated on topological spaces representing
both logical and physical aspects of a domain. The
propagation of information among agents is modulated by
means of the concept of field propagation, which is borrowed
from Physics.

In the CASMAS model, primitives provided by Santana are
used to let the various collaborative applications share those
information and behaviors that concern and characterize the
community of their users; MMASS is used to model how the
level of participation of different community members can be
modulated: this modulation occurs taking into account how
the domain dependent information, which is relevant to affect
the level of participation, is modulated through topological
spaces representing either logical or physical aspects. As a
result of the integration between Santana and MMASS,
CASMAS provides designers with some additional
mechanisms to let information be exchanged among Santana
components and MMASS agents. Moreover, our proposal
aims at making possible a seamless sharing of the rules
regulating the community members’ behaviors according to
their current level of participation.

Currently, we are involved with the implementation of the
Santana framework and of the MMASS model by means of
the DJess platform [18], a middleware based on declarative
programming by which distributed inference systems can
share facts and rules through a blackboard interaction model.
We are also investigating how to integrate the CASMAS
model with other agent-based models: in particular with the
ABACo Multi-Agent Framework [7] so that CASMAS fulcra
can become places where people are strongly supported in
coordinating their activities.

REFERENCES
[1] M. Wooldridge, "Agent-based Computing," Interoperable

Communication Networks, vol. 1, pp. 71--97, 1998.
[2] P. Ciancarini and M. J. Wooldridge, Agent-Oriented Software

Engineering, vol. 1957 LNCS: Springer-Verlag, 2001.
[3] R. A. Brooks, "Intelligence without representation," Artificial

Intelligence, vol. 47, pp. 139-159, 1991.
[4] Y. Yiming and E. Churchill, "Agent Supported Cooperative Work," in

Multiagent systems, articial societies, and simulated organizations, G.
Weiss, Ed.: Kluwer Academic Publishers, 2003.

[5] S. Aknine and S. Pinson, "Managing Distributed Parallel Workflow
Systems Using a Multi-agent Method," in Agent Supported Cooperative
Work, Y. Yiming and E. Churchill, Eds.: Kluwer Academic Publishers,
2003.

[6] C. Ellis, J. Wainer, and P. Barthelmess, "Agent-augmented Meetings," in
Agent Supported Cooperative Work, Y. Yiming and E. Churchill, Eds.:
Kluwer Academic Publishers, 2003.

[7] M. Divitini, M. Sarini, and C. Simone, "Reactive Agents for a systemic
approach to the construction of Coordination Mechanisms," in Agents
supported Cooperative work, E. Churchill and Y. Yiming, Eds.: Kluwer
Academic Press, 2003.

[8] J. Lave and E. Wenger, Situated Learning: Legitimate Peripheral
Participation: Cambridge University Press, 1991.

[9] J. H. E. Andriessen, "Archetypes of Knowledge Communities," Second
Communities & Technologies Conference (C&T2005), Milan, Italy,
2005.

[10] F. Cabitza, B. Dal Seno, M. Sarini, and C. Simone, "Being at One with
Things: The Interconnection Metaphor for Intelligent Environments,"
The IEE International Workshop on Intelligent Environments (IE05),
University of Essex, Colchester, UK, 2005.

[11] S. Bandini, S. Manzoni, and C. Simone, "Heterogeneous Agents Situated
in Heterogeneous Spaces," Applied Artificial Intelligence, vol. 16, pp.
831-852, 2002.

[12] C. Simone and S. Bandini, "Integrating Awareness in Cooperative
Applications through the Reaction-Diffusion Metaphor," Computer
Supported Cooperative Work, The Journal of Collaborative Computing,
vol. 11, pp. 495-530, 2002.

[13] M. Mamei, F. Zambonelli, and L. Leonardi, "Distributed Motion
Coordination with Co-Fields: A Case Study in Urban Traffic
Management," 6th IEEE Symposium on Autonomous Decentralized
Systems (ISADS 2003), Pisa(I), 2003.

[14] M. Mamei, F. Zambonelli, and L. Leonardi, "Tuples On The Air: A
middleware for context-aware computing in dynamic networks," 23rd
International Conference on Distributed Computing Systems (ICDCSW
’03), 2003.

[15] G. D. Abowd and A. K. Dey, "Towards a Better Understanding of
Context and Context-Awareness," Workshop on The What, Who,
Where, When, and How of Context-Awareness - Conference on Human
Factors in Computing Systems (CHI 2000), The Hague, The
Netherlands, 2000.

[16] M. Weiser and J. S. Brown, "Designing calm technology," PowerGrid
Journal, vol. 1, 1996.

[17] B. Wellman and S. D. Berkowitz (eds.), "Social structures: A network
approach." Cambridge: Cambridge University Press, 1988.

[18] F. Cabitza, M. Sarini, and B. Dal Seno, "DJess - A Context-Sharing
Middleware to Deploy Distributed Inference Systems in Pervasive
Computation Domains," IEEE International Conference on Pervasive
Services 2005 (ICPS'05), Santorini, Greece, 2005.

WOA 2005 119

 1

Abstract—This paper presents ANEMONE, a multi-agent

platforms network that provides services for the academic
community implemented by using the JADE agent development
framework. In particular, ANEMONE provides a set of services
to support i) academic people in some of their recurrent activities
(fix an appointment, organize a meeting and search documents on
the Web, ii) students in getting information about courses and iii)
information technology people (including students) in getting
information on documents and people that may help them to solve
their programming problems. Moreover, it also provides a set of
system-oriented services for the management of agent platforms
and services and for the realization of new types of service.

Index Terms—Multi-agent systems, cooperative systems, user-
oriented services

I. INTRODUCTION

NE of the main reasons to use autonomous software
agents is their ability to interact to show useful social

behaviors rapidly adapting to changing environmental
conditions. But the most interesting applications require that
large and open societies of agents are in place, where
collaborating and competing peers are able to interact
effectively. In a context where a number of possible partners
or competitors can appear and disappear, agents can highlight
their ability to adapt to evolving social conditions, building
and maintaining their networks of trust relations within a
global environment.

The first effort to create such a large and open society of
autonomous software agents was Agentcities [1]. This project
developed a network of agent platforms spanning over the
whole globe and a number of complex agent-based

Manuscript received November 3, 2005. This work is partially supported

by the “Ministero dell'Istruzione, dell'Università e della Ricerca” through the
COFIN project ANEMONE.

M. Mari and A. Poggi are with the Dipartimento di Ingegneria
dell’Informazione, University of Parma, Italy (e-mail: mari@ce.unipr.it,
poggi@ce.unipr.it).

P. Baroni is with the Dipartimento di Elettronica per l’Automazione,
University of Brescia, Italy (e-mail: baroni@ing.unibs.it).

G. Armano and G. Cerchi are with the Dipartimento di Ingegneria Elettrica
ed Elettronica, University of Cagliari, Italy (e-mail: armano@diee.unica.it).

C. Santoro is with the Dipartimento di Ingegneria Informatica e delle
Telecomunicazioni, University of Catania, Italy (e-mail: csanto@diit.unict.it).

E. Tramontana is with the Dipartimento di Matematica e Informatica,
University of Catania, Italy (e-mail: tramontana@dmi.unict.it).

M. Colombetti and M. Verdicchio are with the Dipartimento di Elettronica
e Informazione, Politecnico of Milano, Italy (e-mail: colombet@elet.polimi.it,
verdicch@elet.polimi.it).

applications were deployed on the network. OpenNet is an
evolution of Agentcities whose goal is to integrate agent
platforms with Web Services / Semantic Web platforms [2]. In
this paper, we present ANEMONE, an agent platform network
developed inside the OpenNet initiative.

II. ANEMONE

ANEMONE is a multi-agent platforms network that
provides services for the academic community (professors,
researchers and students) implemented by using the JADE
agent development framework [3].

ANEMONE offers both system-oriented and user oriented
services. System oriented services allow the management of
the network and the realization of new user-oriented services
through their extension and composition. User-oriented
services have the goal of helping academic users and can be
used through a simple Web browser.

III. SYSTEM-ORIENTED SERVICES

System-oriented services have the goal to provide support to
the management of agent platforms and services and provide
reusable components to realize new types of service.

A. Platforms and Services Management
Platform and service management services are based on the

services provided by the JADE agent development software
and a set of services to register and search platforms
(Agent/Service Platform Directory Services), agents (Agent
Directories) and services (Service Directories) in an open
network of agent platforms. Using these services, it is possible
to connect a new platform to the openNet network, making it
visible to others, and deploy own naming, directory and
monitoring services.

Moreover, a set of monitoring services (Agent/Service
Platform Monitoring Services) allow to monitor the platform's
status and its ability to communicate with others.

B. Agent Interaction
As we introduced above, the platforms in the ANEMONE

network are developed by using JADE. Agent interaction in
JADE systems is based on message exchange. Thus, the
adopted agent communication language has a crucial role.
JADE agents’ messages follow the standard proposed by the
Foundation for Intelligent and Physical Agents (FIPA [10]),
which is the most complete proposal to date.

ANEMONE - A Network of Multi-Agent
Platforms for Academic Communities

G. Armano, P. Baroni, G. Cerchi, M. Colombetti, A. Gerevini, M. Mari, A. Poggi,
C. Santoro, E. Tramontana, M. Verdicchio

O

WOA 2005 120

 2

Still, the FIPA semantics shows some shortcomings that
inevitably affect the systems whose communication is based on
such standard. Our aim is to provide a different semantics to
tackle these problems. The FIPA proposal and ours share the
assumption that agent communication should be dealt in terms
of communicative acts, a special action type aiming at
allowing information interchange. We part from FIPA
guidelines when it comes to defining the semantics of such
acts. The FIPA semantics exploits the Belief, Desire, Intention
(BDI, [5]) model, which views communicative acts as events
that change agents’ mental states. Instead of analyzing changes
in the state of the internal architecture of agents, our approach
focuses on the external social state holding among agents. We
describe communicative acts as actions performed by agent to
change their commitments towards the others. We rewrote the
FIPA Communicative Act Library according to our
perspective to have a benchmark for the two approaches. The
advantages of dealing with social states rather than mental
ones have surfaced in the analysis of the Contract Net
protocol, in which an agent, in a need for a specific service,
issues a call for proposal to other agents. To check whether the
contract has been fulfilled, the current FIPA protocol
prescribes an inform message from the service provider itself.
This procedure is effective only under very strict assumptions
about the sincerity of the agents, which we cannot afford when
we deal with open multi-agent systems. In a commitment-
based approach, on the contrary, each message exchange of the
Contract Net protocol leads to changes in the social dimension
of the multi-agent system, in that, commitments are proposed,
and such proposals are accepted or rejected. Commitments are
public and reflect an objective state of affairs between agents.
They can be stored for further reference and thus they offer an
effective way to check whether agents have fulfilled their
commitments. The FIPA communicative act library in terms of
commitments and the results of the analysis of the Contract
Net protocol are formally presented in [6].

We provide the ANEMONE network and, more generally,
every JADE-based multi-agent system such commitment-based
communication system in the form of an agent that is called
Notary. The Notary is responsible for examining the content of
the messages that are exchanged over the system and creating
public structured data items reporting the relevant
commitments between agents. The Notary makes use of
witness agents the communicating agents have agreed upon to
check whether the commitments have been fulfilled or
violated. The witnesses reply to queries by the Notary, and
thus increase its knowledge base. The Notary exploits a JESS
(Java Expert System Shell, [7]) inference engine to reason
about its own knowledge base and verify whether a
commitment has been fulfilled or not. To support the
commitment generation and manipulation processes, the
exchanged messages need to be carrying more information
than as prescribed by the usual FIPA standard. To maximize
backward compatibility, we have chosen not to add fields to
the original FIPA message structure, but to enrich and

standardize its content field by means of XML. The Notary is
provided with XML parsing capabilities thanks to a SAX
(Simple API for XML, [8]) module.

The Notary-enhanced communication system introduces
significant overhead in the message interchange process,
which may not suit the needs for lightweight application in
such environments like PDAs or mobile phones. This service
is offered as an option when agents need a trusted third-party
to guarantee for their communication process, e.g. in electronic
auctions or business transactions. Agents only need to put the
Notary among the messages’ addressees to obtain its service.

C. Automated Reasoning
Domain-independent automated reasoning services, based

on stand-alone software tools previously developed in the
context of other research activities, are made available to the
community by a wrapper agent, which is in charge of receiving
requests from other agents specifying reasoning tasks to be
carried out, of exploiting the suitable software system to
produce the relevant solutions, and of returning them to the
requestor agents.

The wrapper agent and the related agents devoted to
registration and brokering of the available reasoning services
are implemented according to the FIPA specification “Agent
software integration” [10].

Two reasoning services are currently being integrated into
the ANEMONE network, namely an argumentation system and
a planning system.

Argumentation theory is a framework for practical and
uncertain reasoning, where arguments supporting conclusions
are progressively constructed in order to identify the set of
conclusions that should be considered justified according to
the current state of available knowledge. The use of
argumentation has been advocated both at the level of
interaction among agents to support dialogue and negotiation
and at the level of an agent's internal reasoning (see [14] for a
survey).

Since the construction of arguments proceeds by exploiting
incomplete and uncertain information, conflicts between them
may arise: the conflict relations between arguments are
formally represented by a structure called defeat graph. The
core problem is then to compute the “defeat status” of the
arguments, namely to determine which arguments emerge
undefeated from the conflict: several semantics have been
proposed to this purpose in the literature.

A reasoning task in this case consists in the specification of
a defeat graph and the solution provided is the defeat status
assignment for the arguments included in the graph. The
solution may be produced according to the well-known
grounded [13] semantics or to the recently introduced CF2 [9]
semantics.

As to the planning system, this reasoning service receives
requests to solve plan generation problems specified using the
recent standard PDDL2.2 language [12], and computes plans
solving such problems (assuming they are solvable and not too
hard for the integrated planner). PDDL2.2 is an expressive

WOA 2005 121

 3

planning language supporting the representation of domains
involving numerical quantities, actions with durations,
predictable exogenous events and domain axioms. The
integrated planning system is LPG [11], an efficient, state-of-
the-art, fully-automated planner which received two awards at
the last International planning competition.

IV. USER-ORIENTED SERVICES

ANEMONE provides a set of services to support i)
academic people in some of their recurrent activities (fix an
appointment, organize a meeting and search documents on the
Web, ii) students in getting information about courses and iii)
information technology people (including students) in getting
information on documents and people that may help them to
solve their programming problems.

A. Agenda Management
An agenda management system called MAgentA (Multi-

Agent Agenda) has been developed. The system, besides
managing users’ personal agendas, provides a specific support
to meeting organization: through a process of automated
negotiation agents are able to determine the temporal location
of a meeting which best fits the preferences of their owners,
while satisfying some constraints specified by the meeting
proposer.

The MAgentA system, implemented using the JADE agent
development environment, consists in the following agents:

- a user management (UM) agent, in charge of managing
the authentication of authorized users;

- a meeting management (MM) agent, in charge of
coordinating the negotiation of a meeting among
users’ agents and of managing a database of meetings;

- a set of personal agenda (PA) agents, which represent
individual users and maintain information about their
scheduled activities and their preferences over their
possible temporal allocation. PA agents are expected
to be continuously running and available to receive
meeting organization requests from other agents;

- a set of GUI agents, in charge of managing the
interaction with the MAgentA users through a
graphical interface. A GUI agent is activated only
when necessary, i.e. during a user working session.

In a typical use scenario, a user, after authentication,
interacts with a GUI agent to express her/his preferences about
temporal locations of requested meetings and possibly to insert
some personal scheduled activities within her/his agenda. The
GUI agent communicates this information to user's PA agent
which will use them when negotiating the organization of a
meeting.

Moreover, using the GUI, a user may initiate the
organization of a meeting by specifying:

- some temporal constraints about the temporal location
of the meeting;

- the minimum and maximum duration of the meeting;
- a list of expected participants, partitioned into

necessary participants and optional participants.

Once a request of a meeting organization has been
formulated by the initiator user, it is submitted to the MM
agent which tries to identify a solution, namely a suitable
temporal location of the meeting, through a negotiation
process consisting in the following steps.

First of all, using the FIPA contract-net protocol, the PA
agent of every participant is solicited to propose a set of
possible solutions compatible with the meeting temporal
constraints, and to specify the user’s preferences about the
proposed solutions.

Then the MM agent verifies whether there exists a temporal
location where all participants are available and, if one or
more of them exists, it proposes them to the initiator user,
ordering them on the basis of participants’ preferences.
Otherwise, the solutions where at least the necessary
participants are available are searched for. Again, if these
“weaker” solutions are found, they are proposed in an order
consistent with the preferences specified in the agendas of the
involved users; otherwise, a final search for (possibly less-
satisficing) solutions is carried out, where personal activities
included in participants’ agendas are ignored. The list of the
solutions found or a message of failure is then provided to the
initiator user.

If a list of solutions has been found, the initiator user selects
and confirms one of them: a notification is then sent to the
MM agent and to the involved PA agents, which add the
meeting to their databases.

In case of failure, it is up to the user to define a new request
with different constraints and to initiate a new negotiation
process.

B. Supporting Students in their University Activities
DIEE has developed an e-service devised to support

graduated and undergraduated students in their activities. It is
built upon a generic multi-agent architecture, designed to
support the implementation of applications aimed at: (i)
retrieving heterogeneous data spread among different Internet
sources (i.e., generic web pages, news, and forums), (ii)
filtering and organizing information according to personal
interests explicitly stated by each user, and (iii) providing
adaptation techniques to improve and refine throughout time
the profile of each selected user. The generic architecture has
been called PACMAS, standing for Personalize, Adaptive, and
Cooperative MultiAgent System, and encompasses four main
levels (i.e., information, filter, task, and interface), each being
associated to a specific role that agents can play. The
communication between adjacent levels is achieved through
suitable middle agents, which form a corresponding mid-span
level. Each level is populated by a society of agents, which are
autonomous and flexible, and can be personalized, adaptive
and cooperative depending on the role they assume in the
implemented application. PACMAS agents belong to one of
the following categories:

- information agents, which access information sources,
and are able to collect and manipulate such
information [19];

WOA 2005 122

 4

- filter agents, able to process information according to
user preferences [16] ;

- task agents, which help users to perform tasks by
solving problems and exchanging information with
other agents [17];

- interface agents, devised to facilitate the interaction
between the user and other agents [18];

- middle agents, which are in charge of establishing
communication among requesters and providers.

Let us consider a typical University Department. It generally
makes available the information about courses, seminars,
exams, professors, and students on different areas: web sites,
forums, and news (NNTP) servers. All relevant information is
not directly available but it is usually spread on the department
portal, on the web site of each course, and on the personal
page of each professor. Furthermore, each professor might
activate her/his news and forum service. Some of the
information potentially interest all students, such as lesson
timetables, exam dates, taxes, and student tutoring. On the
other hand, students belonging to different courses are
interested in different lessons and exams. Typically, a student
in search of relevant information about her/his University

activities browses web sites, and reads announcements from
forum and news services. This is often a repetitive and boring
task that can be automated. From our perspective,
personalization and adaptation represent the added value of
such an automated system.

 To provide an e-service able to support students in their
activities, a prototype based on the PACMAS architecture has
been implemented, using JADE [3] as the underlying
framework. Supporting students involves several activities:
information extraction, information retrieval and filtering,
information processing, and result presentation. Each activity
corresponds to a suitable level of the PACMAS architecture.
Information extraction is carried out at the information level
by information agents that play the role of wrappers,
specialized for dealing with a specific information source.
Information retrieval and filtering is carried out at the filter
level, populated by two kind of agents: generic and personal.
Generic filters are specifically aimed at removing all non
relevant information retrieved from the involved information
sources, whereas personal filters are devoted to select the
information according to the personal needs, interests, and

Figure 1. The GUIs of the four user-oriented

WOA 2005 123

 5

preferences of the corresponding user. Information processing
is carried out at the task level, where agents are customized for
a specific task (e.g. lesson timetable, seminars, and exams
scheduling). Result presentation is carried out at the interface
level, through agents that interact with the users. A suitable
graphical interface - personalized for each user - that can run
on a web browser, is available to allow communication among
interface agents and the user.

The prototype has been tested on the information system of
the Department of Electrical and Electronic Engineering
(DIEE) at the University of Cagliari.. The system is able to
learn specific user’s interests to retrieve, filter, and show only
the information deemed relevant by her/him. A beta version of
the web service is available at:
http://iascw.diee.unica.it/PacmasWWW.

C. Documents Search
SHARK is a multi-agent P2P document sharing system

aiming to provide users with a more effective tool to find
documents and promote collaborations among them [20]. Each
SHARK agent (such as Categoriser, Searcher, UserProfiler,
etc.) autonomously performs a small task, such as document
categorisation, finding, user profiling, etc. and communicates
its results to other agents.

The hosts in a SHARK network are given different roles. A
client host provides users with a few services, such as user
profiling and document analysis, and allow users to log in to
an AgentCities [21] host. AgentCities hosts are servers,
connected to each other, each running a FIPA-compliant agent
platform and handling data related to SHARK users and their
documents.

1) SHARK Agents
n the following we describe the agents that constitute

SHARK. Agent Cruncher analyses shared documents and
extracts from each a set of keywords. For this, Cruncher uses
filters to recognise and remove HTML, LaTex, RTF and PDF
tags that are used only to format the text; then it removes the
stop words, and, for all the remaining words, it extracts the
appropriate stems. The output is a list of word stems ranked by
the number of occurrences found [22][23].

Agent Categoriser, on the basis of extracted word stems,
associates categories to documents. Categoriser holds a
knowledge base, containing, for each known category: its
name, the list of keyword stems and the respective frequency.
Taking as input a list of word stems, Categoriser calculates the
“distance” between such a list and the known categories, by
using the dot product. The category that minimises the distance
is chosen as the category to which the document belongs.

Agent UserProfiler detects the activities that a user
operating with a web browse performs, and analyses the shared
documents in order to continually update his/her profile. The
user profile consists of the list of categories corresponding to
shared documents or visited web pages. Each category is
associated with a score, which reflects the degree of interest,
measured on the basis of the number of shared documents and
visited web pages.

Agent Searcher runs on an AgentCities host and holds the
list of categories identified for the local shared documents, for
each category the list of documents and the user providing
each document. Given a user-provided query (as a list of
keywords), Searcher looks for matching categories and returns
the list of corresponding documents with the user providing
each. The query is then propagated to the other AgentCities
hosts, where local Searchers will perform analogous activities.

Agent Correspondent handles document download requests
originating from other users.

Agent Advertiser periodically checks user profiles in order
to find a partial match. Whenever the matching degree is
above a given threshold, the users with common interests are
notified with an email message. It is then up to the users to
find the opportunity for a collaboration.

The instances of the agent classes described above run on
different hosts. The user host is equipped with Cruncher,
UserProfiler and Correspondent; AgentCities servers host
Categoriser, Searcher and Advertiser.

2) Using SHARK
Users interact with SHARK by means of a web interface, of

which we highlight here two important features. The first one
is the searching facility: once a user has performed a query, by
typing a set of keywords into a web form, this is sent to the
Searcher on the AgentCities server the user is connected with.
The results of Searcher are sorted so that the more relevant
document is that exhibiting the highest frequency (in
percentage with respect to all the document’s keywords) of the
keyword queried-if only one keyword is provided. If more than
one keyword is given, the total relevance is computed as the
average of each single keyword relevance.

The second feature is the collaboration facility. This is
connected with searches and consists of providing a list that
reports the name of the users who have, in their user profile,
the keyword(s) queried. Names are ranked according to the
relevance of the user profile with respect to the keyword(s)
queried. Relevance is computed using the same method
employed for documents.

D. Software Development
RAP (Remote Assistant for Programmers), is a Web and

multi-agent based system to support remote students and
programmers during common projects or activities based on
the use of the Java programming language [24].

1) RAP Agents
In this section we describe the agents that compose the RAP

system. Personal Agents allow the interaction between the user
and the different parts of the system and, in particular, between
the users themselves. Moreover, these agents are responsible
of building the user profile and maintaining it when the user is
“on-line”. User-agent interaction can be performed in two
different ways: through a Web based interface or through
emails (if the user is not on-line). User Profile Managers are
responsible of maintaining and updating the profile of system
users. Answer Managers maintain the answers provided by
users during the life of the system and they find the

WOA 2005 124

 6

appropriate answers to the new queries of the users. Besides
providing an answer, these agents update the score of the
answer and forward the vote to the User Profile Manager for
updating the user profile. Document Managers find the
appropriate documents to answer the queries submitted by
system users. E-mail Managers are responsible of the
communication between the system and the off-line users.
Starter Agents are responsible for activating a Personal Agent
when either a user logs on or another agent requests it.
Directory Facilitators are responsible to inform an agent about
the address of the other agents active in the system (yellow
pages service).

2) Profile Management and Open Communities
The management of user and document profiles is

performed in two different phases: an initialization phase and
an updating phase. In order to simplify and reduce the
possibility of inaccuracy due to people’s opinions of
themselves and to incomplete information, we decided to build
the initial profile of the users and documents in an automated
way. Profiles are represented by vectors of weighted terms
whose values are related to the frequency of the term itself in
the user’s documents. Document and user profiles are
computed by using “term frequency inverse document
frequency” (TF-IDF) [24] algorithm. Each user profile is built
by user’s Personal Agent through the analysis of the software
she/he wrote. This is only the initial user’s profile, it will be
updated when the user writes new code or interacts with the
system answering some queries.

An important requirement that has guided the design of
RAP has been the support for open and distributed
communities. RAP structure is open, since new users can
register and access the system, and a registered user can
acquire new skills or produce new software. The community
beneath RAP is distributed: the whole system can consist of a
dynamic group of local communities. Each community can
operate isolated, but can also decide to join a group of
communities, sharing experts and documents repositories.

The open and distributed nature of the system entails some
significant problems in the evaluation of information: the
evaluation of both experts and documents is strongly
dependent on the actual composition of the community group.
For example, if a user is rated as the maximum expert to
answer a query, he is rated considering only the users
registered in the system at that moment. As a matter of fact,
TF-IDF algorithm can be easily used in a centralized system
where all the profiles and the data are managed, while our
context is more complex. For these reasons, each profile
component of RAP is associated with two elements: an
absolute element and a TF-IDF weighted element. The
absolute one depends only on the user (or document) profile,
instead the TF-IDF element is related to both the user profile
and the whole community profiles. Moreover, while the
absolute element is stored in a database, the weighted one is
maintained in memory and it is recalculated when necessary.

V. CONCLUSION

In this paper, we presented ANEMONE, a multi-agent
platforms network that provides services for the academic
community (professors, researchers and students).

The ANEMONE network and services are the result of a
project involving five Italian universities (University of Parma,
University of Brescia, University of Cagliari, University of
Catania and “Politecnico di Milano” Technical University) and
the realized network is composed of five nodes deployed in
the different universities. However, the ANEMONE network
can interoperate with agent platforms deployed in different
parts of the world. In fact, ANEMONE project takes part of
the OpenNet initiative [2] that is a project dedicated to
facilitating collaboration between research projects
developing, applying and above all deploying Agent, Semantic
Web, Web Services, Grid and similar networked application
technologies in large-scale open environments such as the
public Internet. In particular, the core partners of this initiative
deployed a backbone network of agent platforms, including a
platform at the University of Parma. This backbone network
has the goal to be the interconnection network among the
systems and prototypes belonging to the initiative (currently
different projects are running in different part of the world and
different tens of agent platform are active).

REFERENCES
[1] "Agentcities: A Worldwide Open Agent Network" Steven Willmott,

Jonathan Dale, Bernard Burg, Patricia Charlton and Paul O'brien. Short
article in Agentlink News Issue 8, November 2001.

[2] OpenNet initiative Home Page. Available from http://x-opennet.org/.
[3] F. Bellifemine, A. Poggi, G. Rimassa, Developing multi agent systems

with a FIPA-compliant agent framework. Software Practice &
Experience, 31:103-128, 2001

[4] Foundation for Intelligent Physical Agents, “Agent Communication
Language Specifications”, http://www.fipa.org/repository/aclspecs.html,
2002

[5] M. Wooldridge, “Reasoning about rational agents”, MIT Press, 2000
[6] M. Verdicchio, M. Colombetti, “A Commitment-based Communicative

Act Library”, Proceedings of the Fourth International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 05), vol. 2,
p755-761, Utrecht, 2005

[7] Ernest Friedman Hill, “JESS in Action”, Manning Publications, 2003
[8] D. Megginson, “SAX”, http://www.saxproject.org, 2004
[9] P. Baroni, M. Giacomin, G. Guida, SCC-recursiveness: a general

schema for argumentation semantics, accettato per la pubblicazione su
Artificial Intelligence, 2005

[10] FIPA Specification 00079, Agent Software Integration, 2001,
http://www.fipa.org/specs/fipa00079/

[11] A.Gerevini, A, Saetti, I. Serina, Planning through Stochastic Local
Search and Temporal Action Graphs in LPG, Journal of Artificial
Intelligence Research (JAIR), 20, 2005, 239-290

[12] J. Hoffmann, S. Edelkamp, The Deterministic Part of IPC-4: An
Overview, to appear in Journal of Artificial Intelligence Research
(JAIR), 2005

[13] J. Pollock, How to Reason Defeasibly, Artificial Intelligence, 57(1),
1992, 1-42

[14] H. Prakken and G. A. W. Vreeswijk, Logics for Defeasible
Argumentation, in Dov M. Gabbay and F. Guenthner Eds., Handbook of
Philosophical Logic, Kluwer, 2001

[15] K. Decker, K. Sycara, and M. Williamson. Middle-agents for the
internet. In Proceedings of the 15th International Joint Conference on
Artificial Intelligence (IJCAI 97), pages 578.583, 1997.

WOA 2005 125

 7

[16] A. Falk and I. Josson. Paws: An agent for www-retrieval and filtering. In
Proceedings of Practical Application of Intelligent Agents and Multi-
agents Technology (PAAM-96), pages 169.179, 1996.

[17] J. Giampapa, K. Sycara, A. Fath, A. Steinfeld, and D. Siewiorek. A
multi-agent system for automatically resolving network interoperability
problems. In Proceedings of the Third International Joint Conference on
Autonomous Agents and Multiagent Systems, pages 1462.1463, 2004.

[18] H. Lieberman. Autonomous interface agents. In Proceedings of the
ACM Conference on Computers and Human Interface (CHI-97), pages
67.74, 1997.

[19] P. Maes. Agents that reduce work and information overload.
Communications of the ACM, 37(7):31.40, 1994

[20] A. Di Stefano, G. Pappalardo, C. Santoro, E. Tramontana. “SHARK, a
Multi-Agent System to Support Document Sharing and Promote
Collaboration”. In Proceedings IEEE Hot P2P Workshop. Volendam,
Holland. October, 2004.

[21] WWW. www.agentcities.net, 2005.
[22] H. Lieberman. Letizia: An Agent That Assists Web Browsing. In

International Joint Conference on Artificial Intelligence, Montreal,
August 1995.

[23] H. Lieberman, P. Maes, and N. Van Dyke. Butterfly: A Conversation-
Finding Agent for Internet Relay Chat. In International Conference on
Intelligent User Interfaces, Los Angeles, January 1999.

[24] L. Lazzari, M. Mari, A. Negri, A. Poggi: Support Remote Software
Development in an Open Distributed Community. In AAMAS05
workshop Agent-Based System for Human Learning (ABSHL), Utrecht,
2005.

[25] Salton, G.: Automatic Text Processing. (1989), Addison-Wesley.

WOA 2005 126

MAgentA: Un Sistema Multi Agente per la
Gestione di Agende e Riunioni

Pietro Baroni Alfonso Gerevini Paolo Toninelli
Dipartimento di Elettronica per l’Automazione

Università degli Studi di Brescia
via Branze 38, I-25123 Brescia, Italy

{baroni,gerevini}@ing.unibs.it

Abstract— In questo articolo viene presentato MAgentA, un
sistema multi-agente sviluppato nel contesto del progetto interu-
niversitario ANEMONE allo scopo di gestire agende e pianificare
riunioni tra gli utenti in modo semiautomatico. Ogni agenda
è gestita da un agente che conosce gli impegni personali e le
preferenze di un particolare utente, mentre le riunioni vengono
organizzate da un apposito agente in grado di contattare le
agende e ragionare sulle preferenze degli utenti e sulla loro dispo-
nibilià nel tempo. MAgentA, che è stato sviluppato utilizzando la
piattaforma JADE e lo standard FIPA, si caratterizza rispetto ad
altri sistemi analoghi poichè è in grado di discretizzare il tempo in
modo guidato dalle preferenze oltre che dalla disponibilità degli
utenti contattati ed utilizza criteri che cercano di ottimizzare
anche la durata della riunione, entro i limiti stabiliti dall’utente
che ne ha fatto richiesta.

I. INTRODUZIONE

Le tecnologie ad agenti forniscono strumenti che permet-
tono di modellare ed implementare sistemi software sempre
più articolati, in cui sono possibili astrazioni espressive come
agenti, società di agenti ed ambiente [1].

In questo contesto si colloca il progetto interuniversitario
ANEMONE (A NEtwork of Multi-agent OpeN Environments).
Il progetto si propone come obiettivo da una parte la realizza-
zione di una rete di piattaforme multi-agente in grado di offrire
servizi dedicati alla comunità accademica ed interoperabile
con altre piattaforme attive in diverse parti del mondo, e
dall’altro la ricerca di soluzioni ad alcuni problemi comuni
nella realizzazione di piattaforme multi-agente. Una delle
funzionalità che il progetto si propone di realizzare è la ge-
stione semiautomatica degli impegni dei docenti che fornisca
un supporto all’organizzazione di riunioni. Il problema è di
particolare rilevanza pratica ed è appropriato per l’applicazione
della tecnologia ad agenti, come confermato dall’esistenza di
svariati lavori sul tema [2], [3], [4], [5], [6].

Nell’ambito del progetto ANEMONE, tale servizio viene
fornito da un sistema ad agenti denominato MAgentA (Mul-
ti Agent Agenda) e sviluppato tramite l’utilizzo di JADE
(Java Agent DEvelopment Framework) [7], un framework
che semplifica l’implementazione dei sistemi multi-agente
attraverso un middle-ware conforme alle specifiche FIPA [8].
Alcune caratteristiche di MAgentA lo differenziano da lavori
analoghi preesistenti. In particolare il metodo utilizzato per la
definizione dei possibili intervalli temporali in cui pianificare
una riunione. Tali intervalli vengono infatti individuati senza

Fig. 1. Architettura del sistema. Agenti, database e connessioni.

la necessità di suddividere il tempo in intervalli discreti di di-
mensione fissa, tramite una algoritmo guidato dalle preferenze
degli utenti ed in grado di ignorare intervalli poco rilevanti.

L’articolo descrive le funzionalità e la struttura del sistema
MAgentA ed è organizzato nel modo seguente: nelle sezioni
II e III verrà presentata una panoramica sull’architettura del
sistema, gli agenti che lo compongono, il modo in cui essi
comunicano e le funzionalità offerte; nella sezione IV si
vedranno quali sono i compiti dell’agente che implementa
l’agenda di un utente; nella sezione V verranno esposte le
caratteristiche dell’agente incaricato della gestione degli utenti
del sistema; nella sezione VI sarà esaminato l’agente che
permette all’utente di interagire con la propria agenda tramite
l’interfaccia grafica; nella sezione VII verranno esposte le ca-
ratteristiche dell’agente incaricato di pianificare nuove riunioni
su richiesta degli utenti, tenendo in considerazione le loro
preferenze. La sezione VIII conclude l’articolo sintetizzando
i risultati ottenuti e menzionando i possibili sviluppi futuri di
questo lavoro.

II. ARCHITETTURA E COMPONENTI DI MAGENTA

Il sistema è costituito da un insieme di agenti dotati di
diverse capacità ed in grado di cooperare. Ognuno di essi

WOA 2005 127

ricopre uno specifico ruolo ed è in grado di accedere ad un
database in cui vengono mantenuti i dati di cui l’agente ha
bisogno per assolvere ai propri compiti. I dati sono organizzati
in diversi database:1

• Un database degli utenti registrati nel sistema.
• Un database delle riunioni fissate tra gli utenti registrati.
• Un database riservato ad ogni singolo utente, in cui sono

memorizzati i suoi impegni personali.

Gli agenti che costituiscono il sistema sono (figura 1):

• User Personal Agent (UPA): un agente in grado di accede-
re al database personale dell’utente che ne è proprietario
ed assumere il ruolo di partecipante durante la pianifi-
cazione di una riunione. Questo agente è in grado di
recuperare tutti gli impegni dell’utente, valutare in quali
intervalli possa essere considerato libero e gestire even-
tuali preferenze espresse dall’utente in modo da fornire
all’iniziatore di una riunione le informazioni necessarie
a costruire le funzioni obiettivo utilizzate per collocarla
opportunamente.

• User Management Agent (UMA): un agente per la gestio-
ne degli utenti che ha il compito di avviare le agende e
di distribuire loro le informazioni necessarie ad effettuare
l’accesso al proprio database personale. L’agente inter-
viene inoltre durante il login degli utenti, fornendo ad
ognuno l’indirizzo della propria agenda. L’UMA è il solo
agente autorizzato ad accedere al database degli utenti.

• GUI Agent (GA): un agente per la gestione della GUI, il
cui compito fondamentale consiste nel fare da interme-
diario tra l’agenda e l’interfaccia utente, traducendo gli
eventi della GUI in messaggi per l’UPA e viceversa.

• Meeting Management Agent (MMA): un agente gestore
delle riunioni a cui è consentito l’accesso al database delle
riunioni ed il cui compito principale consiste nell’assu-
mere il ruolo di iniziatore durante la pianificazione di una
riunione. Questo agente è in grado di ragionare sui vincoli
temporali delle riunioni e sugli impegni presenti nelle
agende dei partecipanti per pianificare la nuova riunione
in modo ottimale.

A sistema avviato esistono, oltre all’UMA ed al MMA, un
UPA per ogni utente ed un GA per ogni utente che abbia
effettuato il login sul proprio UPA.

Ogni agente “vive” all’interno di un container a sua volta
contenuto in una piattaforma JADE (Java Agent DEvelo-
pment Framework) [10] e provvede a registrarsi presso il
DF (Directory Facilitator conforme alle specifiche FIPA) [8]
messo a disposizione della piattaforma.2 Tale agente permette
di ottenere informazioni circa gli agenti registrati e viene
utilizzato per recuperare l’indirizzo di UMA e MMA ogni volta
che un agenda abbia bisogno di contattare uno di questi agenti.

1I database possono essere distribuiti su più server. La connessione è stata
realizzata tramite JDBC, mentre per la permanenza dei dati si è utilizzato
JPOX[9], un’implementazione dello standard JDO. In questo modo sia il
formato dei database che il tipo di server possono essere configurati.

2Ogni container può essere lanciato su una diversa macchina in modo da
distribuire gli agenti che compongono il sistema. Il corretto indirizzamento
degli agenti viene gestito tramite il DF.

Fig. 2. Configurazione delle preferenze di un utente.

Ogni volta che viene iniziata una conversazione tra gli agenti,
l’iniziatore genera un identificativo (Conversation-ID) univoco
da assegnare a tutti i messaggi che verranno scambiati durante
la conversazione. In questo modo ogni agente può essere
impegnato in più conversazioni senza che queste interferiscano
tra loro.

III. FUNZIONALITÀ

Nella versione attuale il sistema offre alcune funzionalità
che permettono ad un utente di configurare la propria agenda
esprimendo delle preferenze circa eventuali riunioni a cui
dovrà prendere parte, gestire i propri impegni personali ed
interagire con altre agende allo scopo di pianificare una riu-
nione. Più in dettaglio, le funzionalità attualmente disponibili
sono:

• Configurazione delle preferenze: ogni utente ha la possi-
bilità di esprimere un grado di disponibilità (preferenza)
a partecipare ad eventuali riunioni in un determinato
intervallo di tempo all’interno di una settimana tipo.
Tali preferenze possono essere espresse con una granu-
larità di mezz’ora tramite l’utilizzo di cinque livelli di
disponibilità: basso, discreto, buono, medio e scartato
(figura 2). L’ultimo livello viene considerato come un
impegno fittizio che impedisce all’utente di partecipare
a qualsiasi riunione che vi si sovrapponga. Gli altri
livelli corrispondono invece a dei valori numerici che
quantificano le preferenze dell’utente.

• Inserimento e modifica di impegni personali: ogni utente
può agire sul proprio database personale tramite un’inter-
faccia che permette di aggiungere, rimuovere e modificare
gli impegni traducendo ogni azione in opportuni messaggi
da inviare all’UPA ed aggiornando quanto presentato a
video all’utente.

• Richieste di riunione: ogni utente può assumere il ruolo
di iniziatore definendo dei vincoli per una nuova riunione

WOA 2005 128

ed inviando una richiesta al MMA, il quale interagirà con
le agende degli utenti invitati a prendervi parte.

• Ricerca e ordinamento soluzioni: l’agente gestore delle
riunioni è in grado di valutare le possibili collocazioni
temporali individuate per una nuova riunione allo scopo
di determinarne la qualità in relazione alle preferenze
espresse dalle agende degli utenti invitati. Ciò permet-
te di ordinare le collocazioni individuate in modo da
identificare quelle che meglio soddisfano la richiesta.

• Selezione di una soluzione, memorizzazione e notifica
agli utenti: gli intervalli di tempo selezionati e valutati
possono essere analizzati dall’iniziatore allo scopo di
verificarne la qualità. L’utente potrà quindi selezionarne
uno da assegnare alla riunione che si vuole fissare ed
inviare una notifica alle agende degli utenti invitati.

IV. UPA: AGENTE PERSONALE DI UN UTENTE

L’UPA rappresenta l’agenda vera e propria di un utente.
Questo agente è in grado di accedere al database personale
del suo proprietario per inserivi nuovi impegni ed estrarre o
modificare quelli esistenti. I compiti principali di questo agente
sono:

• rispondere alle richieste provenienti dal GA, in modo da
permettere all’utente di visualizzare ed interagire con la
propria agenda;

• interagire con il MMA assumendo il ruolo di partecipante
durante le conversazioni effettuate tramite il protocollo
FIPA-Contract-Net, allo scopo di fornire all’iniziatore gli
intervalli di tempo disponibili per pianificare una nuova
riunione in accordo con gli impegni del proprio utente;

• valutare tali intervalli tenendo in considerazione gli
impegni personali, le riunioni e le loro eventuali
ricorrenze;

• valutare le eventuali preferenze dell’utente traducendole
in un opportuno insieme di valori numerici.

Nel momento in cui l’UPA viene contattato dal MMA allo
scopo di fissare una nuova riunione, esso si attiva valutando le
possibilità e le preferenze del suo proprietario. Le possibilità
dell’utente vengono definite analizzando la lista di tutti i suoi
impegni ed estraendo tutti gli intervalli in cui l’utente risulta
libero. Per quanto riguarda le preferenze l’agente analizza la
configurazione effettuata dall’utente su di una settimana tipo
e la applica alle possibilità dell’utente. In figura 2 è riportata
la finestra che permette all’utente di configurare le proprie
preferenze.

V. UMA: AGENTE GESTORE DEGLI UTENTI

Il primo compito dello UMA consiste nell’avviare le agen-
de, prelevando le informazioni necessarie dal database degli
utenti registrati. Per ogni utente sono definite le seguenti
informazioni:

• il nome dell’utente, che deve essere unico in quanto verrà
utilizzato come identificativo;

• il nome dell’agenda di cui l’utente è proprietario, ovvero
il nome da assegnare allo UPA di quel particolare utente;

• il nome del database di cui l’utente è proprietario;

UMA

inform (info−database)

inform (alive)
inform (info−database)

inform (alive)

inform (alive)

inform (info−database)

UPA
UPA

MMA

Fig. 3. Scambio di messaggi all’avvio delle agende.

• il nome utente e la password che l’agenda in questione
dovrà utilizzare per poter accedere al proprio database
personale;

• la categoria a cui l’utente appartiene

Il meccanismo di avvio delle agende coinvolge tutti gli
agenti (tranne il GA, che esiste solo nel momento in cui un
utente effettua un login sulla propria agenda) ed è costituito
dai seguenti passi (figura 3):

1) lo UMA recupera dal proprio database la lista degli
utenti, avvia un MMA e si mette in attesa di un suo
messaggio di conferma;

2) ricevuta una conferma (inform (alive)) dal
MMA lo UMA avvia tutte le agende (UPA) di cui gli
utenti prelevati dal database sono proprietari e attende
conferma da ognuna;

3) ricevuto un inform (alive) da parte di un’agenda,
lo UMA invia allo UPA il nome del proprio database
personale ed il nome utente e la password che ne
consentono l’accesso;

Durante il meccanismo di avvio vengono effettuati dei
controlli per impedire che il sistema si trovi in situazioni
anomale. Tali controlli impediscono ad esempio che un’agenda
venga avviata qualora nel sistema non vi sia nessun agente che
offra il servizio di gestione delle riunioni.

Una volta avviate le agende, ogni UPA si pone in uno stato
di attesa per eventuali messaggi provenienti dal MMA o da
un eventuale GA, che può cercare di contattare un’agenda per
effettuare il login.

VI. GA: AGENTE GESTORE DELLA GUI

Il GA deve essere lanciato dall’utente che vuole effettuare un
login sulla propria agenda. Questo agente avvia un’interfaccia
grafica tramite la quale l’utente può interagire con il proprio

WOA 2005 129

Fig. 4. Interfaccia presentata all’utente dal GUI Agent.

UPA, inserendo o modificando degli impegni. I compiti di tale
agente sono:

1) permettere il login su di un UPA, contattando lo UMA al-
lo scopo di identificare l’utente e l’agenda di cui egli è
proprietario;

2) fornire un servizio di traduzione delle azioni esegui-
te dall’utente in opportuni messaggi da inviare allo
UPA affinchè l’azione richiesta venga eseguita;

3) fornire un servizio di traduzione dei messaggi prove-
nienti dallo UPA in opportune azioni dell’interfaccia
che permettano di visualizzare le informazioni contenute
nell’agenda;

In figura 4 è mostrata l’interfaccia che viene presentata
all’utente dopo che è stato effettuato il login.

A. Login/logout di un utente

Una volta avviato, il GA provvede a registrarsi presso il DF e
richiede all’utente di immettere nome e password per effettuare
il login. Inserite queste informazioni vengono effettuati i passi
seguenti (figura 5):

1) il GA contatta il gestore degli utenti, UMA, inviando il
nome utente e chiedendo che gli venga fornito l’indirizzo
dell’agenda di cui l’utente è proprietario

2) lo UMA identifica l’utente ed il suo UPA, cerca tale
agente tra quelli registrati nella piattaforma ed invia il
suo indirizzo al GA; nel caso in cui non esista un’agenda
per l’utente specificato, il gestore degli utenti risponde
con un failure che termina il protocollo;

3) il GA contatta lo UPA inviando una richiesta di login.
Se l’utente risulta già loggato l’UPA rifiuta la richiesta,
altrimenti chiede al GA la password di accesso e verifica
l’identità dell’utente confrontando nome e password
con le informazioni memorizzate nel proprio database
personale;

4) se il confronto ha successo il login viene accettato, viene
registrato l’indirizzo del GA che lo ha effettuato il login
e a quest’ultimo viene inviato un messaggio di conferma

request (agenda AID)

agree

inform (user name)

failure

inform (agenda AID)

request (login)

refuse

agree

inform (user name − password)

inform (done)

failure

UPA GHA UMA

Fig. 5. Messaggi scambiati dagli agenti durante il meccanismo di login di
un utente.

(inform (done)), in caso contrario viene inviato un
messaggio di fallimento (failure);

Al termine del meccanismo di login lo UPA conosce l’indirizzo
del GA e si pone in attesa di eventuali richieste provenienti da
questo agente.

Il meccanismo di logout viene invece effettuato senza che
venga coinvolto il gestore degli utenti. In questo caso il
GA invia la richiesta di logout direttamente all’ UPA, il quale
deregistra tale agente e si pone in uno stato in cui non possono
essere accettate richieste provenienti dal GA.

B. Interazione con l’agenda

Dopo avere effettuato il login, il sistema permette agli
utenti di inserire, rimuovere e modificare impegni personali
all’interno della propria agenda. Tutte le funzionalità vengono
realizzate inviando dei messaggi di richiesta allo UPA di
proprietà dell’utente.

Le conversazioni tra il GA e l’UPA vengono effettuate uti-
lizzando una versione modificata del protocollo FIPA-Request.
Il protocollo utilizzato prevede un inform aggiuntivo la cui
utilità consiste nel poter inviare al destinatario delle informa-
zioni necessarie a portare a termine la richiesta una volta che
questa sia stata accettata.3 Il protocollo utilizzato è riportato
in figura 6:

1) il GA invia allo UPA una richiesta in cui viene
specificato il tipo di azione che si vuole venga effettuata;

3Ad esempio una tipica richiesta della GUI verso l’agenda è costituita da
un messaggio request che contiene l’azione che si vuole venga eseguita
(es. richiesta di invio degli impegni), mentre tutti i parametri necessari ad
eseguirla (es. periodo di tempo di cui si vogliono gli impegni) vengono forniti
nell’inform successivo.

WOA 2005 130

Initiator Participant

inform (result)

inform (done)

failure

inform

agree

refuse

request

Fig. 6. Protocollo FIPA-request con l’aggiunta di un messaggio inform

2) lo UPA decide se accettare o rifiutare la richiesta ed invia
un messaggio di conferma o di rifiuto al GA;

3) se la richiesta viene accettata, il GA invia un inform
contenente eventuali parametri necessari a soddisfare la
richiesta;

4) lo UPA esegue l’operazione richiesta: in caso di suc-
cesso viene inviato al GA un inform contenente il
risultato dell’operazione, in caso contrario viene inviato
un messaggio di fallimento (failure) che conclude la
conversazione.

L’interazione con il gestore della GUI da parte dell’agen-
da viene effettuata da un behaviour strutturato come una
macchina a stati finiti costituita dai seguenti stati (figura 7):

1) stato di accettazione delle richieste: l’agenda accetta
qualsiasi messaggio di richiesta proveniente dal gesto-
re della GUI che ha effettuato il login, ricevuto un
messaggio l’agenda si porta nello stato successivo;

2) stato di identificazione della richiesta: il messaggio
ricevuto viene utilizzato per identificare l’operazione
richiesta; in questo stato l’agenda decide se accettare
o meno la richiesta ed invia un messaggio di conferma
o di rifiuto al GA;

3) uno stato di rifiuto in cui l’operazione richiesta non viene
eseguita e la conversazione viene terminata inviando un
refuse al GA;

4) uno stato per ogni possibile operazione: una volta iden-
tificata ed accettata la richiesta l’agenda si pone in uno
dei possibili stati, in attesa di eventuali parametri da
parte del GA; una volta ricevuto il messaggio inform
contenente tali parametri l’operazione viene portata a
termine;

5) stato conclusivo: vengono inviati al GA i risultati del-
l’operazione (oppure un messaggio di fallimento se essa

(richiesta A)
3. Esecuzione

4. Esecuzione
(richiesta B)

(richiesta C)
5. Esecuzione

2. Identificazione

1. Accettazione

7. Conclusione

accettata

accettata

accettata

respinta

rifiutata
6. Richiesta

Fig. 7. Macchina a stati finiti che implementa l’interazione con la GUI da
parte dell’agenda. Lo stato tratteggiato rappresenta l’esecuzione di ulteriori
possibili richieste.

UPAGHA

request (new meeting)

agree

refuse

inform (constraints)

FIPA−Contract−Net
Perform

refuse

agree

request (new meeting)

inform (constraints)

inform (result)

restrictions
Add

inform (done)

failure

MMA

Fig. 8. Messaggi scambiati durante la richiesta di una nuova riunione da
parte di un utente.

non è andata a buon fine) e si riporta la macchina allo
stato di accettazione;

VII. MMA: GESTIONE DELLE RIUNIONI

Il MMA è costantemente in attesa di richieste provenienti
dagli UPA ed è in grado di fornire due servizi:

1) inviare ad un UPA, qualora ne faccia richiesta, le riunioni
a cui l’utente che ne è proprietario deve partecipare
(perchè possano essere mostrate all’utente oppure per
definire gli intervalli in cui egli è libero da impegni);

2) assumere il ruolo di organizzatore di nuove riunioni, in
seguito ad una richiesta di nuova riunione da parte di un
UPA.

WOA 2005 131

Fig. 9. Inserimento dei vincoli per una nuova riunione.

Ogni utente può richiere che venga fissata una riunione (figura
9) e definire dei vincoli temporali sulla sua collocazione.
La richiesta dell’utente viene inviata dal GA allo UPA che
provvede ad attivare il MMA, il quale si assumerà l’incarico
di contattare le agende di tutti gli utenti invitati a prendere
parte alla riunione e di elaborare delle possibili soluzioni che
rispettino i vincoli temporali che sono stati imposti. I messaggi
scambiati dagli agenti in questa fase sono riportati in figura 8.
La richiesta di fissare una nuova riunione può essere rifiutata
dal MMA.4 La conversazione tra il GA e lo UPA viene sospesa
non appena lo UPA abbia ricevuto i vincoli definiti dall’utente,
in attesa che il MMA elabori delle possibili soluzioni. Durante
la conversazione con il MMA lo UPA provvede ad aggiungere
altri vincoli (determinati dagli impegni dell’utente che ha
iniziato la richiesta). Spetta invece al MMA il compito di
soddisfare la richiesta. Per fissare una nuova riunione l’utente
deve fornire:

• la descrizione della riunione da pianificare, ovvero l’og-
getto della riunione, il luogo in cui si dovrà tenere
e opzionalmente una descrizione degli argomenti da
trattare;

• uno o più intervalli temporali alternativi entro i quali
vincolare la collocazione della riunione;

• la durata minima ed eventualmente quella massima da
assegnare alla riunione. Nel caso in cui la durata massima
non venga fornita essa verrà posta uguale a quella minima
e si cercherà di fissare la riunione esattamente con quella
durata;

• gli utenti invitati a partecipare. Essi possono essere se-
lezionati da una struttura ad albero in cui sono mostrati
tutti gli utenti registrati, organizzati in categorie. Inoltre
l’iniziatore può marcare alcuni utenti come non neces-

4Attualmente, ad esempio, essa viene rifiutata nel caso in cui essa coinvolga
utenti che sono impegnati a fissare un’altra riunione, poichè il sistema non
è in grado di gestire in modo corretto richieste concorrenti. L’inserimento di
tale funzionalità potrà essere valutato in futuro.

Initiator Participant

refuse

propose

cfp

reject−proposal

accept−proposal

failure

inform (done)

inform (result)

Fig. 10. Protocollo FIPA-Contract-Net

sari, permettendo al sistema di tenere conto di questa
indicazione se ciò può essere di aiuto all’identificazione
di possibili soluzioni.

A questi vincoli si aggiunge quello costituito dalla non so-
vrapposizione con eventuali impegni dell’utente iniziatore. Tali
informazioni vengono inviate al MMA, il quale inizia una
conversazione con le agende degli utenti invitati utilizzando
il protocollo FIPA-Contract-Net (figura 10):

1) il MMA invia allo UPA di ogni utente invitato un cfp
contenente tutte le informazioni circa la riunione che si
vuole fissare;

2) se l‘UPA è già impegnato a fissare un’altra riunione
risponde al MMA con un refuse allo scopo di evitare il
caso di richieste concorrenti. Altrimenti l’UPA esamina i
propri impegni e costruisce una lista di intervalli in cui il
proprio utente può essere considerato libero; questa lista
(eventualmente vuota)5 viene inviata al MMA tramite
un propose, assieme alle preferenze che l’utente ha
espresso configurando la propria agenda;

3) il MMA esamina le risposte ricevute estraendo una lista
di possibili collocazioni per la riunione;

4) se tale lista è vuota il MMA invia ad ogni UPA contat-
tato un messaggio reject-proposal che conlcude
la conversazione; in caso contrario viene inviato un
accept-proposal;

5) lo UPA invia un inform di conferma che conclude la
conversazione.

5il MMA è in grado di identificare anche collocazioni temporali in cui non
tutti gli utenti sono disponibili e di valutare la qualità di tali collocazioni
in base alla percentuale di utenti che possono effettivamente partecipare alla
riunione.

WOA 2005 132

Al passo 3 il MMA analizza le risposte ricevute dalle agende,
da cui estrae delle possibili soluzioni per la richiesta di
riunione. Tali soluzioni sono definite come segue:

Definizione 7.1: Una possibile soluzione per una richiesta
di riunione è un qualsiasi intervallo di tempo che soddisfi tutti
i vincoli temporali definiti dall’iniziatore (compreso quello di
non sovrapposizione con gli impegni di tale utente).6

Nelle prossime sezioni verrà illustrato il modo in cui
l’MMA identifica le possibili e soluzioni e ne valuta la qualità.

A. Funzioni obiettivo e valutazione

Prima di identificare le possibili soluzioni il gestore delle
riunioni esamina le risposte delle agende invitate e costruisce
le funzioni obiettivo che permetteranno di valutare la qualità
degli intervalli individuati. Tali funzioni vengono utilizzate
anche per la selezione di un sottoinsieme delle possibili
soluzioni, allo scopo di limitarne il numero (che altrimenti
potrebbe essere infinito) ed evitare di considerare soluzioni di
scarsa rilevanza.

Per ogni utente i invitato alla riunione vengono costruite,
sulla base della risposta ricevuta dal suo UPA, due funzio-
ni, che chiamiamo disponibilità (di(t)) e preferenza (pi(t))
dell’utente i-esimo, dove t rappresenta il tempo.

Definizione 7.2: La funzione di disponibilità di(t) dell’i-
esimo utente assume i seguenti valori

di(t) =

{

1 utente non impegnato al tempo t

0 utente impegnato al tempo t

La funzione di preferenza pi(t) viene costruita a partire dalle
preferenze espresse dall’i-esimo utente su di una settimana ti-
po. Esse vengono tradotte in un insieme di valori di preferenza,
ovvero valori discreti all’interno di un range predefinito.

Definizione 7.3: La funzione di preferenza pi(t) assume il
valore di preferenza espresso dall’utente i-esimo per il giorno
della settimana e l’ora in cui ricade l’istante t.

A partire dalle funzioni di disponibilità e preferenza degli
utenti invitati alla riunione, vengono costruite due funzioni
obiettivo: la disponibilità media d(t) e la preferenza media
p(t) dei partecipanti alla riunione. La disponibilità media d(t)
degli utenti invitati è definita nel seguente modo:

d(t) =
1

n

n
∑

i=1

di(t) (1)

mentre p(t) è definita come:

p(t) =
1

n

n
∑

i=1

pi(t) (2)

dove n rappresenta il numero di utenti invitati a partecipare
alla riunione.

Le possibili soluzioni identificate per soddisfare la richiesta
di riunione, costituite da intervalli temporali per la sua collo-
cazione, vengono valutate in base alle funzioni obiettivo che

6Sovrapposizioni con impegni di altri utenti sono in generale permesse,
tuttavia verranno in seguito esaminate ed utilizzate allo scopo di valutare la
qualità degli intervalli individuati.

1.Tutti i partecipanti

2.Partecipanti
necessari

4. Scelta soluzione

3. No impegni
personali

5. Notifica

6. Memorizza

7. Fallimento

Fallimento

Fallimento

Fallimento

Successo

Successo

Successo

Selezione

Annullamento

Fig. 11. Macchina a stati finiti per l’identificazione degli intervalli da
esaminare per la ricerca delle soluzioni rilevanti.

sono state definite. Ad ogni soluzione vengono associati due
indici α e β ottenuti integrando le funzioni obiettivo all’interno
dell’intervallo da valutare. In particolare, data una soluzione
ω = [t0, t1], si ha

αω =
1

t1 − t0

∫ t1

t0

d(t)δt (3)

βω =
1

t1 − t0

∫ t1

t0

p(t)δt (4)

dove la normalizzazione viene effettuata per rendere
confrontabili intervalli di diversa durata.1

Le soluzioni individuate vengono quindi ordinate sulla
base degli indici α e β e della loro durata. Il criterio di
ordinamento tra due intervalli ω1 = [t0, t1] e ω2 = [t2, t3] è
il seguente:

ω1 ≺ ω2

α1 > α2 ∨

α1 = α2 ∧ β1 > β2 ∨

α1 = α2 ∧ β1 = β2 ∧ D1 > D2 ∨

α1 = α2 ∧ β1 = β2 ∧ D1 = D2 ∧ t0 < t2

(5)

dove con D1 e D2 sono state indicate rispettivamente la durata
dell’intervallo ω1 e quella di ω2. Si procede confrontando
ordinatamente α, β ed infine la durata delle soluzioni in esame.
Nel caso in cui questi parametri risultino tutti coincidenti si
rispetta l’ordinamento temporale definito dall’istante iniziale
di ogni soluzione.

B. Individuazione delle possibili soluzioni

Le soluzioni, ovvero gli intervalli in grado di soddisfare alla
richiesta, vengono individuate tramite una macchina a stati
finiti (riportata in figura 11) che attualmente è costituita da tre
fasi di ricerca di soluzioni:

1Se gli indici α e β non venissero normalizzati rispetto alla durata di ω,
intervalli molto lunghi ma di scarsa qualità rispetto alle funzioni obiettivo
potrebbero essere privilegiati rispetto a intervalli più brevi ma migliori dal
punto di vista delle funzioni di disponibilità e preferenza.

WOA 2005 133

1) si tengono in considerazione gli impegni di tutti gli
utenti invitati: viene costruita una lista costituita dagli
intervalli temporali in cui tutti gli utenti invitati risultano
liberi da impegni;

2) in caso di fallimento si passa a considerare solo gli
impegni di tutti gli utenti invitati come partecipanti
necessari: viene costruita una lista costituita da intervalli
temporali in cui tutti gli invitati necessari risultano liberi
da impegni;

3) se anche lo stadio 2 si conclude con un fallimento
si cerca una soluzione considerando solo gli impegni
dell’iniziatore e le riunioni che coinvolgono i parteci-
panti necessari: viene costruita una lista costituita dagli
intervalli temporali in cui l’iniziatore risulta libero da
qualsiasi impegno e gli invitati necessari risultano liberi
da altre riunioni in cui la loro presenza sia necessaria.

4) nel caso in cui non si riesca a definire alcun possi-
bile intervallo in cui pianificare la riunione, il proce-
dimento termina avvertendo del fallimento l’iniziatore,
il quale potrà eventualmente modificare la richiesta
ridefinendone i vincoli temporali.

Nel caso in cui tutte le fasi falliscano la macchina termina
in uno stato di fallimento e la richiesta non viene soddisfatta.
In caso contrario, la lista L degli intervalli che sono stati
individuati e le funzioni obiettivo d(t) e p(t) vengono utilizzati
per costruire un insieme di istanti rilevanti da utilizzare per
identificare le possibili soluzioni.

Definizione 7.4: Chiamiamo T l’insieme degli istanti
rilevanti. Un istante tk è rilevante se

• tk coincide con l’istante iniziale o finale di uno degli
intervalli contenuti in L,

• tk coincide con un punto di salto di almeno una delle
funzioni obiettivo d(t) e p(t).7

La lista di intervalli L e l’insieme T degli istanti rilevanti,
vengono analizzati dall’Algoritmo di Identificazione delle So-
luzioni Rilevanti (figura 12) allo scopo di estrarne un insieme
di possibili soluzioni. Tale algoritmo rappresenta un elemento
di novità rispetto alle soluzioni proposte in [2], [3], [5],
[6]. Anzichè discretizzare il tempo in intervalli predefiniti
l’algoritmo individua degli intervalli che sono rilevanti al fine
di ottimizzare la collocazione di una riunione rispetto alle
funzioni obiettivo. Vengono considerati tutti e soli gli intervalli
temporali che sono candidati a rappresentare dei massimi
locali per gli indici α e β. Questo permette di ottenere un
numero finito di possibili soluzioni con il vantaggio di una
maggiore flessibilità.

Esempio: Nella situazione riportata in figura 13 si ha un
intervallo da analizzare e tre istanti temporali rilevanti t0, t1 e
t2, di cui t0 e t2 rappresentano l’istante iniziale e finale dell’in-
tervallo da analizzare, mentre t1 rappresenta un punto di salto
di una delle funzioni obiettivo. L’algorimo di individuazione
delle soluzioni inizia individuando una soluzione di lunghezza
minima posizionata a partire dall’istante t0. Successivamente

7Tali funzioni sono discontinue a tratti per costruzione

Algoritmo di Identificazione delle Soluzioni Rilevanti
input: un insieme L di intervalli da esaminare, la durata minima e

e massima dmin e dmax, un insieme di istanti rilevanti T

output: Un insieme R di soluzioni.
1. R← ∅

2. for each I ∈ L do
3. ω = [Istart, Istart + dmin]
4. while ωend < Iend do
5. R = R + ω

6. if (ωend − ωstart) < dmax then
7. ωend = min {next(T, ωend), (ωstart + dmax)}
8. else
9. if (next(T, ωend)− ωend) <

(next(T, ωstart)− ωstart) then
10. ωstart = next(T, ωend)− dmax

11. else
12. ωstart = next(T, ωstart)
13. ωend = ωstart + dmin

14. return R

Fig. 12. Algoritmo per l’identificazione delle soluzioni. I pedici
start e end indicano rispettivamente l’istante iniziale e finale di
un intervallo. La funzione next(T, t) restituisce il primo istante
temporale successivo a t tra quelli contenuti in T .

Tempo

Durata massima

Durata minima

Finestra da esaminare

So
lu

zi
on

i i
nd

iv
id

ua
te

Istanti
rilevanti

Una funzione obiettivo

PSfrag replacements

t0 t1 t2
t3t4

Fig. 13. Esempio di individuazione delle soluzioni rilevanti all’interno di
uno dei possibili intervalli da esaminare. La soluzione indicata dalla freccia
è quella individuata al passo 10 dell’algoritmo.

l’algoritmo espande la durata, individuando una soluzione che
inizia in t0 e termina in t1. Cercando nuovamente di espandere
la durata della soluzione non è possibile individuare altri istanti
rilevanti che precedano t3, il quale rappresenta l’istante finale
della soluzione a durata massima con inizio in t0. Dopo aver
memorizzato la soluzione compresa tra t0 e t3 si procede
cercando di spostare l’istante iniziale. Esso viene posizionato
in t1, e l’algoritmo riparte considerando la soluzione di durata
minima e cercando di espanderla sino alla durata massima.
Infine l’istante iniziale viene posizionato in t4, calcolato in
modo da poter espandere la durata della soluzione sino al
massimo valore possibile restando nei limiti imposti dall’in-
tervallo analizzato (la soluzione a durata massima con istante
iniziale in t4 termina in t2, ultimo istante utile nell’intervallo
a cui ci si è vincolati). Tutte le soluzioni individuate vengono

valutate, ordinate e comunicate all’agente GA dell’iniziatore,
che le presenta all’utente (figura 14) il quale ne può selezionare

WOA 2005 134

Fig. 14. Possibili soluzioni presentate all’utente iniziatore.

una da assegnare definitivamente alla nuova riunione. Tale
scelta potrà essere effettuata esaminando le caratteristiche
di ciascuna soluzione (qualità stimata, massimo numero di
utenti non disponibili, identità di tali utenti e percentuale
di utenti disponibili in media). L’intervallo selezionato sarà
quindi assegnato alla riunione che potrà essere notificata agli
utenti invitati e memorizzata nel database.8

VIII. CONCLUSIONI E SVILUPPI FUTURI

In questo articolo abbiamo descritto MAgentA, un sistema
multi agente che offre un servizio di gestione degli impegni
degli utenti con la possibilità di pianificare nuove riunioni in
modo semiautomatico. Ogni utente può inserire e modificare
a piacimento i propri impegni personali ed inviare al sistema
richieste per pianificare nuove riunioni. Tali richieste sono
gestite trovando collocazioni temporali per una riunione che
soddisfino le disponibilità degli utenti invitati, o almeno di
un loro sottoinsieme, secondo alcuni criteri che cercano di
minimizzare i conflitti con altri impegni e riunioni, oltre
che di massimizzare il soddisfacimento delle preferenze dei
partecipanti. La bontà delle soluzioni ottenute viene stimata in
base al numero effettivo di utenti disponibili in ogni possibile
soluzione ed alle preferenze espresse dagli utenti.

Il sistema MAgentA presenta alcuni aspetti che lo diffe-
renziano dai lavori preesistenti sulla stessa tematica (come ad
esempio [2], [3], [5], [6]). In particolare:

1) MAgentA utilizza lo standard FIPA [8] per la comu-
nicazione tra gli agenti: le conversazioni sono state
realizzate utilizzando messaggi conformi allo standard
FIPA-ACL [11], mentre per l’identificazione di possibili

8Gli utenti che si trovano “on line” in quel momento riceveranno un
messaggio di notifica che potranno confermare o rifiutare. In ogni caso la
riunione verrà memorizzata, ma in caso di rifiuto l’iniziatore verrà avvertito
dell’assenza dell’utente. Gli utenti “off line” accettano per default tutte le
notifiche.

intervalli in cui posizionare una riunione è stato uti-
lizzato il protocollo FIPA-Contract-Net; questo rende il
sistema aperto all’integrazione con piattaforme conformi
allo standard;

2) nella pianificazione di una riunione il tempo non viene
discretizzato in intervalli fissi e noti a priori, ma sud-
diviso in intervalli dipendenti dall’andamento di fun-
zioni obiettivo costruite per soddisfare una particolare
richiesta;

3) le possibili collocazioni temporali di una riunione ven-
gono identificate da un algoritmo guidato da funzioni
obiettivo, capace di considerare soluzioni di diversa
durata e di scartare le possibilità di scarsa rilevanza.

Il sistema è stato valutato sperimentalmente costruendo un
database di agende e posizionando gli impegni di ciascuna
in modo tale da verificare il comportamento del software in
diverse situazioni. I risultati ottenuti in questa analisi speri-
mentale preliminare hanno mostrato la capacità di MAgentA di
pianificare riunioni in modo efficiente rispetto alle possibilità
degli utenti ed alle loro preferenze. In futuro si prevede di
effettuare una fase di sperimentazione più approfondita che
permetta di verificare il comportamento, le prestazioni ed i
limiti del sistema proposto all’interno di un contesto realistico.

Alcuni possibili sviluppi futuri del sistema sono: il raf-
finamento dei vincoli (es. controllo sul numero legale di
partecipanti prima di memorizzare la riunione); la possibilità
di esprimere vincoli di ordinamento rispetto ad altre riunioni;
la gestione di richieste concorrenti e di spostamento di riu-
nione; lo sviluppo di un’interfaccia WEB; l’integrazione con
tecnologie standard per la gestione di calendari.

REFERENCES

[1] N.R.Jennings and M.Wooldridge, Applications of Intelligent Agents.
University of London: Queen Mary and Westfield College, 1998, in
Agent Technology: Foundations, Applications and Markets, 3-28.

[2] X. D. Ahlem Ben Hassine and T. B. Ho, Agent Based Approach to
Dynamic Meeting Scheduling Problems. AAMAS’04, 2004, vol. 3,
pp.1132-1139.

[3] E. Crawford and M. Veloso, Mechanism Design for Multi-Agent Mee-
ting Scheduling Including Time Preferences, Availability, and Value of
Presence. Beijing, China: in Proceedings of the 2004 IEEE/WIC/ACM
International Conference on Intelligent Agent Technology, September
2004.

[4] ——, “Learning Dynamic Time Preferences in Multi-Agent Meeting
Scheduling,” School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA 15213, Tech. Rep., 2005.

[5] N.R.Jennings and A.J.Jackson, Agent Based Meeting Scheduling: A
Design and Implementation. Electronics Letters, The Institution of
Electrical Engineering, 31 (5), March 1995, pp. 350-352.

[6] S. Sen, An automated distributed meeting scheduler. IEEE Expert,
July/August 1997, vol. 12, no. 4, pp. 41-45.

[7] JADE web site. http://jade.cselt.it/.
[8] FIPA web site. http://www.fipa.org.
[9] JPOX web site. http://www.jpox.org.

[10] F. B. et al., JADE Administrator’s guide, January 2005,
http://jade.cselt.it/doc/index.html.

[11] FIPA ACL specifications. http://www.fipa.org/repository/aclspecs.html.

WOA 2005 135

Abstract — Agents are problem-solving entities that, thanks to

characteristics such as autonomy, reactivity, proactivity and
sociality, together with mobility, can be used to develop complex
and distributed systems. In particular, mobility enables agents to
migrate among several hosts, becoming active entities of
networks. Java is today one of the most exploited languages to
build mobile agent systems, thanks to its object-oriented support,
portability and network facilities. Nevertheless, Java does not
support strong mobility, i.e., the mobility of threads along with
their execution state; thus developers cannot develop agents as
real mobile entities. This paper reports our approach for Java
thread strong migration, based on the IBM Jikes Research
Virtual Machine, presenting our results and proposing an
enrichment of the Aglets mobile agent platform in order to
exploit strong agent mobility.

Index Terms — Mobile Agents, JikesRVM, Aglets, strong
mobility.

I. INTRODUCTION
GENTS are autonomous, proactive, active and social

entities able to perform their task without requiring a
continue user interaction [23]; thanks to the above features,
the agent-oriented paradigm is emerging as a feasible
approach to the development of today’s complex software
systems [18]. Moreover agents can be mobile, which means
they can migrate among different sites/hosts during their
execution.

Mobility is an interesting feature for agents, since they are
able to move among networks to find out data and
information, to perform load balancing activities, and so on.
The exploiting of mobile agents can simplify different issues
in the design and implementation of applications and enables
developers to quickly build distributed and parallel systems.

Mobile agent execution is hosted by a special software
layer, called Mobile Agent Platform (MAP) that enables also
the agent migration and allows security checks over agents. In
order to enable agents to migrate among different platforms
and, thus, architectures, portable technologies and languages
must be adopted to develop MAPs and the corresponding
agents. Thanks to its portability and network facilities, Java is
today the most exploited language to develop mobile agents,
and in fact several Java-based MAPs exist [17, 3, 28].

With regard to mobility, we distinguish [34] strong

mobility, which enables the migration of code, data and
execution state of execution units (for instance, threads), from
weak mobility, which migrates only code and data [14]. Some
distributed operating systems [32] go even further and make it
possible for entire processes to be migrated with also their
kernel mediated state, comprising I/O descriptor, alarm timers
and others. This extremely transparent migration is known as
full migration [16]. Unfortunately, current standard Java
Virtual Machines (JVMs) do not support thread migration
natively, and thus a Mobile Agent Platform running on top of
them cannot provide strong mobility of agents. Moreover, the
Java language itself [15] does not support constructs or
mechanisms for thread serialization and migration: that is,
there is no way, using the standard Java language and JVMs,
to enable agents to exploit strong mobility. Even if this does
not represent a problem for many applications based on
mobile agents, such as those of automated booking [13], it
does not allow using the agent paradigm to develop more
complex and distributed systems, such as those for load
balancing [25].

To overcome this limitation, this paper proposes an
approach to support strong thread migration for Java MAPs,
based on the IBM JikesRVM [5], which is a Java virtual
machine with very interesting features. Our approach
significantly differs from other proposals, since it requires
neither any modification to the JVM, nor it exploits any pre-
processing, but it simply defines an appropriate Java library.

The paper is organized as follows: section II presents the
state of the art, explaining the existing approaches and
pointing out their limitations. Section III introduces the
features of JikesRVM and explains how they can be exploited
to build a library for supporting strong mobility. Section IV
presents the Aglets platform and shows how strong mobility
can be designed and implemented in such a platform by using
our mobility library. Finally, Section V reports our first
performance measures and Section VI concludes the paper.

II. STATE OF THE ART

The approach presented in this paper aims at implementing
strong thread migration in Java, which is not a new idea.
Several approaches have been proposed so far and they can
be, typically, split into two categories, depending on the fact
that they require to modify the JVM (JVM-level approach) to
support an advanced thread management or exploit some kind
of bytecode instrumentation (Application-level approach) to

Improving Aglets with Strong Agent Mobility
through the IBM JikesRVM

Giacomo Cabri, Luca Ferrari, Letizia Leonardi, Raffaele Quitadamo, Member, IEEE

A

WOA 2005 136

track the state of each thread.
Approaches that modify the JVM (such as Sumatra [2], ITS

[10], Merpati [29], Jessica2 [33] and JavaThread [9]) often
introduce the problem of the management of the virtual
machine itself. First of all, it is worth noting that they are
applied to JVM that are at least one (or even more) version
older than the SUN production one. Second, the adoption of a
modified JVM can introduce problems of trust and security
bugs. Third, virtual machines are usually written in a language
different from Java (e.g., C++), thus suffering from portability
problems.

Instead, approaches that exploit bytecode manipulation (e.g.
JavaGoX [26] or Brakes [30]) or Java source code
manipulation [16], even if based on a pure Java technique
(and thus really portable), do not provide a full thread
management and suffer from problems related to
performances. In fact, the idea of these approaches is to
transparently place a few control instructions, similar to
recovery-points, which allow a thread to deactivate itself once
it has reached one of them. Recovery-points are quite similar
to entry points used in most Java MAPs (i.e., methods that are
executed when an agent is reactivated at the destination host),
even if the former ones enable a finer grain control than entry
points. Un23ily, a thread cannot deactivate (or reactivate)
itself outside of these recovery-points, which are also not
customizable, thus a thread cannot really suspend itself in an
arbitrary point of the computation. Moreover, the use of
bytecode manipulation produces low performances, thus these
techniques are not appropriate for those applications where
speed represents a strong requirement.

In general, all existing strongly mobile systems have to deal
with the problem of locating object references when they want
to migrate a thread with all its set of stack-referenced objects:
they force the use of some “type inference” mechanism [9,
33], either at execution or at compilation time, thus
introducing a significant performance overhead in threads
execution. In order to tackle the drawbacks of strong mobility
while saving its clarity and power, some interesting algorithms
have been proposed [8] that translate transparently the
apparently “strongly mobile code” into a “weakly mobile”
form, with the above mentioned benefits of weak mobility.
Starting from the above considerations, we have decided to
design and implement a thread migration system able to
overcome all the problems of the above-explained approaches.
In particular, it is written entirely in Java, thus portable as
much as possible and it grants high performances even
without modifying the JVM. In fact, every single component
of the migration system has been designed and developed to
be used as a normal Java library, without requiring rebuilding,
changing or patching the virtual machine, in specific, the IBM
JikesRVM. Programmers and users do not have to download a
modified, untrustworthy, version of JikesRVM, but can import
the implemented mobility package into their code and execute
it on their own copy of JikesRVM. Therefore, our JikesRVM-
based approach can be classified as a midway approach
between the above-mentioned JVM-level and Application-

level approaches.

III. FROM WEAK TO STRONG MOBILITY: A JIKESRVM-BASED
APPROACH

A Mobile Agent Platform realizes an environment for the

execution of agents, featured with a bent for mobility. The
support for mobility is often one of the first design choices
when implementing such a platform, since it has a great
impact on the remainder of the design.

A. Weak vs. Strong Mobility

Current execution environments for programming
languages (e.g., the Java Virtual Machine [22] and the
Common Language Runtime, embedded into Microsoft .NET
Framework [1]) are usually not suited or not capable of
providing the required level of mobility to the execution units
(i.e. the threads) that they host. They all lack an explicit
support for the mobility of their execution units and, in order
to overcome this lack, MAP designers must choice between
two directions [14]:

• Adopting one of the techniques explained in the
previous section so that threads can suspend their
execution locally and resume elsewhere
transparently (strong mobility).

• Introducing a further abstraction level above the
thread concept: the weak mobile agent, which is
explicitly thought as a serializable representation
of an execution unit.

From the complexity point of view, weak mobility is quite
simple to implement using well-established techniques like
network class loading or object serialization [27]. However,
weak mobility systems, by definition, discard the execution
state across migration and hence, if the application requires
the ability to retain the thread of control, extra programming is
required in order to manually save the execution state. The
transparency of the migration offered by strong mobility
systems has instead a twofold advantage: it reduces the
migration programming effort to the invocation of a single
operation (e.g. a migrate() method), and requires a size of
the migrated code smaller because it does not add artificial
code.

Despite these advantages, most of the mobile agent systems
support only weak mobility and the reason lies mainly in the
complexity issues of strong mobility and in the insufficient
support of existing JVMs to deal with the execution state. It is
a common idea that strong mobility should be convenient only
in load balancing contexts or when thread persistence is
needed to build fault-tolerant applications [9].

Recently, an innovative project is drawing researcher’s
attention to the benefits that a virtual machine written in the
Java language can offer. The main features of this open-source
project, called JikesRVM [5], are outlined in the following
subsection: for the sake of brevity, we will focus on those

WOA 2005 137

aspects that make JikesRVM an ideal execution environment
for strongly mobile agents, overcoming the drawbacks and the
limitations of many existing solutions.

B. The Jikes Research Virtual Machine

JikesRVM began life in 1997 at IBM T. J. Watson Research
Center as a project with two main design goals: supporting
high performance Java servers and providing a flexible
research platform “where novel VM ideas can be explored,
tested and evaluated” [4]. JikesRVM is almost totally written
in the Java language, but with great care to achieving
maximum performance and scalability exploiting as much as
possible the target architecture’s peculiarities. The all-in-Java
philosophy of this VM makes very easy for researchers to
manipulate or extend its functionalities. Further, JikesRVM
source code can be built, with a prior custom compilation,
both on IA32 and on PPC platforms [19], but the bulk of the
runtime is made up of Java objects portable across different
architectures.

The first step toward the development of our MAP based on
JikesRVM has been the implementation of the strong Java
thread mobility. Threads embody concurrent flows of
execution within an instance of the JVM and are represented
by the java.lang.Thread object [22], used by the Java
programmers disregarding any knowledge of their underlying
physical implementation. In JikesRVM, threads are full-
fledged Java objects and are designed explicitly to be as
lightweight as possible [4]. Many server applications need to
create new threads for each incoming request and a Mobile
Agent Platform has similar requirements since thousands of
agents may request to execute within it. While some JVMs
adopted the so-called native-thread model (i.e. the threads are
scheduled by the operating system that is hosting the virtual
machine), JikesRVM designers chose the green-thread model
[24]: Java threads are hosted by the same operating-system
thread, implemented by a so-called virtual processor, through
an object of class VM_Processor [6]. Each virtual
processor manages the scheduling of its virtual threads (i.e.,
Java threads), represented by objects of the class
VM_Thread. The scheduling of virtual threads was defined
quasi-preemptive, since it is driven by the JikesRVM
compiler. What happens is that the compiler introduces,
within each compiled method body, special code (yield points)
that causes the thread to request its virtual processor if it can
continue the execution or not. If the virtual processor grants
the execution, the virtual thread continues until a new yield
point is reached, otherwise it suspends itself so that the virtual
processor can execute another virtual thread.

The choice of using virtual processors not only allows
JikesRVM to reduce the number of threads the operating
system is in charge of, but also allows it to perform an
efficient and well-controlled thread-switch. As a consequence,
this allows elegantly addressing the problem of precisely
locating object references when a garbage collection occurs.

JikesRVM uses type-accurate collectors [31] that build the so-
called reference maps automatically at compile-time, unlike
conservative collectors, which attempt somehow to infer
whether a stack word is a reference or not. These reference
maps are periodical snapshots of the situation of references in
each method frame.

The tracks of object references used to speed up the
JikesRVM type-accurate garbage collectors can be exploited
by MAP designers to collect stack-referenced objects for
strong thread migration. This eliminates the need for “type
inference” mechanisms required by existing strongly mobile
systems.

In general, many JVMs do not permit the programmer to
access the execution state (i.e. the stack and the context
registers), in order to enforce the security model of the Java
language. As a consequence, they do not allow strong
mobility. Instead, JikesRVM provides, once again, a built-in
facility to extract correctly the execution state of a suspended
thread. This facility is an efficient implementation of the On-
Stack Replacement (OSR) technique, originally developed for
the Self language [35]. It enables a method to be automatically
replaced by the system while it is executing. In particular, the
system replaces the runtime stack activation frame of the
method with that of the new version, and continues execution
at the same point within the new version. JikesRVM exploits
the OSR mechanism [12] in order to enable the dynamic
optimization of methods. The Adaptive Optimization System
(AOS) [7] samples the execution of programs to identify
frequently executed (i.e. “hot”) methods and, when their
optimization is predicted to be beneficial, the system compiles
the method with JikesRVM optimizing compiler [11]. The old
less-optimal frame is discarded and a new optimized frame is
placed, initialized with the current state of the method (i.e. the
value of the local variables and stack operands, together with
the current bytecode index).

This mechanism has been successfully exploited to quickly
get a complete and portable representation of the serialized
call stack. The structure of the OSR scope descriptor [12]
inspired the idea of the MobileFrame: an object
representing the current state of the method execution in a
format that should be understandable by any JVM since it
refers purely to bytecode-level entities (bytecode program
counter, locals and stack operands). Our mechanism applies
the capturing to all user frames in the stack of the serialized
thread and, on the one hand, offers the advantage of the
portability of the frames and, on the other hand, exploits a
fully integrated component of the JVM. The latter aspect is
crucial from both the reliability and the performance point of
view, since no unsafe manipulations are carried out on the
JVM code to force the externalization of the execution state of
the thread.

The presented features of JikesRVM allow the addition of
strong thread migration, without modifying the virtual
machine, but simply extending it. The entire system is
available as a library comprised in a Java package that can be
imported as usual into the application code. This means that

WOA 2005 138

the implemented JikesRVM extension does not affect the
performance of other applications, since no permanent
modifications have been made to the VM itself.

IV. STRONG MOBILITY IN AGLETS

A. Overview Of The Aglets Workbench

The Aglets Workbench [3] is a project originally developed
by the IBM Tokyo Research Laboratory with the aim of
producing a platform for the development of mobile agent
based applications by means of a 100% Java library. The
Aglets Workbench provides developer with applet-like APIs
[20], thus creating a mobile agent (called Aglet) is a quite
straightforward task. It suffices to inherit from the base class
Aglet and to override some methods transparently invoked by
the platform during the agent life. Weak mobility is provided
through the Java serialization mechanism, and a specific agent
transfer protocol (ATP) has been built on top of such
mechanism [21]. Each Aglet can exploit the special method
dispatch(..) to move to another host; such method is the
equivalent of the generic migrate(..) previously
mentioned.

As many other Java MAPs, Aglets exploits weak mobility,
that means, from a programming point of view, that each time
an agent is resumed at a destination machine, its execution
restarts from a defined entry point, that is the run() method
call. Due to this, dealing with migrations is not always trivial,
and developers have to adopt different techniques to handle
the fact an agent will execute several times the same code but
on different machines. Even if the Aglets library provides a
set of classes that helps dealing with migrations, the code will
appear like the one shown in the simple example of Figure 1.
There, in case of a single migration, the migrated flag is used
to select a code branch for the execution either on the source
or destination machine.

public class MyAgent extends Aglet{
 protected boolean migrated = false;
 // indicates if the agent has moved yet
 public void run(){
 if(! migrated){
 // things to do before the migration
 // ….
 migrated = true;
 try{
 dispatch(new URL(“atp://nexthost.unimore.it”);
 }catch(Exception e){ migrated = false; }
 }
 else{
 // things to do on the destination host
 // ….
 }
 }
}

Figure 1. An example of Aglet with a single migration.

The code of Figure 1 is just a simple example, but similar

agents can be written for other agent platforms. The point here

is that with weak mobility, which is the one provided by the
Java language and the most existing MAPs, it is as the code
routinely performs rollbacks. In fact, looking at the code in
Figure 1, it is clear how, after a successful dispatch(..)
method call that causes the agent migration, the code does not
continue its execution in the run() method from that point.
Instead, the code restarts from the beginning of the run()
method (on the destination machine, of course), and thus there
is a code rollback. The fact that an agent restarts its execution
always from a defined entry point, could produce awkward
solutions, forcing the developer to use flags and other
indicators to take care of the host the agent is currently
running on.

B. Designing Strong Mobility

In Section III.B we have presented the innovative features
of JikesRVM that can be exploited to strongly migrate
threads. Now we apply these features to the Aglets to realize
the idea of an Aglet as a strong migrable thread. Instead of
using one of the pre-created threads to execute methods of the
aglets, JikesRVM makes feasible to have a single independent
thread for each aglet. As already mentioned, this is possible
because of the lightweight implementation of Java threads in
that JVM, being targeted to server architectures, where
scalability and performance are key requirements. Further,
having a separate thread for each aglet ensures a high level of
isolation between agents: consider, for example, the case
where an agent wants to sleep for some time, without being
deactivated (i.e. serialized on the hard disk). Using the
classical sleep() method on the java.lang.Thread
object will produce strange effects on the current Aglets
implementation platform (such as locking the message passing
mechanism). These shortcomings are due to the
aforementioned thread sharing among multiple agents through
the pool of threads. Instead, potentially dangerous actions by
malicious (or bugged) aglets do not affect the stability of our
platform, allowing possibly a clean removal of the dangerous
agent without the need of a MAP reboot.

Message handling or events are implemented using the
quasi pre-emptive JikesRVM scheduler, described earlier.
Yield points are used to let the running aglet/thread extract
messages from its message queue and handle them. Thus, for
example, the aglet can process a dispatch message even in the
middle of its execution (i.e. while the run() method is still in
the stack) and strongly migrate to the destination site, where it
will resume transparently restarting from the last execution
point. The programmer gets rid of the burden of saving
intermediate results into serializable fields and of structuring
its code with entry points (such as methods) from which the
agent execution is restarted each time it arrives at a new host,
as mentioned above.

The conceptual model of our prototype was thought as
intuitive and understandable as possible in this development
stage: we took inspiration from the fantastic world of space

WOA 2005 139

travels through black holes. According to this model, a mobile
agent (i.e. "the traveller") invokes the services offered by (i.e.
"gets himself absorbed by") a black hole on one host (i.e.
"planet") to move through the network (i.e. "the space") and
arrives at the destination host (i.e. "another planet on a distant
universe"), being extracted from the other side of the black
hole.

C. Implementing Strong Mobility

After having tested the mobility library building a simple
prototypal framework whose classes manage the departure
and arrival of the mobile threads, we now in our research are
integrating the mobility support in the Aglets framework to
have a full-fledged MAP endowed with strong mobility.

The implementation of the black hole model is based on
JikesRVM and embedded into the Aglets runtime to make
available the migration services to agents. In Figure 2, our
system is described using the classical notation of queuing
networks. The software components added by our approach
are highlighted with boxes and it can be clearly seen how
these parts are dynamically integrated into JikesRVM
scheduler, when the programmer opens a black hole to enable
migration services: no JVM manipulations are performed,
therefore a non invasive extension is carried out.

Agents are classified into three main categories:
1. Incoming agents, coming from the outside world and

requesting execution on the current host. They are
read from a network socket and re-established in the
local execution context, to be scheduled there.

2. Outgoing agents, which are leaving the scheduler
queues to be transferred on another machine. They
invoked a dispatch() method and got queued into the
hole’s migration queue.

3. Stationary agents, not interested or affected by the
migration facilities of our mechanism.

Figure 2. The queuing network model of the mobility framework

The black hole provides two kinds of services: a sending

service, for agents exiting the local JVM, and a receiving

service, for incoming execution requests. The former service
is implemented by a server thread created with BlackHole
instantiation, started when the BlackHole gets opened. This
thread, instance of the OutGoingHole class, tests a
migration queue in an endless loop, until the application
closes its parent BlackHole, and analyzes every extracted
mobile agent: its execution state is retrieved using OSR built-
in state capturing and the thread object, together with the
chain of all the stack frames, are written into the socket
established with another peer host. In more details, the
JikesRVM thread/agent is suspended before the state
capturing can occur and the stack is walked back from the last
pushed frame to the first one (i.e. the run() method). At
every step, the corresponding physical frame is analyzed
invoking the OSR extraction service and the OSR descriptor is
produced; but this intermediate form is not yet fully portable,
mainly because it has been conceived only to refer to
structures that are supposed to stay in the local memory: in
particular, we are talking about the compiled methods in
method area and the corresponding program counters (the so
called return address of each frame) in the machine code
body. So, the next essential stage performed by our
mechanism is to retrieve a return address as much portable as
possible: the bytecode index corresponding to the machine
code index of the method. The mapping between the two
indexes is, once again, granted by JikesRVM compilers and
can be calculated in very little times. Local variable and stack
operands are converted also into portable objects and stored
into the MobileFrame for each method in the stack, as
shown in Figure 3.

It must be pointed out that this representation of the
serialized thread is a very general one, as it uses only bytecode
level entities (e.g. bytecode indexes as program counters, local
variables and stack operands and so on) and this grants high
portability of the state. Dataspace objects are packed into the
mobile frames (or in the thread object) and serialized as well.
When all the necessary frames are successfully captured, the
system can send them all to the destination host.

Figure 3. A MobileFrame object

WOA 2005 140

To let external mobile agents enter a local environment, a
group of InComingHole threads are created and started at
BlackHole opening time. Each InComingHole opens a
server socket bound to a specified TCP port and waits, in an
endless loop, for incoming connection requests. When a
connection is accepted and established, the InComingHole
reads all the information about the state of the agent and,
when finished reading, resumes the agent in the local instance
of JikesRVM. At the arrival the aglet rebuilding is performed
following some essential steps:

1. the aglet object is read from the network stream into
the memory;

2. a new thread is created for this aglet or an existing
one acquired from the pool, if available;

3. this agent is notified the arrival event and its
execution is temporarily frozen;

4. the physical frames, produced by the
MobileFrame objects, are injected on the fly into
its stack;

5. the execution of the thread/aglet is transparently
resumed.

The injection task is performed by a frame installer
component, which adds each frame to a newly allocated stack,
adjusting thread context registers and frame pointers. Frames
are constructed in compliance with the baseline layout of the
target platform. We have currently implemented a working
frame installer for the IA32 architecture, but we are planning
to complete the system with the PPC frame installer.

The migrated aglet will be, by default, destroyed in the
source JVM and its associated thread added back to the thread
pool, for a possible future reuse. Nevertheless, the dispose
message can be explicitly intercepted by the programmer so
that the aglet can continue executing, thus realizing a form of
“agent cloning”.

Referring to the code example of Figure 1, the adoption of
strong thread mobility overtakes the mentioned drawback,
since the code restarts at the destination machine from the
same point it stopped at the source one. Thus the code shown
in Figure 1 becomes the one of Figure 4.

public class MyAgent extends Aglet{
 public void run(){
 // things to do before the migration
 try{
 migrate(new URL(“atp://nexthost.unimore.it”);
 }catch(Exception e){ … }
 // things to do after migration
 }
}

Figure 4. An example of Aglet code using our approach.

As readers can see, the code is simpler (no flags and
branches are required) and shorter than the previous one.

V. PERFORMANCE AND OPEN ISSUES

At the current stage of our research, the thread serialization
mechanism, integrated into the Aglets framework, has been

successfully tested, focusing mainly on the state capturing and
restoring of the threads executing the aglet.

First of all, we made some first performance tests to
discover possible bottlenecks and evaluate the cost of each
migration phase. The times measured are expressed in seconds
and are average values computed across multiple runs, on a
Pentium IV 3.4Ghz with 1GB RAM on JikesRVM release
2.4.1. We tested the serialization with increasing stack sizes
(5, 15 and 25 frames) and found a very graceful time
degradation. These times are conceptually divided into two
tables, where Table 1 refers to the thread serialization process,
while Table 2 refers to the symmetrical de-serialization
process at the arrival host.

 5 frames 15 frames 25 frames

Frame extraction 1.78E-5 1.89E-5 1.96E-5

State building 3.44E-5 3.75E-5 3.43E-5

Pure serialization 2.49E-3 7.32E-3 1.50E-2

Overall times 2.54E-3 7.38E-3 1.51E-2

Table 1. Evaluated times for thread serialization (sec.)

 5 frames 15 frames 25
frames

Pure deserialization 4.46E-3 5.33E-3 7.06E-3

State rebuilding 5.45E-4 5.27E-4 5.06E-4

Stack installation 1.53E-3 1.60E-3 1.71E-3

Overall times 6.54E-3 7.46E-3 9.28E-3

Table 2. Evaluated times for thread rebuilding (sec.)

Considering how these times are partitioned among the

different phases of each process, we can see that the bulk of
the time is wasted in the pure Java serialization of the captured
state, while the extraction mechanism (i.e. the core of the
entire facility) has very short times instead. The same
bottleneck due the Java serialization may be observed in the
de-serialization of the thread. In the latter case, however, we
have an additional overhead in the stack installation phase,
since the system has often to create a new thread and compile
the methods for the injected frames.

VI. CONCLUSIONS AND FUTURE WORK

This paper has introduced our approach to support Java
thread strong mobility based on the IBM JikesRVM virtual
machine, and has outlined how this mechanism is being
integrated in the Aglets Mobile Agent Platform in order to
exploit such approach. Thanks to the support to thread
serialization, agents will be simpler in terms of code, and, at
the same time, the code will be easier to be read since a single
execution flow will be followed from the beginning to the
end.

Our approach represents an extension of JikesRVM but
does not change any part of this JVM. Rather, it exploits some

WOA 2005 141

interesting facilities provided by that JVM to avoid many of
the drawbacks of the presented solutions. OSR facility also
allowed us to capture the state in a very portable (i.e.
bytecode-level) format. Thanks to the scheduling policy of the
JikesRVM, which enables the support of thousands of Java
threads, our approach will keep the thread management
efficient, and allows having one thread for each agent,
overcoming the limitation of the current implementation of the
Aglets system.

With regard to future work, we will perform a comparison
test between the current Aglets release (with weak mobility)
and our JikesRVM-based version (with strong mobility). This
comparison will be performed also under critical conditions
(such as a large number of agents).). From the first results
reported in section V, we can draw the conclusion that the
prototype can be further optimized with respect to the Java
serialization bottleneck, in particular trying to reduce the size
of the thread state data to be serialized. This perhaps will
allow us to reduce strongly the unavoidable gap between a
weak agent serialization and a strong one.

ACKNOWLEDGMENT
Work supported by the Italian MIUR and CNR within the

project "IS-MANET, Infrastructures for Mobile ad-hoc
Networks" and by the European Community within the project
"CASCADAS".

REFERENCES

[1] ECMA TC39/TG3. The CLI Architecture. Technical Report,
ECMA, October 2001.

[2] A. Acharya, M. Ranganathan, J. Saltz, "Sumatra: A Language for
Resource-aware Mobile Programs". 2nd International
Workshop on Mobile Object Systems (MOS'96), Linz, Austria,
1996

[3] The Aglets Mobile Agent Platform website
http://aglets.sourceforge.net

[4] B.Alpern, C.R. Attanasio, D. Grove and others, "The Jalapeno
virtual machine", IBM System Journal, Vol. 39, N°1, 2000

[5] B. Alpern, S. Augart, S.M. BlackBurn, M. Butrico, A. Cocchi, P.
Cheng, J. Dolby, S. Fink, D. Grove, M. Hind and others, “The
Jikes Research Virtual Machine project: Building an open-
source research community”, IBM Systems Journal, Vol. 44,
No. 2, 2005

[6] B. Alpern, D. Attanasio, J. J. Barton, A. Cocchi, S. F. Hummel,
D. Lieber, M. Mergen, T. Ngo, J. Shepherd, S. Smith,
“Implementing Jalapeño in Java.”, ACM SIGPLAN
Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA '99), Denver,
Colorado, November 1, 1999

 [7] Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and
Peter F. Sweeney, “Adaptive Optimization in the Jalapeño
JVM”, ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA 2000), Minneapolis, Minnesota, October 15-19,
2000

[8] L. Bettini and R. De Nicola, “Translating Strong Mobility into
Weak Mobility”, MA2001, pages 182-197, number 2240,
Springer, 2001.

[9] S. Bouchenak, D. Hagimont, S. Krakowiak, N. De Palma and F.
Boyer, "Experiences Implementing Efficient Java Thread
Serialization, Mobility and Persistence", I.N.R.I.A., Research
report n°4662, December 2002

[10] S. Bouchenak, D. Hagimot, "Pickling Threads State in the Java
System", Technology of Object-Oriented Languages and
Systems Europe (TOOLS Europe'2000) Mont-Saint-
Michel/Saint-Malo, France, Jun. 2000

[11] G. Burke, J.Choi, S. Fink, D.Grove, M. Hind, V. Sarkar, M.J.
Serrano, V.C. Sreedhar, H. Srinivasan, "The Jalapeno Dynamic
Optimizing Compiler for Java", ACM Java Grande Conference,
June 1999

[12] Stephen Fink, and Feng Qian, “Design, Implementation and
Evaluation of Adaptive Recompilation with On-Stack
Replacement”, International Symposium on Code Generation
and Optimization San Francisco, California, March 2003

[13] M. 13chetti, “Tireless travel agent Special Report: The Rise Of
E-Business/Wheeling And Dealing”, available at
http://domino.research.ibm.com/comm/wwwr_thinkresearch.ns
f/pages/travel199.html

[14] A. Fuggetta, G. P. Picco, G. Vigna, “Understanding Code
Mobility”, IEEE Transactions on Software Engineering, Vol
24, 1998

[15] J. Gosling, B. Joy, G. Steele, G. Bracha, “The Java Language
Specification, second edition”, SUN Microsystem

[16] M. Hohlfeld and B.S. Yee, “How to Migrate Agents”,
Unpublished, available at http://www.cse.ucsd.edu/~bsy/, 1998.

[17] F. Bellifemine, G. Caire, A. Poggi, G. Rimassa, "JADE - A
White Paper", EXP in Search of Innovation, TILAB, vol. 3,
2003

[18] N. R. Jennings, “An agent-based approach for building complex
software systems”, Communications of the ACM, Vol. 44,
No. 4, pp. 35-41 (2001)

[19] The JikesRVM project site: http://jikesrvm.sourceforge.net

[20] D. B. Lange, M. Oshima, G. Karjoth, K. Kosaka, "Aglets:
Programming Mobile Agents in Java", in the Proceedings of
the International Conference on Worldwide Computing and Its
Applications (WWCA), 1997

[21] D. B. Lange, Y. Aridor, ”Agent Transfer Protocol (ATP)”,
IBM=TRL, draft number 4, 19 March 1997

[22] T. Lindholm, F. Yellin, “The Java Virtual Machine
Specification, second edition”, SUN Microsystem

[23] M. 23, P. McBurney, C. Preist, “Agent Technology: Enabling
Next Generation Computing – A Roadmap for Agent Based
Computing”, AgentLink, http://www.agentlink.org/roadmap

[24] Scott Oaks and Henry Wong, “Java Threads, 2nd edition”,
Oreilly, 1999

[25] The 25 Project web site: http://25.sourceforge.net/

[26] T. Sakamoto, T. Sekiguchi, A. Yonezawa, "A bytecode
transformation for Portable Thread Migration in Java", 4th
International Symposium on Mobile Agents 2000 (MA'2000),
Zurich, Sep. 2000.

WOA 2005 142

http://jikesrvm.sourceforge.net/
http://www.agentlink.org/roadmap

[27] “The Java Object Serialization Specification”, Sun
Microsystems, 1997

[28] D. Sislak, M. Rollo, M. Pechoucek, "A-globe: Agent Platform
with Inaccessibility and Mobility Support", in Cooperative
Information Agents VIII , n. 3191, Springer-Verlag Heidelberg,
2004

[29] T. Suezawa, "Persistent Execution State of a Java Virtual
Machine", ACM Java Grande 2000 Conference, San Francisco,
CA, USA, Jun. 2000

[30] E. Truyen, B. Robben, B. Vanhaute, T. Coninx, W. Joosen, P.
Verbaeten, "Portable support for Transparent Thread Migration
in Java" 4th International Symposium on Mobile Agents 2000
(MA'2000), Zurich, Switzerland, Sep. 2000

[31] Paul R. Wilson, “Uniprocessor Garbage Collector Techniques”,
in the Proceedings of the International Workshop on Memory
Management (IWMM92), St. Malo, France, September 1992

[32] B. Walker, G. Popek, R. English, C. Kline, and G. Thiel, “The
LOCUS distributed operating system”, In Proceeding of the
Ninth Symposium on Operating Systems Principles, pages 49-
70, ACM 1983.

[33] W. Zhu, C. Wang, F. C. M. Lau, "JESSICA2: A Distributed
Java Virtual Machine with Transparent Thread Migration
Support". IEEE Fourth International Conference on Cluster
Computing, Chicago, USA, September 2002

[34] G. Vigna, G. Cugola, C. Grezzi and G.P. Picco, “Analyzing
Mobile Code Languages”, Mobile Object Systems n. 1222,
Springer, 1997.

[35] C. Chambers, “The Design and Implementation of the Self
Compiler, an Optimizing Compiler for Object-Oriented
Programming Languages”, PhD thesis, Stanford University,
Mar. 1992. Published as technical report STAN-CS-92-1420.

WOA 2005 143

Secure, Trusted and Privacy-aware Interactions in
Large-Scale Multiagent Systems

Federico Bergenti
Dipartimento di Ingegneria dell’Informazione

Universit̀a degli Studi di Parma
Parco Area delle Scienze 181/A, 43100 Parma, Italy

Email: bergenti@ce.unipr.it

Abstract— One of the inherent problems of large-scale, open
multiagent systems is the lack of mechanisms and tools to guar-
antee legally valid interactions. Agents are supposed to perform
crucial tasks autonomously and on behalf of humans; however,
(i) they are not legal persons on their own, and(ii) of a full legal
corpus for the virtual world and its inhabitants is yet to come.
Therefore, the ultimate responsible for the actions of an agent
is its developer. In this paper we address an innovative model
of interaction between agents that leads to an increase of the
level of security and trust in privacy-aware, interaction-intensive
multiagent systems. In particular, after a brief introduction, we
focus in Section II on some common problems related to trust
and security in real-world, liable interactions. In Section III, we
address these problems and outline some abstractions that we use
to guarantee a sound level of security and privacy-awareness in
interactions with third-party (possibly unknown) agents, whether
human or not. Then, in Section IV we describe the design of an
API that we implemented to provide developers with a general-
purpose, reusable means to realize secure, trusted and privacy-
aware multiagent systems. To conclude, in Section V we briefly
discuss our model and outline directions of future development.

I. I NTRODUCTION

Agent technology is quickly evolving towards the realization
of complex societies of agents. Just to cite one recent example,
the aims and scope of the IST project CASCOM [4] show
how agents are becoming more and more relevant in important
sectors, e.g., healthcare and personal data management. This
evolution is not yet matched by an equivalent legal develop-
ment. The lack of a legal substrate capable of grounding the
interactions between agents ultimately means that every aspect
of interactions (e.g., see [11]) with other (possibly unknown)
third-party agents must be explicitly treated by the developer.
Moreover, for a legal point of view, the developer is the
ultimate responsible for the actions of its agents. This situation
is then exacerbated by the impossibility of tracing all actions
agents perform: if we cannot guarantee traceability [19] of
the actions of individual agents, no law would be sufficient
to prevent and punish mendacious agents (whether human or
not). Obviously, traceability does not guarantee that agents
could not misbehave; anyway, if they do so, other agents would
have the possibility of demonstrating the misbehaviour.

Having said this, the ultimate goal of our work is to provide
mechanisms and tools to support agents in interacting:

1) In a secure, traceable and privacy-aware way; and

2) With guarantees of a desired level of security and trust,
exploiting the minimum possible number of trusted
parties.

Our study of these issues is concretized in the realization of a
model capable of representing a secure, trusted and privacy-
aware interaction between two agents. The generalization of
this model to multi-party interactions is quite straightforward,
but its exhaustive description is out of the scope of this paper.

Our work is based on the introduction of two closely-
related abstractions,Validation-Oriented Ontologies(VOOs)
andGuarantors. A VOO is a signed set containing an ontol-
ogy [1] and all runtime tools needed to assert that a particular
individual of the world actually belongs to a certain familyof
individuals. Guarantors are agents that, in some sense, play
the role of middleman in interactions. Guarantors are trusted
by all interacting parties and they are in charge of support-
ing interactions by providing (under their responsibility) all
necessary VOOs.

This paper is organized as follows: next section describes
some crosscutting problems of two-party interactions and
it motivates why we need something more that available
techniques and tools to guarantee security, trust and privacy in
multiagent systems. Section III briefly describes our modeland
introduces the notions of VOOs and Guarantors. Section IV
shows how we support our model and its new abstractions by
describing an API that we realized to support developers in
their everyday work. Finally, Section V briefly discusses our
model to point some interesting direction of development and
to show its wide applicability in real-world scenarios.

II. PROBLEMS IN TWO-PARTY INTERACTIONS

The first assumption that we take in the discussion of our
model is that, from the point of view of security, trust and
privacy, we can always reduce any two-party interaction to the
act of signing of a contract. Then, we assume that proposals
and agreements between interacting parties are exchanged in
the form of individuals of known ontologies. This assumption
allows agents to manage the information contained in pro-
posals and agreements in a friendly way, e.g., to reason about
proposals and to assert the formal validity of proposals against
the constraints of the ontology.

All in all, the assumption of modelling interactions as
contracts that are individuals of known ontologies is ab-

WOA 2005 144

solutely general and has some remarkable advantages. The
most interesting advantage that we see is the possibility of
combining simple ontologies into complex models of pro-
posals and agreements. We can compose simple ontologies
into complex descriptions of proposals and agreements, thus
avoiding duplication of definitions and possible ambiguities.

The second advantage that we see in our working assump-
tion is that it greatly simplifies the creation and validation
of proposals and agreements. The creation of a proposal is
reduced to the creation of one or more individuals of known
ontologies, with properties set accordingly to given values
(potentially specified in external policies). Controllingthe
suitability of a proposal simply reduces to checking whether a
candidate proposal actually belongs to the family of admissible
proposals described in the referenced ontology.

Finally, ontologies expressed in common formats are easily
mapped into human readable documents for a subsequent
inspection of the agreements that software agents may have
autonomously signed.

A. Problem 1. Trusting Ontologies

Ontologies seem to be a suitable means for describing agree-
ments, but any attempt to use them in real-world scenarios
immediately encounters a problem: How an agent could trust
a new ontology? Suppose that a seller of bandwidth requires
to negotiate agreements with potential customers using an
ontology available in some public repository. This ontology
may model some property as being “required by local laws.”
How could customers trust this requirement if they have
no trust relationship with the seller that pointed it to this
ontology? Could a customer (in some sense) validate the
ontology to decide whether to trust it or not?

Another facet of this problem occurs in the case of an
ontology that is partially non-disclosed. Let us suppose that the
aforementioned seller creates its ontology and splits it into two
parts: a public part describing valid proposals and agreements,
and a private part used to model the policies that it employs to
enforce bandwidth reservations, i.e., the policies that ituses
to reason on proposals. This last part contains background
knowledge on the marketing strategies of the seller and it is
vital not to disclose this knowledge to potential competitors.
In this case, a full fledged reasoning on the ontology could be
done only by accessing the whole ontology, and only partial
reasoning is possible for customers.

Moreover, we have to take into account a third (very serious)
facet of this problem: there is no way to validate the adherence
of the ontology to real-world laws, without involving highly
specialized jurists. Obviously, no potential customer would be
in the position of performing this sort of validation.

In the end, all these exemplified facts of the same problem,
i.e., trusting the ontology, show that trust cannot be given
to an ontology per se: it must be accorded to its signer.
Ontologies used to model formal agreements and contracts
must be provided by trusted and liable signers.

B. Problem 2. Trusting Identities

The ultimate aim of our model of interaction is to guarantee
legal validity. Therefore, the problem of checking the identities
of involved agents is obviously critical. Unfortunately, asimple
static control of identities by means of certificates [6], [7] is in-
adequate because, e.g., certificates can be revoked or keys can
be stolen. This inadequacy should not be surprising becauseit
is very common also in human interactions. The identification
of agents in a secure, trusted and privacy-aware multiagent
system can be performed only through a set of runtime tools
capable of validating certificates, and thus realizing a trusted
source of identification.

The problem of checking identities is closely related to the
representation of identities. The identification code is the only
means that we have to validate the identity of a legal person
(physical or not). Therefore, one of the very basic issues
that we have to tackle is how to represent identities in an
agent-processable way. In our model, we decided to design
an ontology describing legal persons and their attributes and
to associate this ontology with a set of general-purpose tools
for addressing the majority of problems related to identifica-
tion. The connection between this ontology and its tools is
reinforced by the necessity of a common trusted signer.

It is worth noting that in order to fully exploit the possibility
of having runtime tools capable of providing some sort of
guarantees regarding sensible tasks on an ontology, both the
ontology and its associated tools must have the same levels
of trust and security. Let us consider these two examples to
clarify this point.

1) Case 1. Trusted ontology - Untrusted tools:Suppose that
two negotiating agents trust the same ontology (i.e., they trust
the publisher of the ontology) but they use untrusted services
to perform validations. They exchange proposals until an
agreement is reached and they mutually check their identities
using an untrusted tool. Since they do not trust the identity
verification tool, they can both suppose that they are signing
an agreement with an unknown party.

2) Case 2. Untrusted ontology - Trusted tool:Suppose
that we have an identity-verification tool that receives in
input an ontology and an identity, and verifies the identity
in a database. What happens if someone gives formally valid
(compliant with the ontology), but legally void identity? Since
the given identity matches the record in the database of
identities, the tool would return an affirmative answer, but
this identity is legally void and therefore unusable in signing
formal agreements.

These two examples show that both ontology and runtime
tools must be trusted and secure. If any of the two has not a
suitable level of trust and security, the combined use of them
will not result in a secure and trusted interaction.

III. T RUST, CONTRACTS AND GUARANTORS

The analysis of the two-party interaction outlined in the
previous section allows to introduce two abstractions that

WOA 2005 145

we can generally use to model secure, trusted and privacy-
aware interaction between two agents. These closely-related
abstractions, namely Validation-Oriented Ontologies (VOOs)
and Guarantors, are briefly described in this section.

The problem of defining trust has been addressed in many
different ways [15]. While we recognize the importance of
cognitive models [5] to quantify trust, we start from the
definition given in [9] to provide a probabilistic interpretation
of trust. In particular, if“Trust is the subjective probability
by which an individual, A, expects that another individual,
B, performs a given action on which its welfare depends”,
it is reasonable to model trust in terms of an estimation of
the real probability by which B would perform the target
action. Many factors contribute to this estimation [11], [13];
nonetheless we use a blackbox approach, in which trust is
modelled as a random variable in an interval[pa,x, pb,x]. The
only assumption that we take is that such an estimation is a
reasonable approximation of the real value of the quantity.

Our probabilistic model of trust is out of the scope of this
paper, and we simply enumerate the quantities that we exploit
in our treatment:

1) pk,x, the probability that the informationk provided by
agentX is correct;

2) pc,x, the probability that agentX would adhere to all
the obligations stated in contractc;

3) tc,x,y, the level of trust agentX has in agentY with
respect to contractc;

4) pa,x, the minimum value of trust in an estimation, i.e.,
the lower bound of the probability distribution function
of trust;

5) pb,x, the maximum level of trust in an estimation, i.e.,
the upper bound of the probability distribution function
of trust.

Since trust expresses the estimate of a probability, it is clear
thatpa andpb are both between zero and one. The assumption
that pb ≥ pa is not restrictive.

As stated in the previous section, we assume that all
interactions between two agents can be reduced, from the
point of view of trust and privacy, to the action of signing
a contract. While it is reasonable to think of a number of
different (and very complex) contracts [2], we adopt a very
simple contract model. It involves only two signers, and it is
totally described by two triples, one known to each signer.
Each triple, that we callsubjective evaluationof the contract,
is made of areward, an investmentand apenalty. This triple
summarizes the contract, and its effects, for the agent to which
the triple belongs. Being subjective values, it is not possible
to assess any mathematical relation between values of two
different subjective evaluations, even though they refer to the
same contract.

The subjective evaluation of contractc given by agentX is
written as follows:

1) Rc,x is the reward that agentX receives upon success
of contractc;

2) Ic,x indicates the investment that agentX makes in

contractc; i.e., a certain granted value that it renounces
to, when signing contractc;

3) Pc,x is the penalty of the contract, i.e., the value that
agent X receives if the contract fails because of the
other party.

The contract gives to its signers the absolute security of
receiving the stated values, i.e.:

1) if the contract is respected, agentX receivesRc,x with
probability one;

2) if the contract fails because of agentY , agentX receives
Pc,x with probability one.

Another assumption that we take concerns the order between
reward, investment and penalty in a subjective evaluation.We
are interested in contracts whose parameters are ordered as
follows:

Pc,x ≤ Ic,x ≤ Rc,x (1)

This inequality expresses the fact that contracts are advan-
tageous but risky. This, in turn, implies that an agent signs
a contract in the hope that it would be respected by the
other signer, since in case of failure it would experience the
following loss:

Ic,x − Pc,x (2)

Furthermore, each agent does not consider its own failure
probability, since it will only consider contracts that it can
reasonably respect; nevertheless the uncertainty about the other
signer remains.

Taking this probabilistic model that we briefly described
here, and that is subject for an in-depth investigation in a future
paper, we can provide a probabilistic description of a two-
party interaction. From the point of view of security, trust
and privacy, such an interaction can take advantage of the
presence of a Guarantor that plays (in some sense) the role of
middleman in the interaction. In order to provide a synthetic
description of the aims and scope of the notion of Guarantor,
we need to introduce another accessory abstraction, namely
Validation-Oriented Ontology.

A Validation-Oriented Ontology(VOO) is a signed set
containing:

1) An ontology that models a domain;
2) A set of runtime tools capable of asserting properties of

individuals of this ontology.

Runtime tools are intended to provide a means for validating
assertions on the domain described by the ontology without
requiring a full-fledged reasoning on the domain. As we have
seen in the previous section, this is essential from the point of
view of security and trust for real-world applications.

One very important advantage of the introduction of VOOs
is that they reduce the amount of distributed trust, since ina
single signed object lay both the semantic description of thing
and a set of related actions.

Moreover, VOOs promote software reuse and help stan-
dardization, since many ontology-related tasks are performed
from external bodies (the tools of VOO) in a standard, well-
defined, trusted and secure way. It is worth noting that the

WOA 2005 146

concrete technology used to realize the tools of the VOO is
not mandatory: they could be Web or Grid services [8], as
well as RMI invocations, as long as they are projected and
signed together with their ontology. In this way it is possible
to achieve platform independence by including in the VOO a
description of the invocation procedure of its tools.

VOOs are not sufficient to address all issues related to real-
world agreements because we need to trust both the VOO and
the signer of the VOO, as discussed in the previous section.
In fact, if we go back to the human world, the proper way
to stipulate contracts is through a notary public. This happens
because only legal person trusted by the State can perform
critical tasks (e.g., querying databases containing privacy-
critical information). This is the reason why we introduce
the abstraction of Guarantor, and we say that an agent is a
Guarantor for an interaction between two other agents if it
can sign a VOO that the two other agents can use in their
interaction.

We can be more precise in this definition by rephrasing the
auditing principle of [2] for a validation case:

If Role 1 cannot witness the truthfulness of an assertion
about Role 2, another Role 3 should testify the condition of
Role 2 if the party playing Role 2 is not trusted by the party
playing Role 1. This document must be received by Role 1
before the execution of its primary activity, and the party
playing Role 3 should be trusted by the party playing Role
1.

According to this principle, we suppose that both agents
involved in a two-party interaction trust a common agent,
playing Role 3, that we call Guarantor. This agent is supposed
to be responsible for the exactness of the information provided
by itself and by its tools. Unlike other agents, the Guarantor
of the interaction can easily check ontologies, tools and other
Guarantors, to provide tools that can operate on other Guaran-
tors’ certificates, ontologies, etc. Therefore, the introduction of
the Guarantor allows agents to put their trust in a single entity,
thus simplifying greatly the decisions related to according or
revoking trust.

In summary, in our model the Guarantor is responsible for
the following tasks:

1) Provide identity certificates;
2) Provide signed ontologies compliant with real-world

laws;
3) Provide signed runtime tools for its ontologies and/or

certifying external tools under its responsibility.

Then, if we remember that identity certificates are providedas
signed instances of concepts of an ontology, and if we go back
to the previous definition of VOO, these three responsibilities
of the Guarantor can reduce to a single responsibility:provide
VOOs.

The Guarantor takes the responsibility of catalyzing the trust
of an interaction in various ways, e.g., through:

1) A signed list of trusted tools;

2) A certified public key whose private key is provided only
to trusted tools;

3) A certified set of services that could access the Guaran-
tor’s database and whose use could be detected by the
tools’ user.

IV. A N API FOR SECURE, TRUSTED AND PRIVACY-AWARE

COMMUNICATIONS

The abstractions of VOOs and Guarantors must be ade-
quately supported by some development tools in order to
implement them correctly in real-world MASs. This is the
reason why we developed an API for JADE capable of
providing a direct support to developers in the realizationof
secure and trusted MASs.

The API we developed focuses primary on the double-
Guarantor model, because it is general enough to subsume the
single-Guarantor model, but it is simple enough to allow an in
depth evaluation and study. Furthermore the double-Guarantor
model is probably the most frequent case.

We designed our API to match a set of fundamental require-
ments, that resulted in strict development guidelines.

1) Privacy. All communications must be encrypted and
directed to trusted parties.

2) Traceability and security. Invocations involving toolsof
VOOs must be signed by the caller, while responses
from such tools must be signed, directly or indirectly, by
a Guarantor. The API transparently checks this property
and provides a transparent tracing service that logs all
invocations and responses.

3) Locality. The number of trusted parties involved in any
interaction must be kept at minimum. This means that an
operation performed by a given Guarantor in a mutual
recognition case, must be delegated upwards and not
delegated immediately to the other Guarantor’s tools.

4) Transparency. The invocation procedures of VOO tools
must be transparent to the user, i.e., the user is not
directly involved in the use of the tools that the VOO
provides.

5) Ease of use. The API must provide high level procedures
to perform common tasks, as well as low level, more
specific procedures devoted to fine-grained (and less
common) tasks.

6) Standardization. Information exchange, including cer-
tificates and proposals, must be performed using well-
known formats.

These guidelines are completed with the following use cases
and result in a first set of requirements that we used in the
realization of our API.

The design of the API is split into two views:(i) a client
view that shows the classes that a client agent can use to
access the services of the security and privacy subsystem, and
(ii) a Guarantor view that describes the components that the
Guarantors use to implement their functionality. Such views
are connected through theGuarantor interface, that plays the
logical role of a remote interface that Guarantors implement
and that client exploit by means of proxies.

WOA 2005 147

public interface Guarantor {
public SessionToken signOn(Credentials c) throws SignOnFailed;
public boolean signOff(SessionToken st); /* true on successful sing-offs */

public Object directInvocation(
DistributedTimeStamp dts,
ServiceDescriptor sd,
Object[] parameters

);

public DelegationToken createDelegationToken(
ServiceDescriptor sd,
DelagationDescriptor dd

);

public Object indirectInvocation(
DistributedTimeStamp dts,
DelegationToken dt,
Object[] parameters

);
}

public interface ServiceDelagationDescriptor {
public Certificate delegator();
public Certificate delegated();

public long getNumberOfInvocations(); /* max number of invocations */
public long getDeadline(); /* in millis from generation time */

}

public interface Token {
public String getCanonicalString(); /* UUencoded */
public long getExpirationDate(); /* in millis from generation time */

}

public interface SessionToken extends Token {}

public interface DelegationToken extends Token {}

Fig. 1. Client view of the API

It is worth noting that the client view represents a mandatory
interface, on the contrary, the Guarantor view is only a sug-
gestion of a possible internal design of Guarantors. Obviously,
client view plays a substantially more important role in this
design.

A. Client View

For the sake of clarity and readability, Figure 1 collects the
interfaces of the client view in terms of Java interfaces.

The central interface of the client view is Guarantor. It
encapsulates all methods that Guarantors expose to clients.
Such methods are accessed remotely through an encrypted
channel and they are available after an initial mutual recog-
nition phase through thesignOn()method. Client wishing to
use the services of a Guarantor, invoke this method and pass
their credentials. The type of requested credentials depends on
the Guarantor: simple username/password may be sufficient
in certain cases, or more complex X.509 certificates may be
needed in other cases. Guarantors will provide their specific
subclass of interface Credentials to have clients provide the
required information.

If the Guarantor intends to serve the client that issued the
signOn()request, it will respond with aSessionTokenthat the
client will use for subsequent invocations on the Guarantors
interface. ASessionTokenis a particular sort ofToken. Just like
all tokens, it has an expiration date and it can be converted in
a canonical string.

signOn() requests are invoked on some kind of secure
channel, e.g., HTTPS, and subsequent services are requested
on the same secure channel. A client can issue request for
services until the client itself signs off (through thesignOff()
method) or until the session expires.

Once a client is authenticated with a Guarantor, it can
perform two kinds of requests:

1) Direct requests, i.e., requests for services whose out-
come is used by the client itself;

2) Indirect requests, i.e., requests that are performed on
behalf of some other client.

Direct requests are performed simply through thedirectInvoca-
tion() method. These are ordinary requests for services except
for the following two constraints:

1) Parameters and result value are transported on a secure
channel;

2) The Guarantor is responsible for tracing the request to
guarantee non-repudiability;

3) The client is responsible for providing a distributed
timestamp to allow for traceability of complex interac-
tions.

The directInvocation()method is the only mechanism that
Guarantors offer to have services performed in this way. Other
methods of the Guarantor interface (or of any of its subclasses)
are not guaranteed to respect the aforementioned constraints.
All in all, the directInvocation()method plays the role of the
Dynamic Invocation Interface of CORBA objects, or of the
Method.invoke()method of Java reflection. It is the preferred
way to handle secure services.Indirect requests are a delegation
mechanisms that allows a client (A, delegated) to have a
service performed on behalf of another client (B, delegator).
This process is made of the following steps:

1) Client A requests the Guarantor to grant indirect requests
to client B;

2) If the Guarantor can honour this request, it will accept
requests from B and serve them as if they were requested
by A;

3) The Guarantor stops serving indirect requests from B if
the delegation has expired, e.g., because the maximum
number of requests from B is reached.

The first step of this process is performed when A invokes the
createDelegationToken()method on the Guarantor interface.
This method needs the following parameters:

1) A ServiceDescriptor that identifies which service(s) of
the Guarantor the client is willing to delegate;

2) A DelegationDescriptor that provides the Guarantor with
all information needed to actually perform the delega-
tion, e.g., who is the delegated client, for how long the
delegation will last.

If the Guarantor can grant the delegation of the service to
B, the return value ofcreateDelegationToken()is a globally
unique token that identifies the delegation. The delegated client
B will use this token to finally access the services of the
Guarantor through a call toindirectInvocation(). This method
has exactly the same meaning and constraints of thedirectIn-
vocation()method, except for the fact that it can be invoked
by delegated clients that are not currently authenticated with
the Guarantor.

If a Guarantor needs additional, application-specific infor-
mation, to grant indirect requests, it can provide its own sub-

WOA 2005 148

public interface SensitiveDataStore {
public SessionToken signOn(Credential c) throws SignOnFailedException;
public boolean signOff(SessionToken st); /* true on successful sing-offs */

public ResultSet query(SessionToken st, QueryStatement q) /* result set */
throws IllegalSessionToken, IllegalStatement;

public long insert(SessionToken st, InsertStatement o) /* number of additions */
throws IllegalSessionToken, IllegalStatement;

public long update(SessionToken st, UpdateStatement o) /* number of updates */
throws IllegalSessionToken, IllegalStatement;

public long delete(SessionToken st, DeleteStatement o) /* number of deletions */
throws IllegalSessionToken, IllegalStatement;

public boolean create(SessionToken st, CreateStatement o) /* creations */
throws IllegalSessionToken, IllegalStatement;

public void setUsernameForNotifications(SessionToken st, String username)
throws IllegalSessionToken, IllegalUsername;

}

public interface InvocationTracer {
public void traceIndirectInvocation(

DistributedTimeStamp dts,
DelegationToken dt,
Object[] parameters,
Object result

);

public void traceDirectInvocation(
DistributedTimeStamp dts,
ServiceDescriptor sd,
Object[] parameters,
Object result

);
}

Fig. 2. Guarantor view of the API

classes of classesServiceDescriptorandDelegationDescriptor
interfaces.

Indirect requests is the preferred way to allow a third party
having a service done without explicitly requesting sensitive
data. For example, let’s consider a buyer A and a seller B.
Normally, the seller will request the details of As credit card
in order to:

1) Check the validity of the credit card;
2) Perform the withdrawal of the exact amount of the

requested payment.

B would be able to perform exactly such operations if buyer
A would instruct its bank (the Guarantor) to serve this two
requests from B as if they were issued by A itself. This
approach has the great advantage of allowing A to buy from
B without revealing any sensitive information. The delegation
token that allows B to perform the withdrawal is a sort of
anonymized view of the sensitive data of A. Formally, this
delegation token is aone-time passwordfor logical access
control.

B. Guarantor View

The Guarantor view of the architecture describes how a
Guarantor may implement a general-purpose infrastructurefor
providing its services with requested level of security and
privacy. This architecture is not mandatory because every
Guarantor may decide its own optimized approach to provide
services. Anyway, the quality of Guarantors in performing
tasks related to security and privacy, e.g., the global uniqueness
of the generated tokens, or the correct tracing of invocations,
are important metrics for clients to put trust of Guarantors.
Therefore, the Guarantor view is highly recommended as it
helps clients estimating the reputation of Guarantors. Figure 2
shows the Java interfaces that make the Guarantor view of the
architecture.

One of the principal interfaces that build the Guarantor view
of the architecture isSensitiveDataStore. This is an abstract
view of a data store that is meant to allow for a seamless
treatment of sensitive data. It is worth remembering that every
Nation in the European Community adopted laws to provide
guarantees to citizens regarding the treatment of their sensitive
data.

Such laws are all rooted in a note of the European Com-
mission and they all contain strict technical requirementsthat
databases of sensitive data must follow. As an example, the
following are examples of the requirements of the Italian law
on privacy:

1) The password of the manager of the data store must be
of 8 alphanumerical characters, at least;

2) The password of the manager of the data store must be
changed every 3 months;

3) If any access credential to the data store has not been
used for more than 3 months, it must be revoked.

Any implementation of theSensitiveDataStoreinterface will
wrap existing technologies for storing data, e.g., JDBC or
JNDI, and it will add the support for any requirement to
make it compliant with a particular legislation (at a particular
time). Any SensitiveDataStoreallows a direct management
of the data it contains thought methods: query, insert, up-
date, delete and create. These are wrapper to the underly-
ing storing technology and their statement parameters are
concrete subclasses that provide all necessary information to
concretely perform requested operations. Not all such methods
are always permitted to allow for accommodating different
levels of management of the data store, e.g., query may be
always possible, but creation and deletion of database table is
possible only when the Guarantor is not online. Any attempt
of violating such application-specific constraints will generate
an InvalidStatementexception.

MethodssetUserNameForNotifications()is used to instruct
the data store to actively provide information on compliancy.
For example, a particular data store may decide to notify the
manager of any credential that no longer complies with laws,
or it may decide to notify the administrator of any clean-up
of old data. This unusual behaviour of aSensitiveDataStoreis
needed to allow data stores suspending operations on a session
when, for some reason, the session does no longer comply with
laws. So, for example, a properly implemented sensitive data
store would stop functioning when the password of the person
in charge is more than 3 months old.

The second interface that may be used to design Guarantors
is InvocationTracer. This interface provides all methods for
tracing direct and indirect requests served or rejected by the
Guarantor. Such requests are stored in aSensitiveDataStore
that would save all (context) information regarding requests,
It is worth noting that the invocationDistributedTimeStamp
property allow to correlate logs of different Guarantors, and
therefore it allows backword tracing the execution of complex
actions.

WOA 2005 149

V. D ISCUSSION

The central focus of this paper is on the motivated introduc-
tion of two abstractions, VOOs and Guarantors, that we can
use to provide general-purpose mechanisms to realize secure
and trusted MASs. The need of these abstractions should be
clear if we go back to the very general issues related to
security and trust that we identified for two-party interactions.
Obviously, the introduction of these abstractions is not the
only way we can think to tackle such issues, but we believe
that our approach has two interesting properties:

1) Concentrated trust. Guarantors are sorts of trust catalysts
that we use to keep trust concentrated on the minimum
number of parties. From the point of view of interacting
agents, this is good because the number of operations
related to according or revoking trust is minimized.

2) Pragmatic interactions. The strict coupling between an
ontology and a set of tools capable of performing
general-purpose, critical tasks on the individuals of
this ontology (i.e., the idea of VOO) guarantees the
possibility of performing secure and trusted interactions
also to agents with minimal reasoning capabilities.

In conclusion, we believe that the introduction of VOOs
and Guarantors provides a solid ground for the concrete
development of trusted and secure MASs. Many issues related
to these properties are encapsulated by these abstractionsand
we believe that their in-depth study can lead to a better under-
standing of the subtle behaviours of these complex systems in
real-world situations.

ACKNOWLEDGEMENTS

This work is partially supported by project CASCOM (FP6-
2003-IST-2/511632). The CASCOM consortium is formed by
DFKI (Germany), TeliaSonera AB (Sweden), EPFL (Switzer-
land), ADETTI (Portugal), URJC (Spain), EMA (Finland),
UMIT (Austria), and FRAMeTech (Italy). This article reports
on joint work that is being realised by the consortium. The
authors would like to thank all partners for their contributions.

REFERENCES

[1] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and Patel-
Schneider, P.F., (Eds.),The Description Logic Handbook: Theory, Im-
plementation and Applications, Cambridge University Press, 2003.

[2] Bons, R.W.H.,Designing Trustworthy Trade Procedures for Open Elec-
tronic Commerce, Ph.D. Dissertation, 1997, EURIDIS and Faculty of
Business Administration, Erasmus University.

[3] Casati, F., Shan, E., Dayal, U., and Shan, M.-C.,Service-Oriented
Computing: Business-Oriented Management of Web Services. Commu-
nications of the ACM, 46:10, October 2003.

[4] CASCOM Web sitehttp://www.ist-cascom.org
[5] Castelfranchi, C., and Falcone, R. Principles of Trust for MAS: Cognitive

Anatomy, Social Importance, and Quantification. In Proceedings of The
International Conference of Multi-agent Systems (ICMAS), 72–79, 1998.

[6] Ellison, C., SPKI Requirements. IETF RFC 2692, September 1999.
[7] Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B., and Ylonen,

T., SPKI Certificate Theory. IETF RFC 2693, September 1999.
[8] Foster, I., Kesselman, C., and Tuecke, S.,The Anatomy of the Grid:

Enabling Scalable Virtual Organizations, Int’l Journal of Supercomputer
Applications, 15(3), 2001.

[9] Gambetta, D. (Ed.),Trust: Making and Breaking Co-operative Relations,
Basil Blackwell, Inc., UK, 1985.

[10] JENA Web sitehttp://jena.sourceforge.net

[11] Jennings, N. R., Parsons, S., Sierra, C. and Faratin, P., Automated
Negotiation, in Procs. of the5

th Int’l Conference on the Practical
Application of Intelligent Agents and Multi-Agents Systems, PAAM-
2000, Manchester, UK.

[12] Martin, D., Paolucci, M., McIlraith, S., Burstein, M.,McDermott, D.,
McGuinness, D., Parsia, D., Payne, T., Sabou, M., Solanki, M., Srinivasan,
N., and Sycara, K.,Bringing Semantics to Web Services: The OWL-S
Approach, in Procs. of the1st Int’l Workshop on Semantic Web Services
and Web Process Composition (SWSWPC 2004), July 2004, San Diego,
USA.

[13] Marsh, S.Formalising Trust as a Computational Concept. Ph.D. diss.,
Department of Mathematics and Computer Science, University ofStirling,
Stirling, UK, 1994.

[14] Meyer, B., Object Oriented Software Construction, Second Edition,
Prentice-Hall, NJ, 1997.

[15] MINDSWAP, A Definition of Trust for Computing with Social Networks
Technical report, University of Maryland, College Park, February 2005.

[16] OWL Web sitehttp://www.w3.org/2004/OWL
[17] Poggi, A., Tomaiuolo, M., Vitaglione, G.,Do Agents Need Certificates?

Distributed Authorization to Improve JADE Security, in Procs. of the
6

th Int’l Workshop on Trust, Privacy, Deception, and Fraud in Agent
Societies, AAMAS 2003, July 2003, Melbourne, Australia.

[18] Racer Web sitehttp://www.sts.tu-harburg.de/
∼r.f.moeller/racer/

[19] Szomszor, M., and Moreau, L.,Recording and reasoning over data
provenance in web and grid services, in Procs. of the Int’l Conference
on Ontologies, Databases and Applications of Semantics (ODBASE’03),
LNCS 2888, November 2003, Catania, Italy.

WOA 2005 150

An Implemented Prototype of Bluetooth-based
Multi-Agent System

Volha Bryl
Department of Information

and Communication Technology
University of Trento,

via Sommarive 14,
38050 Povo (TN), Italy

Email: volha.bryl@unitn.it

Paolo Giorgini
Department of Information

and Communication Technology
University of Trento,

via Sommarive 14,
38050 Povo (TN), Italy

Email: paolo.giorgini@dit.unitn.it

Stefano Fante
ArsLogica Lab,

IT Laboratories BIC,
Viale Trento, 117,

38017 Mezzolombardo (TN), Italy
Email: stefano.fante@arslogica.it

Abstract— People tend to form social networks within specific
geographical areas. This is motivated by the fact that the
geographical locality corresponds generally to common interests
and opportunities offered by the people active in the area
(e.g. students of a university could be interested to buy or
sell textbooks adopted for a specific course, to share notes,
or just to meet together to play basketball). Cellular phones
and more in general mobile devices are currently widely used
and represent a big opportunity to support social communities.
We present an application of multi-agent systems accessible via
mobile devices (cellular phones and PDAs), where Bluetooth
technology has been adopted to reflect users locality. We illustrate
an implemented prototype of the proposed architecture and we
discuss the opportunities offered by the system.

I. I NTRODUCTION

Being widespread and ubiquitous, cellular phones are re-
cently used not only as the means of traditional communica-
tion. They are also supposed to satisfy the information needs of
their users, e.g. to support information search and filtering or
electronic data exchange. Users equipped with mobile devices,
such as cellular phones or PDAs, can form so called mobile
virtual communities [1], which make possible the collaboration
and the information exchange between their geographically
distributed members. Such communities are inherently open,
new users can join and existing ones can leave anytime. Our
aim is to build a general architecture for open distributed
systems that can facilitate the interaction and the collaboration
among members of co-localized groups of users via their
mobile devices.

We adopted Bluetooth [2] technology to connect mobile
devices to servers where virtual communities based on multi-
agent systems are formed and allow users to interact with
one another. Bluetooth is a cheap and a widely used wire-
less communication technology that can connect Bluetooth-
enabled devices located in a range of 100 meters.

A number of multi-agent applications to mobile devices
environments have been proposed in literature. [3] presents a
multi-agent system named KORE where a personal electronic
museum guide provides to visitors (with Java-enabled mobile
devices) information about artistic objects they are currently
looking at. Information is filtered and adapted to the user

profile. Bluetooth technology is used to detect the user posi-
tion. In [4] MobiAgent is proposed, an agent-based framework
that allows users to access various types of services (from
Web search to remote applications control) directly using their
cellular phones or PDAs. Once the user sends the request
for a specific service an agent starts to work on her behalf
on a centralized server. The user can disconnect from the
network and the agent will continue to work for her. When
the request has been processed, the user is informed via Short
Message Service and she can decide to reconnect the network
to download the results. MIA information system [5] is another
example that provides personalized and localized information
to users via mobile devices.

What is still missing in the above architectures is the
interaction and the collaboration between the members of
the virtual community. Just few proposals in the literature
introduce domain-specific collaborative environments where
interacting and collaborative agents act on the behalf of their
users. For instance, [6] describes a context-aware multi-agent
system for agenda management where scheduling agents can
execute on PCs or PDAs and assist their users in building the
meeting agenda by negotiating with the other agents. ADOMO
[7] is an agent-based system where agents running on mobile
devices sell the space on the device’s screen to commercial
agents for their advertisements. Agents on behalf of their users
negotiate and establish contracts with neighbors via Bluetooth.

There exist a number of multi-agent platforms that can be
used on mobile devices. Taking into account the limited com-
putational and memory resources, it could be very problematic
to run a multi-agent platform on such mobile devices as
cellular phones. A possible solution is either to avoid running
multi-agent platform on mobile devices, as for example in
[7], or to use portal multi-agent platforms [8] where agents
are executed not on the device itself but on the external host.

In this paper we present a general architecture based on
this last option. The architecture proposes independent servers
where multi-agent platforms can be installed and where agents
can act on behalf of their users. Each server proposes one
or more specific services related to the geographical area in
which it is located (e.g. a server inside the university could

WOA 2005 151

offer the service of selling and buying text books, renting an
apartment, etc.) and users can contact their personal agents
using their Bluetooth mobile phones. The main advantage of
the proposed framework with respect to the above described
architectures is that the system is domain independent (it does
not depend on the specific services offered by the servers) and
independent from the multi-agent technology adopted (we can
use different technologies on each server).

The paper is organized as follows. Section II describes a
motivating example of our system. The general architecture of
the system is introduced in Section III, while Section IV pro-
vides some architectural details and describe the implemented
prototype. Section V concludes the paper and provides some
future work directions.

II. M OTIVATING EXAMPLE

Let’s consider three places in a town: university, railway
station and bar. People staying for some time in one of
these places may have some common interests and needs. For
instance, students at the university might want to buy or to sell
secondhand textbooks, to find a roommate, or to form study
groups. People at the bar could be interested in the latest sport
news (especially in Italian bars), or they could just be looking
for someone to chat with. Passengers waiting at the railway
station may want to know some details about the trip they
are going to have — what cities their train goes through, or
what the weather is like at the destination point. They may
want also to find someone with common interests to chat with
during the trip.

Let’s suppose also that people cannot or do not want to
spend their time on examining announcements on the bulletin
boards, or questioning people around them, or searching for
the information office. They would prefer to enter the requests
they have into their mobile phones and wait for the list of
available proposals.

To support interests and needs of such groups of co-
localized users a server is placed at each of the three meeting
points. Servers can provide a certain number of services to
people equipped with mobile phones or pocket computers
(hereinafter referred as users). A user can have access to the
services when she is close enough (depending on her Bluetooth
device) to one of the three servers — at the bar, in the waiting
room of the station, or at the main hall of the university.

Let’s suppose that among the available services we have the
following ones. University server can be used for buying and
selling used books, or for looking for a roommate. At the bar
sport news service is available, as well as the service which
helps to find interesting people around. Railway station server
gives a possibility to get information about trips (including
touristic information).

Users interaction and collaboration is the base for the
satisfaction of their needs. To sell a secondhand textbook,
one should find a buyer and agree on the price. To find
someone in the bar to chat with, one should look for the
person with similar interests. Each server recreates the group
of co-localized human users in a virtual community of personal

Fig. 1. Users, Servers, Virtual Communities of Personal Agents

agents (Figure 1) able to interact and collaborate with one
another. Users formulate their requests and forward them to
their personal agents.

Personal agents interacting with the other available agents
(they may also negotiate, not just interact, as in the case of
selling or buying books) produce results that will be sent back
to the users. The main idea is to have a distributed system
composed of a number of open virtual communities that evolve
and act autonomously on the behalf of human communities.

III. SYSTEM ARCHITECTURE

In this section we describe the general architecture of the
system. We start from the requirements and then we illustrate
the various sub-components and their interaction.

A. System Requirements

We can summarize the requirements of the whole system in
the following objectives.

• Allow the user to express her interests and choose the
services she wants to access.

• Provide access to the requested services when the mobile
device and the appropriate server are co-localized (i.e. the
Bluetooth connection is feasible).

• Allow the user to retrieve pending results. Results should
be accessible both in the case the user is still in the
Bluetooth range and in the case she is out of the range.

B. System Components

The architecture of the system includes four main types of
components: mobile device, PC, server and services database.

The PC component provides an interface for the user’s
registration to the system, for getting and choosing available
services, and building requests for the chosen services. Also
the pending results can be retrieved via PC. The mobile device
is used to send the user’s requests to the servers and to get
back the results. Each server within the system provides a list
of predefined services. The server runs a multi-agent platform
with personal agents representing single users, a database
where results are archived, and an interface responsible for
establishing connections with mobile devices and PCs, and for

WOA 2005 152

Fig. 2. Interaction of System Components

redirecting the users’ requests to the corresponding personal
agents. The services database, accessible via Web, contains
information about all the servers and their properties, such as
name, location, etc. The database provides also a description
of available services on each server.

Figure 2 illustrates the general architecture of the system
and the interaction among its components. Connection be-
tween the mobile device and the PC, and between the mobile
device and the server is established via Bluetooth wireless
communication technology.

C. Getting Access to the Services

In the following we describe how the process of getting
access to the services is organized (Figure 3).

The software running on the PC allows the user to search
and discover the servers and services registered to the services
database. The user selects one or more services and provides
information (i.e. requests) related to the use of such services.
For example, using the service ”Buy/sell secondhand books”,
the user could request to ”Sell the copy ofThinking in
Java by Bruce Eckel, printed in 1995, for the price not less
than 20 euros”. All the user’s requests are stored in the
configuration file, which is downloaded onto the mobile device
via Bluetooth.

When the user with her mobile device approaches one of
the servers, the software on the device establishes a connection
with the server and sends the requests related to the available
services. The requests are built on the base of the configuration
file of the mobile device. In other words, the mobile device
checks in the configuration file if the user is interested in the
services provided by the server and then builds and sends the
requests to the server. The mobile device stores the server’s
address to keep track of the contacted servers. It stores the
address even if there are no relevant services on the server.
This allows later the user to check the list of all visited servers
and associated services, and decide to update her preferences
including new servers/services in the configuration file.

D. Retrieving Pending Results

We describe now how the process of retrieving the pending
results is organized (Figure 4).

The user has basically two options to get back the results
of her requests. The first one is to receive them directly on
her mobile device. However, this is not always possible. The

Fig. 3. Getting Access to Services

user could leave the Bluetooth area or the mobile device may
not have enough memory or computational power to manage
the answers (e.g. in the case the answers are a number of big
files). Thus the second option is to get back the results later
when the connection with the server they were requested from
is finished.

Pending results can be retrieved both from the mobile device
and from the PC. In the first case the mobile device has to
be configured to get the pending results and has to be in the
Bluetooth range of some server. For example, a student is
going to spend a whole hour in the main hall of the university
waiting for the next lecture, namely she will have enough time
to download the results of her requests sent in the morning
to the railway station server (where she bought her train
ticket before going to the university). She switches on the
option ”get pending results” on her mobile phone, and waits
for results. The mobile device sends to the university server
the list of addresses of the servers the user has visited. The
server establishes a connection with each server in the list, and
sends the information that identifies the mobile device (e.g. its
Bluetooth address) as a request for the pending results. The
obtained information is sent back to the mobile device.

In the second case the user receives pending results through
the PC. The student goes back home and runs the PC software
that collects all the pending results obtained from the visited
servers. The list of the visited servers and their addresses is
transferred from the mobile device to the PC.

E. Agent Platform

Each server runs a multi-agent platform, where agents
correspond to mobile devices and receive and process requests
obtained from the users. We basically have a one-to-one
association between agents and mobile devices (users). An
agent is identified by the unique Bluetooth address of the
corresponding mobile device. The same device can have many
personal agents within different platforms of different servers.

When the server receives the request from the mobile
device, it checks if there exists the personal agent of this

WOA 2005 153

Fig. 4. Retrieving Pending Results

device within the platform. If not, new personal agent is
created. Personal agent communicates and collaborates with
other agents in order to find ”a partner” which will satisfy its
request. Interaction protocols and collaboration mechanisms
are domain (services) dependent.

IV. I MPLEMENTATION ISSUES

In this section we present the details of the implemented
prototype. Basically, the system is a first implementation of the
architecture presented in Section II and focuses on a number
of servers spread around the university campus (faculties,
libraries, departments, etc.). Each server offers only the service
for selling and buying books. We are currently working on
a number of other services including services available on
servers located outside of the university campus (e.g. train
station, museums and places close to touristic attractions).

A. On-line registration and services selection

To start working with the system, the user has to register.
She can fill the on-line registration form where she needs to put
her personal info such as name, birth date, e-mail, Bluetooth
address and phone number of her mobile device, and password.
The registration, basically, allows the system to identify the
user and the mobile device she is going to use. Password
is used to access the information about servers and related
services and to upload/update the user information (e.g. the
user can decide to use different mobile device or just to change
her data such as telephone number or e-mail address). All this
information is stored in the services database. Registered users
obtain the rights to download the software for the PC and the
mobile device components (which are two jar files), and the
XML file containing all available servers with corresponding
services.

After the registration (or login), the user can start selecting
services to use. Using the Java GUI interface shown in Figure
5, she can explore all the available services using filtering
criteria such as server location (e.g. we can have servers lo-
cated in different cities or in different places in the same city),

Fig. 5. Request Input Form

Fig. 6. Configuration File

type or category of the service (e.g. buy/sell books, exchange
courses’ notes, or meet people), and keywords (e.g. books,
course, etc.). The list of the selected services is managed by
the PC component that allows the user to customize these
services with the specific requests (e.g. title of the book to
buy or to sell, the desired price, minimal or maximal price).

The list of services (with related servers’ addresses) are
stored in a XML configuration file, which is uploaded via
Bluetooth in the mobile device. Figure 6 shows an example
for the ”sell/buy books” service.

B. Accessing the services

To access the services, the user needs to run the Bluetooth
application in her mobile device. The application is written in
Java and uses JSR-82 [9], which is Bluetooth API for Java.
The application starts a continuous search for the Bluetooth-
enabled devices in its neighborhood, and whenever it finds a
server with the services specified in the configuration file, the
mobile device sends the user’s requests to the server. Figure
7 shows the protocol we use for the interaction among the
different components.

WOA 2005 154

Fig. 7. Getting Access to Services

A specific communication module on the server is respon-
sible for managing the interaction with the mobile device.
It receives the list of requests from the mobile device and
checks whether in the platform (running in the server) already
exists a personal agent assigned to that mobile device (the
Bluetooth address is used to map the mobile device with the
personal agent). If there is no personal agent for the user,
the communication module connects to the central services
database and verify whether the user is registered to the
system. Only in case of a positive answer, it creates a new
agent and assigns it to the mobile device (user). Then, the
communication module forwards all the user’s requests to the
personal agent.

Now, the personal agent starts the interaction with the
other agents on the platform trying to satisfy all the user’s
requests. In our example the personal agent receives one or
more requests for buying and/or selling books (with specified
title, desired price, maximum and minimum prices, etc.). If
the agent reaches an agreement with another agent about their
users’ requests, it can decide either to send the results back
to the user or store them locally in the server database. This
depends on the retrieval modality that the user has defined in
the configuration file.

C. Results retrieval

Whenever a new connection between a server and a mobile
device is established, the communication module sends to the
mobile device the IP-address of the server. The mobile device
stores the IP addresses of all the visited servers in an XML list
(Figure 8-a), that is used later to retrieve all pending results.
The format of the results produced by the personal agent is
shown in Figure 8-b. It may contain the request identifier, the
contacts (e.g. phone number) of the user interested to buy or
sell the book, the actual agreed price, etc.

As discussed in Section III, the user has three different
modalities to retrieve results: get the results immediately, get
pending results using the mobile device, and get pending
results using the PC. Each of these modalities has to be defined

Fig. 8. XML Formats. (a) List of IP Addresses of Visited Servers. (b) List
of the Responses

Fig. 9. Pending Results from the Mobile Device.

in advance by the user and can be changed at runtime by means
of the mobile device application.

Choosing the first option, the user can receive the results
immediately in her mobile device. Of course, she can receive
the results if and only if she is still at a Bluetooth distance from
the server. The communication module checks the availability
of the mobile device and sends to it the results obtained from
the corresponding personal agent.

Figure 9 shows the interaction protocol of retrieving the
pending results via mobile device. Consider for example the
situation in which a user is near to the server of the central
library. After the connection has been established, the mobile
device sends the list of IP-addresses of all previously visited
servers (e.g. faculty servers, departments servers, etc.) to the
library server. The communication module of the server sends
then the Bluetooth address of the mobile device to all listed
servers. In turn, the communication module of each server
extracts from the internal database all the stored results related
to the user and sends them to the requester server. All the
results are collected by the communication module and finally
sent to the mobile device. If the mobile device is no longer
connected to the server (e.g. the user has left the library), the
retrieval process will fail and the results will be cancelled (they
are still available on the original servers).

Figure 10 shows the interaction protocol of retrieving the
pending results via PC. The user connects her mobile device to

WOA 2005 155

Fig. 10. Pending Results from PC

the PC via Bluetooth and sends the list of all visited servers to
the PC component. Now, the user can decide either to retrieve
the results from all the servers or she can just select some of
them. An interface on the PC allows the user to connect to
the servers and then view or download the pending results.

D. Agents interaction

As we said in this first prototype we implemented just
one kind of service, namely the ”buy/sell books” service.
The multi-agent system has been implemented in JADE (Java
Agent DEvelopment framework) [10]. The interaction mech-
anism is very simple. The point here is that we do not pay
particular attention to the multi-agent interaction since we are
mainly focused on the design and the implementation of the
whole infrastructure.

Figure 11 presents the implemented interaction protocol
used by the agents in the case of the ”buy/sell books” service.
Buyer’s personal agent broadcasts the request of looking for
a specific book (information about title, desired price, etc. are
specified in the message). If in the platform there is another
agent that is selling the requested book, it responds to the
buyer with the price it wants for the book. If the price is
greater than the maximum price specified by the buyer, the
interaction continues with a discount request from the buyer
agent. The seller responds either with the discounted price or
with the initial proposed price (in case it does not want to
give the discount). If this price is less than maximum price
for the buyer, it accepts the deal. After that, the buyer and
seller personal agents exchange their users’ data, form the
agreed proposals and send them to the server’s database. The
proposals are than forwarded either to mobile device, or to the
PC as described in Section IV-C.

We tested the system using Nokia 6260 cellular phones and
PC/Server equipped with Tecom Bluetooth adapter. Bluetooth
communication has been implemented using Blue Cove [11]
which is an open source implementation of the JSR-82 Blue-
tooth API for Java.

Fig. 11. Agent Interaction

V. CONCLUSIONS

In this paper we have presented an implemented prototype
where multi-agent systems and Bluetooth wireless commu-
nication technology are combined together to support co-
localized communities of users. We have discussed the general
architecture of the system and we have presented using the buy
and sell books example some implementation issues related to
the prototype we have built.

A lot of work has to be done to make the system working
in a real-life environments, including the implementation of
various multi-agent systems able to provide different kinds of
services. We are currently working with ArsLogica s.r.l. in the
development of a real scenario where to apply the system.

ACKNOWLEDGEMENT

We thank ArsLogica s.r.l. for the collaboration and the
support to this project. This research also is partially supported
by COFIN Project ”Integration between learning and peer-
to-peer distributed architectures for web search (2003091149
004)”.

REFERENCES

[1] A. Rakotonirainy, S. W. Loke, and A. Zaslavsky, “Multi-agent support
for open mobile virtual communities.” inProceedings of the Interna-
tional Conference on Artificial Intelligence (IC-AI 2000) (Vol I), Las
Vegas, Nevada, USA, 2000, pp. 127–133.

[2] The official Bluetooth website — http://www.bluetooth.com/.
[3] M. Bombara, D. Calı̀, and C. Santoro, “Kore: A multi-agent system to

assist museum visitors.” inProceedings of the Workshop on Objects and
Agents (WOA2003), Cagliari, Italy, 2003, pp. 175–178.

[4] L. Vasiu and Q. H. Mahmoud, “Mobile agents in wireless devices.”
Computer, vol. 37, no. 2, pp. 104–105, February 2004.

[5] MIA project — http://www.uni-koblenz.de/∼bthomas/MIAHTML.
[6] O. Bucur, P. Beaune, and O. Boissier, “Representing context in an agent

architecture for context-based decision making.” inProceedings of the
Workshop on Context Representation and Reasoning (CRR’05), Paris,
France, 2005.

[7] C. Carabelea and M. Berger, “Agent negotiation in ad-hoc networks.”
in Proceedings of the Ambient Intelligence Workshop at AAMAS’05
Conference, Utrecht, The Netherlands, 2005, pp. 5–16.

[8] C. Carabelea and O. Boissier, “Multi-agent platforms on smart devices
: Dream or reality?” inProceedings of the Smart Objects Conference
(SOC03), Grenoble, France, 2003, pp. 126–129.

[9] JSR-82: Java APIs for Bluetooth —
http://www.jcp.org/en/jsr/detail?id=82.

[10] Java Agent DEvelopment Framework website — http://jade.tilab.com/.
[11] Blue Cove project — http://sourceforge.net/projects/bluecove/.

WOA 2005 156

Designing and Implementing Electronic Auctions
in a Multiagent System Environment

Davide Roggero†, Fioravante Patrone‡, Viviana Mascardi†
†DISI, Università di Genova,

Via Dodecaneso 35, 16146, Genova, Italy
davide@unige.it,mascardi@disi.unige.it,

‡ DIPTEM, Università di Genova,
P.le Kennedy - Pad D, 16129, Genova, Italy

patrone@diptem.unige.it

Abstract— Agent-Mediated Electronic Commerce is gaining a
wide consensus both from the academia and from the industry,
since it provides the right abstractions, models and tools to
face the challenges that electronic commerce raises. According
to C.Sierra, e-commerce can be described as organization +
mechanism + trust, where mechanism is concerned with the rules
that govern the interaction among agents in such a way that
certain properties can be guaranteed.
This paper describes the design and implementation of a library
of customizable agents for simulating auction mechanisms. The
purpose of the library is to provide a support to the correct engi-
neering of mechanisms in the e-commerce setting, by providing a
flexible tool for the quick prototyping of realistic auctions to the
auctions’ developers. The auction mechanisms that are included
in our library respect the Revenue Equivalence Theorem, one of
the most important theorems of the formal theory of auctions.
Keywords. Auction Theory, Electronic Auction, Multiagent Sys-
tem

I. INTRODUCTION

Information and Communication Technology (ICT) is cur-
rently considered as one of the forces that can deeply influence
and transform human society. Many people agree on the
important role played by ICT in productive growth and in-
ternational competitiveness, thanks to reduction of transaction
costs, support to efficient management, and exchange of a wide
amount of information. This happens especially for commerce,
radically changing the way enterprises and companies work.
For example, large on-line selling enterprises use the Internet
strategically to improve service quality, process speed and for
cost savings, whereas small enterprises use electronic com-
merce (e-commerce) primarily to increase their customer base
and make themselves known. In order to offer answers suitable
to the currently open challenges in the e-commerce area, like
business process outsourcing, marketing of agricultural exports
and online dispute resolution, new technologies are required.
Agent-Mediated Electronic Commerce (AMEC) is the most
recent (and one of the most promising) technology born with
the purpose of facing the e-commerce challenges.

In his paper “Agent-Mediated Electronic Commerce” [1],
C.Sierra asserts that e-commerce can be described by the

following equation:

e-Commerce = organization + mechanism + trust

In this paper we deal with the second element of the sum:
mechanism. Mechanism design is concerned with establishing
the rules that govern the interaction among agents in such a
way that certain properties (such as stability, or equilibrium)
can be guaranteed. The definition of the rules of the game
determines how the interaction will take place and, based on
the assumption of rationality for the agents, tries to achieve a
desired behaviour by them, possibly corresponding to domi-
nant strategies.

In order to provide a support to the correct engineering
of mechanisms in the e-commerce setting, we have devel-
oped a library of customizable agents for simulating auction
mechanisms with the goal of providing a flexible tool for
the quick prototyping of realistic auctions. The design of
the auction mechanism exploits the AUML language (http:
//www.auml.org/) for defining the interaction protocols
between a bidder and an auctioneer, while the prototyping
phase is carried out by exploiting the tools offered by the
DCaseLP environment [2], [3]. We have designed and im-
plemented the auction mechanisms that are included in our
library, that can be downloaded from the DCaseLP home page,
http://www.disi.unige.it/person/MascardiV/
Software/DCaseLP.html, in such a way that they re-
spect the mathematical theory behind auctions. In fact we have
based our work on the results obtained in the Auction Theory
area, and in particular on the well-known Revenue Equivalence
Theorem (RET, described in [4], [5], [6]). By carrying out
many experiments run under different initial conditions, we
have experimentally validated that the mechanisms developed
as part of our library respect the RET.

The paper is structured in the following way: Section II
summarizes the main mathematical results behind auction
theory; Section III describes the design of the mechanisms
that we provide in our library, while Section IV illustrates their
implementation and shows that it respects the RET. Section V
concludes.

WOA 2005 157

II. AUCTION THEORY

The typical situation where an auction is suitable to allocate
some goods can be described in this way: on one side of the
market (the offering side) a monopolist wants to sell some
goods; on the other side there are two or more potential buyers.
It is implicitly assumed that the monopolist will choose the
procedure (or mechanism) to allocate the goods, but this does
not necessarily mean that he can extract the entire surplus,
because he does not know the buyers’ true evaluation of the
goods.

There are many different auction mechanisms that can
be classified according to their features [7], [8]. The first
distinction can be made between open and sealed-bid auctions.
In the open auction mechanisms, the seller announces prices or
the bidders call out the prices themselves, thus it is possible
for each agent to observe the opponents’ moves. The most
common type of auction in this class is the ascending (or
English) auction, the well-known procedure typical of artwork
auctions, where the price is successively raised until no one
bids anymore and the last bidder wins the object at the last
price offered. Another diffused type, the descending or Dutch
auction works in exactly the opposite way: the auctioneer starts
at a high price and then lowers it continuously (notice that
this kind of auction essentially belongs to the “sealed bid”
type). The first bidder that accepts the current price wins the
object at that price. The sealed-bid auction mechanisms are
characterized by the fact that offers are only known to the
respective bidders (as the name suggest, offers are submitted
in sealed envelopes). In the first-price sealed-bid auction each
bidder independently submits a single bid without knowing
the others’ bid, and the objects is sold to the bidder who
made the best offer. First-price auction are especially used
in government contract. Another widely used and analyzed
auction in this class is the second-price sealed-bid auction,
that works exactly as the first-price one except that the winner
pays the second highest bid. This auction is sometimes called
Vickrey auction after William Vickrey, who wrote the seminal
paper on auctions [9].

An auction mechanism is said to be efficient if and only
if the offered object is always given to the buyer with the
highest valuation for it. The four basic mechanisms just
described (English, Dutch, first price sealed-bid, and second-
price sealed-bid) are all efficient (assuming that bidders are
rational and their bids are in equilibrium). Assuming that an
auction mechanism is efficient, an interesting problem is to es-
tablish which procedure can guarantee the maximum revenue
to the seller. Economic theory provided some fundamental and
surprising results on the equivalence (at equilibrium) of the
expected revenues of various auction mechanisms. Vickrey
provided the earliest conceptualization and results in [9],
which was, together with [4], a major factor in his 1996 Nobel
prize. Myerson [5] and Riley and Samuelson [6] showed that
Vickrey’s results apply very generally.

The Revenue equivalence theorem is stated in the following
way:

(Revenue equivalence theorem) Assume that
• there are N risk-neutral potential buyers (i.e.,

they are indifferent between, for example, play-
ing a lottery which gives 0 euro with probability
1/2 and 1000 euro with probability 1/2, and
gaining 500 euros for sure);

• the independent private-value model applies (i.e.
each bidder: 1) has a private evaluation of the
object, unknown to the other bidders; 2) believes
that the other bidders’ evaluation of the object
can be described by a probability distribution
that is identical for all the bidders; 3) believes
that there is statistical independence between the
individual evaluation);

• the buyers are symmetric (i.e. they cannot be
distinguished one from the other).

Then all the efficient auction mechanisms guarantee
to the seller the same expected revenue, and each
bidder makes the same expected payment as a func-
tion of his valuation.

This theorem implicitly defines a wide class of equivalence
of auction mechanisms (in terms of expected revenue) and
both the first-price and the second-price sealed auction belong
to this class. This could be surprising: in the first-price sealed
auction, the winner pays the price that he called while in the
second-price one the winner pays a price equal to the highest
bid made by the other players. The fact is that the players’
best strategy in the second-price auction is to bid their true
valuation while in the first-price auction the bidders face a
trade-off between lowering the offer (thus obtaining a better
payoff in case of success) and getting higher probability of
success (but paying more for the object). It is optimal for
a bidder in a first-price auction to bid his valuation minus
a discount: the revenue equivalence theorem states that this
discount compensates exactly (in expected value) the reduction
of payment caused by the second-price mechanism.

III. ANALYSIS AND DESIGN OF THE AUCTION
MECHANISMS

Considering that the Dutch auction mechanisms is com-
pletely equivalent under any value model to the first-price
sealed-bid auction, we have implemented the remaining three
standard mechanisms described in Section II: English, first-
price sealed-bid and second-price sealed-bid mechanism. Since
the English mechanism is the most complex (and interesting)
one among the three, in this section we concentrate on it,
by analyzing the communication protocol that governs the
interaction between auctioneer and bidders, and by describing
the design of the agents’ behavior. The details on the sealed-
bid mechanisms can be found in [10].

Each auction mechanisms require two types of agent at
least:

1) The Auctioneer agent that puts items on sales, receives
offers, distributes information on what is going on and
decides the auction winner

WOA 2005 158

2) The Bidder agents that try to buy the items on sale by
evaluating newly acquired information and sending offers

We implemented an English auction mechanism for a single
indivisible object. Our analysis of this auction led us to the
definition of the interaction protocol in Figure 1. This protocol
is described using AUML that extends UML with agent
roles, multithreaded lifelines, extended message semantics,
parameterized nested protocols, and protocol templates.

In the registration phase, p Bidder agents ask to be registered
in the Auction by sending a message with a communicative
act request, the Auctioneer can accept the request (sending
back a message of confirm to each accepted agent) or deny
the request (with a refuse communicative act).

Once the registration time is over, the Auctioneer sends an
inform message to the n registered agents specifying its
reservation price, this warns the Bidder about the minimal
acceptable offer. Then the Auctioneer sends another inform
communicative act to start the offering phase.

In the offering phase, the Bidder agents send propose
messages that contain offers: every time a Bidder x offers a
bid that is better than the highest received bid, the Auctioneer
sends an inform message back to x to notify that is winning
the object Then the Auctioneer has three possibilities:

1) to broadcast to all n participants what is the new highest
offer

2) to broadcast to all n participants that there is an extension
to the original auction span

3) to declare the end of the offering phase
All these possibilities are communicated by inform mes-
sages and each of them causes different behaviors of the
Bidder agents: the first two messages leave to the Bidders
the chance to make new offers (shown in the Figure 1 by the
loop back arrows), while the last message moves the commu-
nication protocol to the next phase, the object attribution.

The object attribution phase of an English auction mecha-
nisms with continuous bidding is simple because the evalua-
tion of the best bid is completely done in the offering phase,
so the winner agent is already determined once that phase is
finished. Thus, the Auctioneer broadcasts an inform message
with the name of the winner, then wait for a confirm
message.

The next step in our analysis was to describe the behavior
of Auctioneers and Bidders of each auction mechanism, and
we decided that Pascal pseudo-code was the right tool for
this activity. Since, for space constraints, we cannot include
the pseudo-code that we have defined for both the auctioneer
and the bidders, we only include - as an example - a portion
of the code defining the core activity of the bidder’s offering
stage. This is the activity of the Bidder after receiving the
information about the current bid from the Auctioneer. The
bidder 1) updates its value model according to it; 2) evaluates
its new offer, according to the (updated) value model; and 3)
offers a new bid, if its new offer is better than the current one.
if (receive(’inform’,’present-bid(Bid)’,auctioneer) and not

I-win)

then

Present-bid:=Bid;

update-value-model(Bid,[],Value-model);

New-bid:=eval-offer(Present-bid,Value-model,

Bidder-number,End-auction);

if(better(New-bid,Present-Bid)

then

send(’propose’,’offer(New-bid)’,auctioneer);

endif

...

IV. IMPLEMENTATION OF THE LIBRARY OF AUCTION
MECHANISMS

Each auction mechanism in our library is constituted by
the implementation of the code of the auctioneer, and the
code for the bidders. The files that contain the auctioneer
code are named ’AUCT type.pl’ while the files with the
bidders code are named ’GX type.pl’, where type refers to
the auction mechanism and X is an integer. The agents are
implemented in tuProlog in the DCaseLP environment based
on the JADE platform (http://jade.tilab.com/). The
code of the agents can be downloaded from the DCaseLP
home page (http://www.disi.unige.it/person/
MascardiV/Software/DCaseLP.html), together with
the packages that constitute DCaseLP, and the Master thesis
by D. Roggero [10] (in English) that describes the application.

The characteristics of the auctioneer that can be customized
by the user are:
Registration time. It is the duration of the registration phase
in minutes.
Acceptance of registration. The user can customize the pred-
icate that define the rules by which an agent can be accepted
as a bidder. These rules can be private of the auctioneer or
depend on an external reputation system.
Auction time. It is the duration of the offering phase in
minutes.
Alarm time. Only in the English auctions. It is the interval of
time at the end of the offering phase, during which any new
offer will trigger the extension of the auction time.
Extension time. Only in the English auctions. It is the interval
of time that the auctioneer adds to the auction time if any offer
has arrived during the alarm time.
Wait time. It is the interval of time that the auctioneer waits
for a message of confirmation from the winning bidder.
Reservation price. The reservation price is the lowest bid
accepted by the auctioneer to sell the object.
Bid comparison. The auctioneer must choose if a new bid
is better than another. The user can customize this feature to
reflect the preferences of the auctioneer over offers.
Attribution of the object. In case the auction ends with two
or more bidders owning the best offer, the auctioneer must
decide who is the real winner using a lottery whose definition
can be customized.
As far as the bidders are concerned, the characteristics of the
bidders that can be customized by the user are:

WOA 2005 159

Fig. 1. English auction mechanism with continuous bidding

Value Model. The value model of a bidder determines its
object’s monetary worth . The default value model imple-
mented in our bidders is the private one: the bidder asserts a
static value for the object. The user can customize this feature,
defining a predicate that calculates the object’s worth for the
bidder using both private and public information. Notice that
the software works independently of the assumption of private
value, so that other agents’ bids can be informative.

Strategy. The strategy of a bidder determines the value and the
time of its offers. It depends mainly on the value model and on
other bidder’s behavior, but other aspects can be considered,
like time and information from sources external to the auction.

In order to test our implementation, we ran all the mech-
anisms of our library with the same parameters to show that
they satisfy the RET discussed in Section II.

In each auction, the name of the auctioneer agent is of
the form ’auct mech’ where mech is the type of auction

mechanism while the names of the bidder agents are of the
form ’gX mech’ where X is a integer in the interval [1, 4] and
mech is the type of auction mechanism. The complete address
will be name@Vento:1099/JADE since all the agents are
deployed on a single computer called ’Vento’. In the text
output, each agent’s output can be recognized by its address
at the beginning of the line.

In the following, we only discuss the outcomes of our
experiments with the English auction; a complete account of
the implementation of the sealed-bid mechanisms can be found
in [10]. Game theory suggests that, in an English auction with
private values, the best strategy for any bidder is to remain in
the competition, making small raising, until the price reaches
his evaluation of the object, then drop out of the auction: in this
way the winner will get the object at a price just a little higher
than the second-highest private value. In our implementation,
each bidder uses this strategy (implemented in Prolog):

WOA 2005 160

eval offer(New bid) :-

object value(Value), present bid(Present bid),

Present bid < Value, New bid is Present bid + 1,!.

The bidder makes the evaluation of a new offer each time the
auctioneer inform all the participants that the present winning
price is changed. With this strategy, every bidder (except the
one who made the last winning bid) makes the same offer as
soon as they get the message: being in an English auction with
continuous bidding, the auctioneer will accept the first arrived
offer as the temporary winning bid (in fact, it bested the old
one by 1 euro1) and discard all the subsequent identical offer
made by other bidders.
The messages on lines 318, 319, 320, 321 of Figure 2 are
inform messages that contain the present temporary best
offer. As soon as they get this message, all the bidders (except
g1 who was the present winner) send propose messages
(lines 322, 323, 324) containing new identical offers calculated
with the eval offer predicate seen before. The auctioneer
gets the first offer (line 322), sees that it is better than the
last winning bid and take it as the new winning bid (at line
325): when the auctioneer examines the other offers, it finds
that they are equal to the present winning bid, so it discards
them.
In Figure 3, we can see that, at the end of the auction, agent
g4 eng c wins with an offer of 301. We can also note that
the auction time was expired before the real conclusion of the
competition and this has triggered the extension mechanism
that permits to establish the final price of the object; in fact,
at the end of the auction time the winner was agent g3 eng c
with a bid of 300.
From the theorical point of view, if an English auction has
no limits of time, the best selling price will emerge for sure,
but a more realistic approach suggests to limit the duration
of the auction, like we did. This can create consequences:
for example, if the private value of at least two bidder is
much bigger than the reservation price, the extended time
could expire before the competition is over, thus denying the
individuation of the best offer and not attributing the object to
the bidder with the highest private value. This fact is inevitable
but we realized that, in this implementation, the order in which
the bidders register to the auction influences the order in which
they bid, thus giving advantage to a bidder that registered
earlier than another: this leads to an unfair attribution of the
object. Hence, we decided to implement a round-based version
of the English auction that could change this unfair behavior.
The English auction with rounds behaves like the continuous
one, apart form the attribution stage, where a fair approach to
determine the winner is adopted (more details can be found
in [10]).

We run all four auction mechanisms implemented under
common conditions to verify the RET. Examining all the
auction run, we can notice that every one of them terminated
with agent g4 eng r as winner, thus demonstrating to be

1We assume that the granularity of the bid is 1 euro.

efficient auctions. The two sealed bid mechanisms individuated
an auctioneer’s revenue of 300, while for the two English
mechanisms the revenue was of 301: this difference is caused
by the discrete bidding strategy that our bidders use. In fact, if
the strategy in the English auctions had been to raise the last
winning price by 0.1, then the difference between the revenues
would have been not 1 but 0.1; if the strategy had been to raise
the price by 0.01, then difference would have been 0.01; and
so on. Thus, we can say that our implementation verifies the
RET.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have described the work done to develop a
library of agents for simulating auction mechanisms. We have
analyzed and implemented four different mechanisms:

• the first-price sealed-bid auction mechanism,
• the second-price sealed-bid auction mechanism,
• the open English auction mechanism with continuous

bidding,
• the open English auction mechanism with rounds.
For each auction mechanism, the interaction between auc-

tioneer and bidder has been analyzed and an Interaction
Protocol has been produced. In the design phase, the internal
behavior of each type of agent has been studied and their
customizable features have been highlighted. Each agent’s
behavior has been written down in a pseudo-Pascal listing.
Finally, each agent has been implemented with tuProlog in the
DCaseLP environment, thus achieving the goal of providing
customizable tools for simulating auction mechanisms. For
example, by modifying the reservation price of the English
auctioneer and the value model of the related bidders, it
is possible to simulate English multi-dimensional auctions.
Moreover, DCaseLP and JADE supply many tools for analyz-
ing message exchange and debugging agent behaviors, thus
helping the user in the analysis of the bidders’ strategy.

We have ran all the implemented mechanism using risk-
neutral bidders with independent private value taken from a
uniform distribution. Under these hypothesis, Game Theory
demonstrated that there exist an optimal bidder’s strategy for
each of the implemented mechanism: we programmed our
test bidders with these strategies and we verified that all the
simulated auctions gave the same revenue to the auctioneer and
the same payoff to the bidders. The fact that RET is satisfied
(up to some error clearly due to discretization) can be seen as
a check for the correctness of the implementation.

As far as the related work is concerned, today there are
many commercial and research applications for implement-
ing real electronic auctions, or simply for simulating them.
The Trading Agent Competition (http://www.sics.se/
tac/), for example, is carried out every year, in order to
promote and encourage high quality research into the trading
agent problem, while the well-know electronic commerce
portals, eBay (http://www.ebay.com/) and Amazon
(http://www.amazon.com/), demonstrate the commer-
cial applicability of the research on agent-mediated auctions.

WOA 2005 161

Fig. 2. English auction with continuous bidding: offering phase

Fig. 3. English auction with continuous bidding: shell output.

WOA 2005 162

Despite the wide range of available applications, we decided
to implement and distribute our own, in order to implement (as
part of our future work) some extensions to the basic auction
mechanism that may benefit from the reasoning capabilities
provided by our tuProlog agents. In particular, we would be
interested in:

• analyzing and implementing other less common but inter-
esting auction mechanisms, like double auctions and all-
pay auctions. The last kind of auctions is quite common,
often at a non formalised level: just considering lobbying
activities, or competition for a given (potential) boy/girl
friend...

• building a society of agents, with “advertising” agents
that contain information (like starting and ending time,
type of object on sale, type of auction mechanism) on the
auctions that are going to be held and “searcher” agents
that look for interesting auction using user’s preferences
and informs the bidder.

• implementing a reputation system, where reliable “notar-
ial” agents calculates the reputation of the subscribers
using other agents’ opinions and past behaviors and
making it public to the agent community.

REFERENCES

[1] C. Sierra, “Agent-mediated electronic commerce,” Autonomous Agents
and Multi-Agent Sytems, vol. 9, pp. 285–301, 2004.

[2] E. Astesiano, M. Martelli, V. Mascardi, and G. Reggio, “From Re-
quirement Specification to Prototype Execution: a Combination of a
Multiview Use-Case Driven Method and Agent-Oriented Techniques,”
in Proc. of SEKE’03, 2003, pp. 578–585.

[3] I. Gungui and V. Mascardi, “Integrating tuProlog into DCaseLP to engi-
neer heterogeneous agent systems,” in Proc. of CILC 2004. Available at
http://www.disi.unige.it/person/MascardiV/Download/CILC04a.pdf.gz.

[4] W. Vickrey, “Auction and bidding games,” in Recent advances in Game
Theory. Princeton University Conference, 1962, pp. 15–27.

[5] R. Myerson, “Optimal auction design,” Mathematics of Operations
Research, vol. 6, pp. 58–73, 1981.

[6] J. Riley and W. Samuelson, “Optimal auctions,” American economic
review, vol. 71, pp. 381–92, 1981.

[7] P. Klemperer, Auctions: Theory and practice. Princeton University
Press, 2004.

[8] V. Krishna, Auction Theory. Academic Press, 2002.
[9] W. Vickrey, “Counterspeculation, auctions and competitive sealed ten-

ders,” Journal of Finance, vol. 16, pp. 8–37, 1961.
[10] D. Roggero, “Aste elettroniche in ambiente multi-agente,” Master’s

thesis, DISI, University of Genoa, Italy, 2005.

WOA 2005 163

Social roles, from agents back to objects
Matteo Baldoni and Guido Boella

Dipartimento di Informatica
Università degli Studi di Torino

Email: {baldoni,guido}@di.unito.it

Leendert van der Torre
CWI Amsterdam and Delft university of Technology

Email: torre@cwi.nl

Abstract— In this paper we introduce a new view on roles
in Object Oriented programming languages. This view is based
on an ontological analysis of roles and attributes to roles the
following properties: first, a role is always associated not only
with an object instance playing the role, but also to another object
instance which constitutes the context of the role and which we
call institution. Second, the definition of a role depends on the
definition of the institution which constitutes its context. Third,
this second property allows to endow players of roles with powers
to modify the state of the institution and of the other roles of the
same institution. As an example of this model of roles in Object
Oriented programming languages, we introduce a role construct
in Java. We interpret these three features of roles in Java as the
fact that, first, roles are implemented as classes which can be
instantiated only in presence of an instance of the player of the
role and of an instance of the class representing the institution.
Second, the definition of a class implementing a role is included in
the class definition of the institution the role belongs to. Thirdly,
powers are methods of roles which can access private fields and
methods of the institution they belong to and of the other roles
of the same institution.

I. INTRODUCTION

The concept of role is used quite ubiquitously in Com-
puter Science: from databases to multiagent systems, from
conceptual modelling to programming languages. According
to Steimann [18], the reason is that even if the duality
of objects and relationships is deeply embedded in human
thinking, yet there is evidence that the two are naturally
complemented by a third, equality fundamental notion: that of
roles. Although definitions of the role concept abound in the
literature, Steimann maintans that only few are truly original,
and that even fewer acknowledge the intrinsic role of roles
as intermediaries between relationships and the objects that
engage in them. There are three main views of role:

• Names for association ends, like in UML or in Entity-
Relationship diagrams.

• Dynamic specialization, like in the Fibonacci [2] pro-
gramming language.

• Adjunct instances, like in the DOOR programming lan-
guage [22].

The two last views are more relevant for modelling roles in
programming languages. Both of them have pros and cons. For
example, dynamic specialization captures the dynamic relation
between a class and a role which can be played by it (e.g.,
a person can become a student), but it less easily models the
intuition that roles can have their own state (e.g., an employee
has a different phone number than the person playing that

role). In contrast, roles as adjunct instances can obviously
have their own state, but they may pose problems when role
instances are detached from the object which plays the role.

There is a wide literature on the introduction of the notion of
role in programming languages. However, most works, starting
from Bachman and Daya [3]’s revision of database models,
extend programming languages with roles starting from prac-
tical considerations. In contrast, the research question of this
paper is the following: How to introduce in an Object Oriented
programming language a notion of role which is ontologically
well founded? We refer to the ontological analysis of the
notion of role made in [7], [5], [6]. According to that proposal,
roles have the following properties:

• Roles are always associated both to an object instance
playing the role, and to another object instance which
constitutes the context of the role and which we call the
institution.

• The definition of a role depends on the definition of the
institution which constitutes its context.

• This second property allows to endow players of roles
with powers to modify the state of the institution and of
the other roles of the same institution.

For example, the role student has a person as its player
and it is always a student of a school, a president is always
the president of an organization, a customer can be played by
a person or an organization, and it is always a customer of
an enterprise. In contrast, almost all current approaches focus
only on the relation between the role and its player.

The methodology we follow is to introduce a new pro-
gramming construct in a real programming language, Java,
one of the most used Object Oriented languages and one of
the most principled. To prove its feasibility, we translate the
new language, called powerJava, to pure Java by means of a
precompilation phase.

The role construct we introduce in Java promotes the sepa-
ration of concerns between the core behavior of an object and
its context dependent behavior. In particular, the interaction
among a player object, the institution and the other roles is
encapsulated inside the role the object plays.

In Section II we summarize the ontological definition of
roles while, in Section III, we introduce roles Java with
powerJava. Related work and conclusion end the paper.

WOA 2005 164

II. FOUNDATION, DEFINITIONAL DEPENDENCE, AND

POWERS

The distinguishing features of roles in [7], [5], [6] are their
foundation, their definitional dependence from the institution
they belong to, and the powers attributed to the role by the
institution. Consider the roles student and teacher. A student
and a teacher are always a student and a teacher of some
school. Without the school the roles do not exist anymore:
e.g., if the school goes bankrupt, the actors (e.g. a person)
of the roles cannot be called teachers and students anymore.
The institution (the school) also specifies the properties of the
student, which extend the properties of the person playing the
role of student: the school specifies its enrollment number, its
email address, its scores at past examinations, and also how
the student can behave. For example, the student can give
an exam by submitting some written examination. A student
can make the teacher evaluate its examination and register the
mark because the school defines both the student role and
the teacher’s role: the school specifies how an examination
is evaluated by a teacher, and maintains the official records
of the examinations. Otherwise the student could not have
an effect on the teacher. But in defining such actions the
school empowers the person who is playing the role of student:
without being a student the person has no possibility to give
an examination and make the teacher evaluate it.

This example highlights the following properties that roles
have in our model [7], [5], [6]:

• Foundation: a (instance of) role must always be associ-
ated with an instance of the institution it belongs to (see
Guarino and Welty [10]), besides being associated with
an instance of its player.

• Definitional dependence: The definition of the role must
be given inside the definition of the institution it belongs
to. This is a stronger version of the definitional depen-
dence notion proposed by Masolo et al. [14], where the
definition of a role must use the concept of the institution.

• Institutional empowerment: the actions defined for the
role in the definition of the institution have access to the
state and actions of the institution and of the other roles:
they are powers.

Moreover, as Guarino and Welty [10] notice, contrary to
natural classes like person, roles lack rigidity: a player can
enter and leave a role without losing its identity; a person can
stop being a student but not being a person. Finally, Steimann
[19]’s highlights that a role can be played by different kinds
of actors. For example, the role of customer can be played by
instances both of person and of organization, i.e., two classes
which do not have a common superclass. The role must specify
how to deal with the different properties of the possible actors.
This requirement is in line with UML, which relates roles and
interfaces as partial descriptions of behavior.

This last property compels to avoid modelling roles as
dynamic specializations as, e.g., [2], [9] do. If customer were a
subclass of person, it could not be at the same time a subclass
of organization, since person and organization are disjoint

classes. Symmetrically, person and organization cannot be
subclass of customer, since a person can be a person without
ever becoming a customer.

III. INTRODUCING ROLES IN JAVA: POWERJAVA

Roles are useful in programming languages for several
reasons, from dealing with the separation of concerns between
the core behavior of an object and its interaction possibilities,
to reflecting the ontological structure of domains where roles
are present, from modelling dynamic changes of behavior in
a class to fostering coordination among components.

In our proposal, we model roles as instances of role classes,
which can be associated at runtime with objects which can play
a role. However, roles are special kind of objects, and instances
of role classes do not exist on their own, but they always
require to be associated with an object instance of its player
and an object instance of the related institution. The relations
of a role with these two instances are different. Concerning
the former relation, the player of the role is an object whose
properties and behavior are extended when it is seen under the
perspective of the role. Moreover , the role does not affect the
core behavior. In contrast, concerning the latter relation, the
object instance which represents the institution which the role
belongs to gives the role powers: the role is enabled to access
the institution’s own state and the state of the other roles via
its methods; thus, role’s behavior can effect the institution’s
behavior. Accessing the institution’s state is possible only if
the classes defining it and its roles are connected. This is what
it is called definitional dependence and it requires that the role
class belongs to the namespace of the institution class.

Analogously to classes and interfaces in OO, we distinguish
the role implementation in an institution from the role defini-
tion (both powers and requirements). A role implementation
should implements the role powers definition while a player
should implements a role requirements definition.

Finally, the constraint of foundation requires that the cre-
ation of a role instance involves both an institution instance
and an object instance. A power can be invoked from a role
only by specifying the role which the player had to play. Note
that an object can play not only several roles, but also the same
role in different institutions at the same time. Hence, the role
under which a player is seen must be specified using not only
the role but also the institution instance.

In this paper we extend Java with these desired features
of roles in OO programming languages. In summary, in our
proposal, first a role is defined specifying what is requested
to play a role and what is offered by a role by an abstract
definition similar to a Java interface. Second, since Java inner
classes allow a class to belong to the namespace of another
class, we use them to give powers to roles in institutions.
Moreover, implementing a role definition as an inner class
of an outer class defining an institution parallels exactly
the definitional dependence. Third, the association of a role
instance with an institution instance can be dealt with the
implicit reference in Java of an inner class from its outer class.
So we are left only to deal explicitly with the association of a

WOA 2005 165

interface StudentReq //Student’s requirements
{ String getName();

int getSocialSecNumber(); }

role Student playedby StudentReq // Student’s powers
{ String getName();

void takeExam(int examCode, HomeWork hwk);
int getMark(int examCode); }

interface TeacherReq // Teacher’s requirements
{ String getName();

int getSocialSecNumber();
int getQualificationNumber();
int read(HomeWork hwk); }

role Teacher playedby TeacherReq // Teacher’s powers
{ String getName();

int evalHomeWork(HomeWork hwk); }

Fig. 1. Definition of roles and their requirements.

role instance with a player instance, to complete foundation.
Finally, seeing an object under a role is paralleled with type
casting in Java.

A. The definition of roles

The definition of a role has to specify both what is required
to play the role and which powers the player have in the
institution the role will be implemented. In order to make role
systems reusable, it is necessary that a role is not played by a
class only. For Steimann and Mayer [20], roles define a certain
behavior or protocol demanded in a context independently
of how or by whom this behavior is to be delivered (and,
we add, roles also empowers the player in the context).
Thus, roles must be specified independently of the particular
classes playing the role, so that the objects which can play
the role might be of different classes and can be developed
independently of the implementation of the role. This is a
form of polymorphism. In order to achieve such polymorphism
we associate with a role descriptions of classes listing the
signatures of the methods which are requested to and object
in order to play a role. We, thus, have that a role definition
must express, first, the methods required to objects playing
the role: requirements. For the instances of a class to play a
role, the class must offer some methods. These are specified
by the role as an interface. Second, the methods offered to
objects playing the role: powers. If an object of a class offering
the requirements, plays the role, it is empowered with these
new methods. The definition of a role using the keyword
role is similar to the definition of an interface; it is the
specification of the powers acquired by the role in the form of
abstract methods signatures. The only difference is that the role
definition by means of the keyword playedby refers also to
another interface, that in turn specifies the requirements which
an object playing the role must satisfy.

In Figure 1, the definitions of the roles Student and
Teacher are introduced. The roles specify, like an interface,
the signatures of the methods that correspond to the powers
that are assigned to the objects playing the role. For example,
returning the name of the Student (getName), submitting

an homework as an examination (takeExam), and so forth.
Moreover, we couple a role definition with the specification
of its requirements by the keyword playedby. This specifi-
cation is given by means of the name of a Java interface, e.g.,
StudentReq, imposing the presence of methods getName
and getSocialSecNum (his social security number).

B. Institutions and definitional dependence

In [7], [5], [6] roles are always associated with an instance
of, and are definitionally dependent on, an institution. Roles
add powers to objects playing the roles. Power means the
possibility to modify also the state of the institution which
defines the role and the state of the other roles defined in
the same institution. In our running example, we have that
the method for taking an exam in the school must be able
to modify the private state of the school. For example, if
the exam is successful, the grade should be added to the
registry of exams in the school by the teacher. Analogously, the
student’s method for taking an exam can invoke the teacher’s
method of evaluating an examination. Powers, thus, seems to
violate the standard encapsulation principle, where the private
variables are visible to the class they belong to only. However,
here, the encapsulation principle is preserved: all roles of an
institution depend on the definition of the institution; so it
is the institution itself which gives to the roles access to its
private fields and methods. Since it is the institution itself
which defines its roles, there is no risk of abuse by part of
the role of its access possibilities. Enabling a class to belong
to the namespace of another class without requiring it to be
defined as friend is achieved in Java by means of the inner
class construct. Thus, we extend the notion of inner class
to allow roles to be implemented inside an institution (the
outer class). The inner class construct is extended with the
keyword realizes which specifies the name of the role
definition the inner class is implementing. An institution is
simply a class with an inner class realizing roles in the very
same way as a class implements an interface. In Figure 2,
StudentImpl (TeacherImpl) realizes the role definition
Student (Teacher), inside the institution School. Note
that, a role (implementation) could itself be an institution with
its own role implementations, it could enact other roles and,
analogously, an institution could play a role. Moreover, roles
can be implemented in different ways in the same institution.

Since the behavior of a role instance depends on the player
of the role, in the method implementation, the player instance
can be retrieved via a new reserved keyword: that. So this
keyword refers to that object which is playing the role at
issue, and it is used only in the role implementation. The
value of that is initialized when the constructor of the role
implementation is invoked. The referred object has the type
defined by the role requirements or a subtype. We do not need
a special expression for creating instances of the inner classes
implementing roles, because we use the Java inner classes
syntax: starting from an institution instance (or from a class
name in case of static inner classes), the keyword new allows
the creation of an instance of the role as an instance of the

WOA 2005 166

class School {
private int[][] marks;
private Teacher[] teachers;
private String schoolName;
public School (String schoolName) {
this.schoolName = schoolName;
...

}

class StudentImpl realizes Student {
private int studentID;
public int getStudentID() {

return studentID;
}
public void takeExam(int examCode; HomeWork hwk) {

marks[studentID][examCode] =
teachers[examCode].evalHomeWork(hwk);

}
public String getName() {

return that.getName() +
", student at " + schoolName;

}
}

class TeacherImpl realizes Teacher {
private int teacherID;
public int getTeacherID() { return teacherID; }
public int evalHomeWork(HomeWork hwk) { ...

mark = that.read(hwk); ...
return mark;

}
public String getName() {

return that.getName() + ", teacher at "
+ schoolName;

}
}

}

class Person implements StudentReq {
private String name;
private int socialSecNumber;
public Person(String name, int socialSecNumber) {
this.name = name;
this.socialSecNumber = socialSecNumber; }

public String getName() { return name; }
public int getSocialSecNumber() {

return socialSecNumber;
}

}

class QualifiedPerson extends Person
implements TeacherReq {

private int qualificationNumber;
public QualifiedPerson(String name,

int socialSecNumber,
int qualificationNumber) {
super(name, socialSecNumber);
this.qualificationNumber = qualificationNumber;

}
public int getQualificationNumber() {
return qualificationNumber;

}
public int read(HomeWork hwk) { ... }

}

Fig. 2. Definition of an institution and its role implementations.

class TestRole {
public static void main(String[] args) {

Person chris = new Person("Christine", 1234);
Person george =

new QualifiedPerson("George", 5678, 9876);
School harvard = new School("Harvard");
School mit = new School("MIT");
harvard.new StudentImpl(chris);
harvard.new TeacherImpl(george);
mit.new TeacherImpl(george);
String x =

((harvard.StudentImpl) chris).getName();
String y =

((harvard.TeacherImpl) george).getName();
String z =

((Teacher)(mit.TeacherImpl) george).getName();
((harvard.StudentImpl) chris).takeExam(...,...);

}
}

Fig. 3. Using roles.

inner class, e.g., harvard.new StudentImpl(chris)
in Figure 3. Note that, all the constructors of role implementa-
tions have at least a (implicit) parameter which must be bound
to the player of the role and become the value of that.

In order for an object to play a role it is sufficient that it
conforms to the role requirements. Since the role requirements
are a Java interface, it is sufficient that the class of the object
implements the methods of such an interface. In Figure 2,
the class Person can play the role Student, because it
conforms to the interface StudentReq by implementing it.

C. Exercising the powers of a role

A role represents a perspective on an object. An object
has different (or additional) properties when it is seen in the
perspective of a certain role, and it can perform new activities,
which we call powers, as specified by the role definition.
In Steimann [18]’s terminology, a role is a type specifying
behavior.

When an object is seen under the perspective of a role,
we want that the object has a specific state for it. This state
is different from the player’s one, it is specific to each role
in each institution, and it can evolve with time by invoking
methods on the roles (or on other roles of the same institution
as we have seen in the running example). This state is given by
a role instance which is associated with the player. Since a role
represents the perspective on an object, the object playing the
role should be able to invoke the role’s methods without any
explicit reference to the instance of the role. In this way the
association between the object instance and the role instance is
transparent to the programmer. The object should only specify
in which role it is invoking the method. For example, if a
person is a student and a student can be asked to return its
enrollment number, we want to be able to invoke the method
on the person as a student without referring to the student role
instance.

The same methods will have a different behavior according
to the role which the object plays when they are invoked.
On the other hand, methods of a role can exhibit different

WOA 2005 167

behaviors according to whom is playing it. So a method of
student returning the name of the student together with the
name of the school returns different values for the name
according to whom is playing the role of student. This is
possible since the implementation of methods representing
powers uses the methods required by the role to its player
in order to play the role. These required methods obviously
can access the state of the player since they are part of the
implementation of the player.

Roles are always roles in an institution. Hence, an object
can play at the same moment the same role more than once,
albeit in different institutions. Instead, we do not consider the
case of an object playing the same role more than once in
the same institution. An object can play several roles in the
same institution. In order to specify the role under which an
object is referred, we evocatively use the same terminology
used for casting by Java: we say that there is a casting from
the object to the role. However, to refer to an object in a certain
role, both the object and the institution where it plays the role
must be specified. We call this methodology role casting. Type
casting in Java allows to see the same object under different
perspectives while maintaining the same structure and state.
In contrast, role casting views an object as having a different
state and different behaviors when playing different roles. So,
the last syntactic change in powerJava is the introduction of
role casting expressions extending the original Java syntax
for casting. A role cast specifies both the role and the in-
stance of the institution the role belongs to. For example, in
(harvard.TeacherImpl) george, in Figure 3, the per-
son george is casted to its role harvard.TeacherImpl
of type School.TeacherImpl. It is important to ob-
serve that role casting is done to the inner class im-
plementing the role but the role instance can always be
type casted to the role as well as it can be done with
Java interfaces: ((Teacher)(harvard.TeacherImpl)
george).getName(). While in the previous case it was
possible to use all the methods of the specific implementation,
in this case, only the methods that are specified in the role
definition can be applied.

IV. TRANSLATING ROLES IN JAVA

In this section we provide a translation of the role construct
into Java. This is done by means of a precompilation phase, as,
e.g., Guillen-Scholten et al. [11] propose for introducing com-
ponents and channels in Java, or in the way inner classes are
implemented in Java. The precompiler has been implemented
by means of the tool javaCC, provided by Sun Microsystems
[1]. The translation of the example is shown in Figures 4–7.

The role definition is simply an interface (see Figure 4) to be
implemented by the inner class defining the role. So the role
powers and its requirements form a pair of interfaces used
to match the player of the role and the institution the role
belongs to. The relation between the role interface and the
requirement interface is used in the constructor of an inner
class implementing a role. The requirement interface is used

interface Student {
String getName();
void takeExam(int examCode, HomeWork hwk);
int getMark(int examCode);

}

interface Teacher {
String getName();
int evalHomeWork(HomeWork hwk);

}

Fig. 4. Translation of role definitions.

class School {
private int[][] marks;
private String schoolName;

class StudentImpl implements Student {
StudentReq that; // Added by the precompiler
public StudentImpl (StudentReq that) {

this.that = that; // Added the by precompiler
((ObjectWithRoles)this.that).

setRole(this, School.this);
}
// role’s fields and methods ...

}
class TeacherImpl implements Teacher {

TeacherReq that; // Added by the precompiler
public TeacherImpl (TeacherReq that) {

this.that = that; // Added by the precompiler
((ObjectWithRoles)this.that).

setRole(this, School.this);
}

} // role’s fields and methods ...
} // institution’s fields and methods ...

Fig. 5. Translation of an institution.

to constrain the creation of role instances relatively to players
that conform to the requirements.

When an inner class implements a role (see Figure 5), the
role specified by the realizes keyword is simply added to
the interfaces implemented by the inner class. The correspon-
dence between the player and the role object, represented by
the construct that, is precompiled in a field called that
of the inner class. If the inner class implements the role
Student the variable is of type StudentReq. This field is
automatically initialized by means of the constructors which
are extended by the precompiler by adding a first parameter
to pass the suitable value. The constructor adds to its player
that also a reference to the role instance (by means of
setRole method). The remaining link between the instance
of the inner class and the outer class defining it is provided
automatically by the language Java (School.this in our
running example).

To play a role an object must be enriched by some methods
and fields to maintain the correspondence with the different
role instances it plays in the different institutions (see Fig-
ure 6). Since every object can play a role, it is worth noticing
that the ideal solution would be that the Object class offered
directly these features.

Every object can play many roles simultaneously. This is
obtained by adding, at precompilation time, to every class a

WOA 2005 168

interface ObjectWithRoles {
public void setRole(Object pwr, Object inst);
public Object getRole(Object inst, String pwr);

}

class Person implements StudentReq,
TeacherReq, ObjectWithRoles {
/** Added by the precompiler: BEGIN */
private java.util.Hashtable roleslist =
new java.util.Hashtable();

public void setRole(Object pwr, Object inst) {
roleslist.put(inst.hashCode() +

pwr.getClass().getName(), pwr);
}
public Object getRole(Object inst, String pwr) {
return roleslist.get(inst.hashCode() +

inst.getClass().getName() + "$" + pwr);
}
/** Added by the precompiler: END */
private String name;
private int socialSecNumber;

public String getName() {
return name;

}
public int getSocialSecNumber() {
return socialSecNumber;

}
}

Fig. 6. Translation of players.

structure for book-keeping its role instances. This structure can
be accessed by the methods whose signature is specified by
the ObjectWithRole interface. The two methods that are
introduced by the precompiler are setRole and getRole
which respectively adds a role to an object specifying where
the role is played and returns the role played in the institution
passed as parameter. Further methods can be added for using
single institutions, leaving a role, transferring it, etc.

We present one possible implementation of these meth-
ods which is supported by a private hashtable rolelist.
As key in the hashtable we use the institution instance
address and the name of the inner class. Role casting
is precompiled using the getRole method. The expres-
sion referring to an object in its role (a Person as a
Teacher, e.g., (harvard.TeacherImpl) george) is
translated into the selector returning the reference to the
inner class instance, representing the desired role with re-
spect to the specified institution. The translation will be
george.getRole(harvard, "TeacherImpl") (see
Figure 7). The string "TeacherImpl", that is the name of
the inner class that implements the role inside the institution
School, is provided because in our solution it is used as a
part of the index and, therefore, it is necessary in order to
retrieve the proper definition of the role.

Note that, the interfaces that implement the requirements of
a role extend the interface ObjectWithRoles (see Figure 6.
This interface requires that the players implement the methods
for book-keeping their roles. Observe that if the Java Object
class supplied these features, this extension would not be
necessary.

Person chris = new Person("Christine");
Person george = new Person("George");
School harvard = new School("Harvard");
School mit = new School("MIT");
harvard.new StudentImpl(chris);
harvard.new TeacherImpl(george);
mit.new TeacherImpl(george);
String x = ((School.StudentImpl) chris.

getRole(harvard, "StudentImpl")).getName());
String y = ((School.TeacherImpl) george.

getRole(harvard, "TeacherImpl")).getName());
String z = ((Teacher)(School.TeacherImpl) george.

getRole(mit, "TeacherImpl")).getName());
...
((School.StudentImpl) chris.

getRole(harvard, "StudentImpl")).takeExam(...,...);

Fig. 7. Translation of the use of roles.

V. CONCLUSIONS AND RELATED WORK

In this paper we introduce a new view on roles in OO
programming languages based on an ontological analysis of
the notion of role. We introduce this model of roles in an
extention of Java, called powerJava. Many works on the
introduction of roles in programming languages [2], [9], [8],
[16] consider roles as dynamic specializations of classes, e.g.,
a customer is seen as a specialization of the class person. This
methodology does not capture the fact that a role like customer
can be played both by a person and by an organization (that is
not a person). Roles as specializations prevent realizing that
a role is always associated not only with a player, but also
to an institution, which defines it. This intuition sometimes
emerges also in these frameworks: in [16] the authors say “a
role is visible only within the scope of the specific application
that created it”, but context are not first class citizens like
institutions are in our model.

Some other works adopt a closer methodology: roles are
seen as instances which are associated with objects. Wong
et al. [22] introduce a parallel role class hierarchy connected
by a “played-by” relationship to the object class hierarchy.
However, they fail to capture the intuition that a role depends
on the context defining it. Moreover, the method lookup as
delegation they adopt has a troublesome implication: when
a method is invoked on some object in one of its roles, the
meaning of the method can change depending on all the other
roles played by the object. This is not a desired feature in a
language like Java.

In [13] it is recognized that a role depends on its player
and that the properties of the role are present only due to the
perspective the role is seen from. However, they consider roles
as a form of specialization, albeit one distinguishing the role
as an instance related to but separated from its player. As a
consequence, the properties of the role include the properties
inherited from its player. This idea conflits with our position,
which we adopt from Steimann [21], of roles as interfaces:
roles are partial descriptions of behavior, they shadow the other
properties of their players, rather than inheriting them.

Our approach share the idea of gathering roles inside wider

WOA 2005 169

entities with languages like Object Teams [12] and Caesar
[15]. However, these languages emerge as refinements of
aspect oriented languages aiming at resolving some of their
practical limitations. Aspects fit our conceptual model as well:
e.g., when the execution of methods gives raise, by advice
weaving, to the execution of a method of a role, in our model
this means that the actions of an object playing a role “count
as” actions executed by the role itself. Finally, our notion of
role, as a double-sided interface, bears some similarities with
Traits [17] and Mixins. However, they are different as, with a
few exceptions, e.g., [4], they are not used to extend instances,
like roles do, but classes.

REFERENCES

[1] “Java compiler compiler [tm] (javaCC [tm]) - the java parser generator,”
Sun Microsystems, https://javacc.dev.java.net/.

[2] A. Albano, R. Bergamini, G. Ghelli, and R. Orsini, “An object data
model with roles,” in Procs. of VLDB’93, 1993, pp. 39–51.

[3] C. Bachman and M. Daya, “The role concept in data models,” in Procs.
of VLDB’77, 1977, pp. 464–476.

[4] L. Bettini, V. Bono, and S. Likavec, “A core calculus of mixin-based
incomplete objects,” in Procs. of FOOL Workshop, 2004, pp. 29–41.

[5] G. Boella and L. van der Torre, “An agent oriented ontology of social
reality,” in Procs. of FOIS’04. Torino: IOS Press, 2004, pp. 199–209.

[6] ——, “Attributing mental attitudes to roles: The agent metaphor applied
to organizational design,” in Procs. of ICEC’04. IEEE Press, 2004.

[7] ——, “Regulative and constitutive norms in normative multiagent sys-
tems,” in Procs. of KR’04. AAAI Press, 2004, pp. 255–265.

[8] M. Dahchour, A. Pirotte, and E. Zimanyi, “A generic role model
for dynamic objects,” in Procs. of CAiSE’02, ser. LNCS, vol. 2348.
Springer, 2002, pp. 643–658.

[9] G. Gottlob, M. Schrefl, and B. Rock, “Extending object-oriented systems
with roles,” ACM Transactions on Information Systems, vol. 14(3), pp.
268 – 296, 1996.

[10] N. Guarino and C. Welty, “Evaluating ontological decisions with onto-
clean,” Communications of ACM, vol. 45(2), pp. 61–65, 2002.

[11] J. Guillen-Scholten, F. Arbab, F. de Boer, and M. Bonsangue, “A channel
based coordination model for components,” ENTCS, vol. 68(3), 2003.

[12] S. Herrmann, “Object teams: Improving modularity for crosscutting
collaborations,” in Procs. of Net.ObjectDays, 2002.

[13] B. Kristensen and K. Osterbye, “Roles: Conceptual abstraction theory
and practical language issues,” Theory and Practice of Object Systems,
vol. 2(3), pp. 143–160, 1996.

[14] C. Masolo, L. Vieu, E. Bottazzi, C. Catenacci, R. Ferrario, A. Gangemi,
and N. Guarino, “Social roles and their descriptions,” in Procs. of KR’04.
AAAI Press, 2004, pp. 267–277.

[15] M. Mezini and K. Ostermann, “Conquering aspects with caesar,” in
Procs. of the 2nd International Conference on Aspect-Oriented Software
Development (AOSD). ACM Press, 2004, pp. 90–100.

[16] M. Papazoglou and B. Kramer, “A database model for object dynamics,”
The VLDB Journal, vol. 6(2), pp. 73–96, 1997.

[17] N. Scharli, S. Ducasse, O. Nierstrasz, and A. Black, “Traits: Composable
units of behavior,” in LNCS, vol. 2743: Procs. of ECOOP’03, S. Verlag,
Ed., Berlin, 2003, pp. 248–274.

[18] F. Steimann, “On the representation of roles in object-oriented and
conceptual modelling,” Data and Knowledge Engineering, vol. 35, pp.
83–848, 2000.

[19] ——, “A radical revision of UML’s role concept,” in Procs. of
UML2000, 2000, pp. 194–209.

[20] F. Steimann and P. Mayer, “Patterns of interface-based programming,”
Journal of Object Technology, 2005.

[21] F. Steimann, W. Siberski, and T. Kühne, “Towards the systematic use
of interface in java programming,” in Proc. of 2nd Int. Conf. on the
Principle and Practice of Programming in Java, 2003, pp. 13–17.

[22] R. Wong, H. Chau, and F. Lochovsky, “A data model and semantics
of objects with dynamic roles,” in Procs. of IEEE Data Engineering
Conference, 1997, pp. 402–411.

WOA 2005 170

A temporal approach to the specification and
verification of Interaction Protocols

L. Giordano ∗, A. Martelli†, P. Terenziani∗, A. Bottrighi∗ and S. Montani∗
∗ Dipartimento di Informatica, Università del Piemonte Orientale, Alessandria, Italy

† Dipartimento di Informatica, Università di Torino, Torino, Italy

Abstract— The paper presents a proposal for the specification
and verification of systems of communicating agents in a tem-
poral logic. The proposal is based on a social approach to agent
communication, where communication is described in terms of
changes to the social state, and interaction protocols are defined
by a set of temporal constraints, which specify the effects and
preconditions of the communicative actions on the social state.
The paper addresses the problem of combining protocols to define
new more specialized protocols and exploits this idea in the
specification of clinical guidelines.

I. INTRODUCTION

Agent technology has been rapidly developing in the last
decade to answer the needs for new conceptual tools for
modelling and developing complex software systems and it
has given rise to a large amount of literature [6]. Autonomous
agents can communicate, cooperate and negotiate using com-
monly agreed communication languages (ACLs) and proto-
cols. The issue of interoperability has lead to the development
of standardized agent communication languages, including
KQML [21] and FIPA-ACL [4]. One of the central issues in the
field concerns the specification of conversation policies, which
govern the communication between software agents in an
agent communication language (ACL). Conversation policies
(or interaction protocols) define stereotypical interactions in
which ACL messages are used to achieve communicative
goals.

The specification of interaction protocols has been tradi-
tionally done by making use of finite state machines, but the
transition net approach has been soon recognized to be too
rigid to allow for the flexibility needed in agent communi-
cation [24], [16]. For these reasons, several proposals have
been put forward to address the problem of specifying (and
verifying) agent protocols in a flexible way. One of the most
promising approaches to agent communication, first proposed
by Singh [28], is the social approach [1], [8], [18], [24]. In
the social approach, communicative actions affect the “social
state” of the system, rather than the internal (mental) states
of the agents. The social state records social facts, like the
permissions and the commitments of the agents.

In this paper we present a temporal approach to the specifi-
cation and verification of interaction protocols among agents.
Temporal logics are extensively used in the area of reasoning
about actions and planning [2], [14], [11], [26], [3], and, in
particular, they have been used in the specification and in the
verification of systems of communicating agents. In [34], [22]

agents are written in MABLE, an imperative programming lan-
guage, and the formal claims about the system are expressed
using a quantified linear time temporal BDI logic and can
be automatically verified by making use of the SPIN model
checker. Guerin in [17] defines an agent communication frame-
work which gives agent communication a grounded declarative
semantics. In such a framework, temporal logic is used for
formalizing temporal properties of the system. Our theory
for reasoning about communicative actions is based on the
Dynamic Linear Time Temporal Logic (DLTL) [19], which
extends LTL by strengthening the until operator by indexing
it with the regular programs of dynamic logic. As a difference
with [34] we adopt a social approach to agent communication.
The dynamics of the system emerges from the interactions of
the agents, which must respect permissions and commitments
(if they are compliant with the protocol). The social approach
allows a high level specification of the protocol, and it is well
suited for dealing with “open” multi-agent systems, where the
history of communications is observable, but the internal states
of the single agents may not be observable.

The paper provides an overview of the approach developed
in [12], [13], and describes the different kinds of verification
problems which can be addressed, which can be formalized
either as validity or as satisfiability problems in DLTL. These
verification tasks can be automated by making use of Büchi
automata. In particular, we can make use of the tableau-based
algorithm presented in [10] for constructing a Büchi automaton
from a DLTL formula. The construction of the automata can
be done on-the-fly, while checking for the emptiness of the
language accepted by the automaton. As for LTL, the number
of states of the automata is, in the worst case, exponential in
the size of the input formula. We discuss the applicability of
this approach to the specification of clinical guidelines.

II. DYNAMIC LINEAR TIME TEMPORAL LOGIC

In this section we shortly define the syntax and semantics
of DLTL as introduced in [19]. In such a linear time temporal
logic the next state modality is indexed by actions. Moreover,
(and this is the extension to LTL) the until operator is indexed
by programs in Propositional Dynamic Logic (PDL).

Let Σ be a finite non-empty alphabet. The members of Σ are
actions. Let Σ∗ and Σω be the set of finite and infinite words
on Σ, where ω = {0, 1, 2, . . .} and let ε denote the empty
word. Let Σ∞ =Σ∗ ∪Σω. We denote by σ, σ′ the words over
Σω and by τ, τ ′ the words over Σ∗. Moreover, we denote by

WOA 2005 171

≤ the usual prefix ordering over Σ∗ and, for u ∈ Σ∞, we
denote by prf(u) the set of finite prefixes of u.

We define the set of programs (regular expressions) Prg(Σ)
generated by Σ as follows:

Prg(Σ) ::= a | π1 + π2 | π1;π2 | π∗

where a ∈ Σ and π1, π2, π range over Prg(Σ). A set of finite
words is associated with each program by the mapping [[]] :
Prg(Σ) → 2Σ∗ , which is defined as usual.

Let P = {p1, p2, . . .} be a countable set of atomic proposi-
tions. The set of formulas of DLTL(Σ) is defined as follows:

DLTL(Σ) ::= p | ¬α | α ∨ β | αUπβ

where p ∈ P and α, β range over DLTL(Σ) and π ranges over
Prg(Σ).

A model of DLTL(Σ) is a pair M = (σ, V) where σ ∈ Σω

and V : prf(σ) → 2P is a valuation function. Given a model
M = (σ, V), a finite word τ ∈ prf(σ) and a formula α, the
satisfiability of a formula α at τ in M , written M, τ |= α, is
defined as follows:
• M, τ |= p iff p ∈ V (τ);
• M, τ |= ¬α iff M, τ 6|= α;
• M, τ |= α ∨ β iff M, τ |= α or M, τ |= β;
• M, τ |= αUπβ iff there exists τ ′ ∈ [[π]] such that ττ ′ ∈

prf(σ) and M, ττ ′ |= β. Moreover, for every τ ′′ such
that ε ≤ τ ′′ < τ ′1, M, ττ ′′ |= α.

A formula α is satisfiable iff there is a model M = (σ, V)
and a finite word τ ∈ prf(σ) such that M, τ |= α.

The formula αUπβ is true at τ if “α until β” is true on a
finite stretch of behavior which is in the linear time behavior
of the program π.

The derived modalities 〈π〉 and [π] can be defined as
follows: 〈π〉α ≡ >Uπα and [π]α ≡ ¬〈π〉¬α.

Furthermore, if we let Σ = {a1, . . . , an}, the U , © (next),
3 and 2 operators of LTL can be defined as follows: ©α ≡∨

a∈Σ〈a〉α, αUβ ≡ αUΣ∗β, 3α ≡ >Uα, 2α ≡ ¬3¬α,
where, in UΣ∗ , Σ is taken to be a shorthand for the program
a1 + . . . + an. Hence both LTL(Σ) and PDL are fragments
of DLTL(Σ). As shown in [19], DLTL(Σ) is strictly more
expressive than LTL(Σ). In fact, DLTL has the full expressive
power of the monadic second order theory of ω-sequences.

III. PROTOCOL SPECIFICATION

In the social approach an interaction protocol is specified by
describing the effects of communicative actions on the social
state, and by specifying the permissions and the commitments
that arise as a result of the current conversation state.

Let us shortly recall the action theory developed in [11] that
we use for the specification of interaction protocols.

Let P be a set of atomic propositions, the fluents. A fluent
literal l is a fluent name f or its negation ¬f . Given a fluent
literal l, such that l = f or l = ¬f , we define |l| = f . We
will denote by Lit the set of all fluent literals.

1We define τ ≤ τ ′ iff ∃τ ′′ such that ττ ′′ = τ ′. Moreover, τ < τ ′ iff
τ ≤ τ ′ and τ 6= τ ′.

A domain description D is defined as a tuple (Π, C), where
Π is a set of action laws and causal laws, and C is a set of
constraints.

Action laws in Π have the form: 2(α → [a]β), with a ∈ Σ
and α, β arbitrary formulas, meaning that executing action a
in a state where precondition α holds causes the effect β to
hold.

Causal laws in Π have the form: 2((α ∧ ©β) → ©γ),
meaning that if α holds in a state and β holds in the next state,
then γ also holds in the next state. Such laws are intended to
expresses “causal” dependencies among fluents.

Constraints in C are arbitrary temporal formulas of DLTL.
In particular, the set of constraints includes precondition laws
of the form: 2(α → [a]⊥), meaning that the execution of an
action a is not possible if α holds. (i.e. there is no resulting
state following the execution of a if α holds). Observe that,
when there is no precondition law for an action, the action is
executable in all states.

Action laws and causal laws describe the changes to the
state. All other fluents which are not changed by the actions
are assumed to persist unaltered to the next state. To cope with
the frame problem, the laws in Π, describing the (immediate
and ramification) effects of actions, have to be distinguished
from the constraints in C and given a special treatment. In
[11], we defined a completion construction which, given a
domain description, introduces frame axioms in the style of
the successor state axioms introduced by Reiter [27]. The
completion construction is applied only to the action laws and
causal laws in Π and not to the constraints. In the following
we call Comp(Π) the completion of a set of laws Π.

Let us now provide the specification of the Contract Net
protocol [4].

Example 1: The Contract Net protocol begins with an
agent (the manager) broadcasting a task announcement (call
for proposals) to other agents viewed as potential contractors
(the participants). Each participant can reply by sending either
a proposal or a refusal. The manager must send an accept
or reject message to all those who sent a proposal. When a
contractor receives an acceptance it is committed to perform
the task.

Let us consider first the simplest case where we have only
two agents: the manager (M) and the participant (P). The two
agents share all the communicative actions, which are: cfp (the
manager issues a call for proposals for task T), accept and
reject whose sender is the manager, refuse and propose whose
sender is the participant, inform done by which the participant
informs the manager that the task has been executed and
end protocol by which the manager declares the completion
of the protocol.

The social state contains the following domain specific flu-
ents: CN (which is true during the execution of the protocol),
task (whose value is true after the task has been announced),
replied (the participant has replied), proposal (the participant
has sent a proposal), acc rej (the manager has sent an accept
or reject message to the participant) accepted (the manager has
accepted the proposal of participant) and done (the participant

WOA 2005 172

has performed the task). Such fluents describe observable facts
concerning the execution of the protocol.

We also introduce special fluents to represent base-level
commitments of the form C(i, j, α), meaning that agent i is
committed to agent j to bring about α, where α is an arbitrary
formula, or they can be conditional commitments of the form
CC(i, j, β, α) (agent i is committed to agent j to bring about
α, if the condition β is brought about). The two kinds of base-
level and conditional commitments we allow are essentially
those introduced in [35]. For modelling the Contract Net
example we introduce the following commitments

C(P, M, replied) C(M,P, acc rej)
C(i,M, done) C(M, P, task)

and conditional commitments
CC(P, M, task, replied)
CC(M, P, proposal, acc rej)
CC(i,M, accepted, done).

Some reasoning rules have to be defined for cancelling
commitments when they have been fulfilled and for dealing
with conditional commitments. We introduce the following
causal laws:

2(©α →©¬C(i, j, α))
2(©α →©¬CC(i, j, β, α))
2((CC(i, j, β, α) ∧©β) →

©(C(i, j, α) ∧ ¬CC(i, j, β, α)))
A commitment (or a conditional commitment) to bring about
α is cancelled when α holds, and a conditional commitment
CC(i, j, β, α) becomes a base-level commitment C(i, j, α)
when β has been brought about.

Let us now describe the effects of communicative actions
by the following action laws:

2[cfp](task∧CN∧CC(M, P, proposal, acc rej))
2[accept]acc rej
2[reject]acc rej
2[refuse]replied
2[propose](replied ∧ proposal∧

CC(P, M, accepted, done))
2[inform done]done
2[end protocol(CN)]¬CN

The laws for action cfp add to the social state the information
that a call for proposal has been done for the task, and that,
if the manager receives a proposal, it is committed to accept
or reject it.

The permissions to execute communicative actions in each
state are determined by social facts. We represent them by
precondition laws. Preconditions on the execution of action
accept can be expressed as:

2(¬CN ∨ ¬proposal ∨ acc rej → [accept]⊥)
meaning that action accept cannot be executed outside the
protocol, or if a proposal has not been done, or if the manager
has already replied. Similarly we can give the precondition
laws for the other actions:

2(¬CN ∨ task → [cfp]⊥)
2(¬CN ∨ ¬proposal ∨ acc rej → [reject]⊥)

2(¬CN ∨ ¬task ∨ replied → [refuse]⊥)
2(¬CN ∨ ¬task ∨ replied → [propose]⊥)
2(¬CN ∨ ¬accepted ∨ done → [inform done]⊥)
2(¬CN ∨ ¬task → [end protocol(CN)]⊥)

The precondition law for action propose (refuse) says that a
proposal can only be done if a task has already been announced
and the participant has not already replied. The last law says
that the manager cannot issue a new call for proposal if a task
has already been announced.

In the following we will denote Permi (permissions of
agent i) the set of all the precondition laws of the protocol
pertaining to the actions of which agent i is the sender.

Assume now that we want the participant to be committed
to reply to the task announcement. We can express it by adding
the following conditional commitment to the initial state of the
protocol: CC(P, M, task, replied). Furthermore the manager
is committed initially to issue a call for proposal for a task.
We can define the initial state Init of the protocol as follows:

{¬CN,¬task,¬replied,¬proposal,¬done,
CC(P, M, task, replied), C(M, P, task)}

In the following we will be interested in those execution of
the protocol in which all commitments have been fulfilled. We
can express the condition that the commitment C(i, j, α) will
be fulfilled by the following constraint:

2(C(i, j, α) → CN U α)

We will call Comi the set of constraints of this kind for all
commitments of agent i. Comi states that agent i will fulfill
all the commitments of which he is the debtor.

Given the above rules, the domain description D = (Π, C)
of a protocol is defined as follows: Π is the set of the action
and causal laws given above, and C = Init ∧ ∧

i(Permi ∧
Comi) is the set containing the constraints on the initial state,
the permissions Permi and the commitments Comi of all the
agents (the agents P and M, in this example).

Given a domain description D, let the completed domain
description Comp(D) be the set of formulas (Comp(Π) ∧
Init∧∧

i(Permi∧Comi)). The runs of the system according
the protocol are the linear models of Comp(D). Observe that
in these protocol runs all permissions and commitments are
fulfilled. However, if Comj is not included for some agent
j, the runs may contain commitments which have not been
fulfilled by j.

IV. PROTOCOL VERIFICATION

Different kinds of verification problems can be addressed,
given the specification of a protocol by a domain description.

A. Verifying agents compliance at runtime

We are given a history τ = a1, . . . , an of the communicative
actions executed by the agents, and we want to check the com-
pliance of that execution with the protocol. Namely, we want to
verify that the history τ is the prefix of a run of the protocol,
that is, it respects the permissions and commitments of the

WOA 2005 173

protocol. This problem can be formalized as a satisfiability
problem. The formula

(Comp(Π)∧Init∧
∧

i

(Permi∧Comi))∧ < a1; a2; . . . ; an > >

(where i ranges on all the agents involved in the protocol) is
satisfiable if it is possible to find a run of the protocol starting
with the action sequence a1, . . . , an.

B. Verifying protocol properties

Proving that the protocol satisfies a given (temporal) prop-
erty ϕ can be formalized as a validity check. The formula

(Comp(Π) ∧ Init ∧
∧

i

(Permi ∧ Comi)) → ϕ. (1)

is valid if all the runs of the protocol satisfy ϕ. Observe that,
all the agents are assumed to be compliant with the protocol.
As an example of property to be checked, we consider the
property of termination of the protocol. After the manager
has announced a task, the protocol will eventually arrive to
completion. This property can be formalized by the temporal
formula:

ϕ = 2[cfp]3¬CN

meaning that, always, after a call for proposal has been issued
by the manager, the protocol will eventually reach a state in
which the proposition CN is false, i.e. the protocol is finished,
for all possible runs of the protocol.

C. Verifying the compliance of an agent with the protocol at
compile-time

When the program executed by an agent is given (or, at
least, its logical specification is given), we are faced with
the problem of verifying if the agent is compliant with the
protocol, that is, to verify if the agent’s program respects the
protocol. Solving this problem requires: first to provide an
abstract specification of the behavior (program) of the agent;
and, second, to check that all the executions of the agent
program satisfy the specification of the protocol, assuming that
the other agents are compliant with the protocol.

In the general case, addressing this problem requires to
move to the Product Version of DLTL [13]. However, for
protocols involving two agents, where all fluents and all
actions of the social state are shared by both agents, this
verification problems can be represented in DLTL.

In DLTL the behavior of an agent can be specified by
making use of complex actions (regular programs). Consider
for instance the following program πP for the participant:

[¬end?; ((cfp; eval task; (¬ok?; refuse+
ok?; propose))+

reject+
(accept; do task; inform done)+
(end protocol(CN); exit))]∗; end?

The participant cycles and reacts to the messages received
by the manager: for instance, if the manager has issued a
call for proposal, the participant can either refuse or make a

proposal according to his evaluation of the task; if the manager
has accepted the proposal, the participant performs the task;
and so on.

The state of the agent is obtained by adding to the fluents of
the protocol the following local fluents: end, which is initially
false and is made true by action exit, and ok which says if the
agent must make a bid or not. The local actions are eval task,
which evaluates the task and sets the fluent ok to true or false,
do task and exit. Furthermore, end? and ok? are test actions.

The program of the participant can be specified by a
domain description ProgP = (ΠP , CP), where ΠP is a set of
action laws describing the effects of the private actions of the
participant. For instance, the action exit sets the proposition
endi to true:

2[exit]end

The set of constraints CP contains InitP which provides the
initial values for the local fluents (¬end,¬ok)of the participant
as well as the formula 〈πP 〉> stating that the program of the
participant is executable in the initial state.

To prove that the participant is compliant with the protocol,
i.e. that all executions of program πP satisfy the specification
of the protocol, we cannot consider the program πP alone. In
fact, it is easy to see that the correctness of the behavior of
the participant depends on the behavior of the manager. Since
we don’t know its internal behavior, we will assume that the
manager respects its public behavior, i.e. that it respects its
permissions and commitments in the protocol specification.

The verification that the participant is compliant with the
protocol can be formalized as a validity check. Let D = (Π, C)
be the domain description describing the protocol, as defined
above. The formula

(Comp(Π)∧Init∧PermM∧ComM∧Comp(ΠP)∧CP) →
(PermP ∧ ComP)

is valid if in all the behaviors of the system, in which
the participant executes its program πP and the manager
(whose internal program is unknown) respects the protocol
specification (in particular, its permissions and commitments),
the permissions and commitment of the participant are also
satisfied.

D. Proofs and model checking in DLTL

The above verification and satisfiability problems can be
solved by extending the standard approach for verification and
model-checking of Linear Time Temporal Logic, based on the
use of Büchi automata. An approach for constructing a Büchi
automaton from a DLTL formula making use of a tableau-
based algorithm has been proposed in [10]. The construction
of the states of the automaton is similar to the standard
construction for LTL [9], but the possibility of indexing
until formulas with regular programs puts stronger constraints
on the fulfillment of until formulas than in LTL, requiring
more complex acceptance conditions. The construction of the
automaton can be done on-the-fly, while checking for the
emptiness of the language accepted by the automaton. As
for LTL, the number of states of the automaton is, in the

WOA 2005 174

worst case, exponential in the size if the input formula, but in
practice it is much smaller.

Standard model checking techniques [5] cannot be im-
mediately applied to our approach, because protocols are
formulated as sets of properties rather than as programs.
Furthermore, in principle, with DLTL we do not need to use
model checking, because programs and domain descriptions
can be represented in the logic itself, as we have shown in the
previous section. However representing everything as a logical
formula can be rather inefficient from a computational point
of view. In particular all formulas of the domain description
are universally quantified, and this means that our algorithm
will have to propagate them from each state to the next one,
and to expand them with the tableau procedure at each step.

Therefore we have adapted model checking to the proof of
the formulas given in the previous section, by deriving the
model from the domain theory in such a way that the model
describes all possible runs allowed by the domain theory.
In particular, we can obtain from the domain description a
function next statea(S), for each action a, for transforming
a state in the next one, and then build the model (an automaton)
by repeatedly applying these functions starting from the initial
state. We can then proceed as usual to prove a property ϕ by
taking the product of the model and of the automaton derived
from ¬ϕ, and by checking for emptiness of the accepted
language.

An alternative way for applying this approach in practice,
is to make use of existing model checking tools. In particular,
by translating DLTL formulas into LTL formulas, it would be
possible to use LTL-based model checkers such as for instance
SPIN [20]. Although in general DLTL is more expressive than
LTL, many protocol properties, such as for instance fulfillment
of commitments, can be easily expressed in LTL.

We have done some experiments with the model checker
SPIN on proving properties of protocols expressed according
to the approach presented in this paper. The model is obtained
as suggested above by formulating the domain description
as a PROMELA program, which describes all possible runs
allowed by the domain theory. Properties and constraints are
expressed as LTL formulas. In the case of verification of
compliance of an agent implementation with the protocol, we
have used different PROMELA processes for representing the
agent and the protocol. The representation of the agent is
derived from its regular program.

V. AN APPLICATION TO CLINICAL GUIDELINES

Clinical guidelines can be roughly defined as frameworks
for specifying the ”best” clinical procedures and for stan-
dardizing them. Clinical guidelines play different roles in the
clinical process: for example, they can be used to support
physicians in the treatment of diseases, or for critiquing,
for evaluation, and for education purposes. Many different
systems and projects have been developed in recent years
in order to realize computer-assisted management of clinical
guidelines (see e.g., [15], [7]). GLARE (Guidelines Acquisi-
tion, Representation and Execution) [29], [31] is one of such

domain-independent systems. GLARE is being developed by
a group of computer scientists from Universita’ del Piemonte
Orientale and Universita’ di Torino, in collaboration with
Azienda Ospedaliera S. Giovanni Battista in Torino, one of
the largest hospitals in Italy. Despite the system is basically a
research product, whose features are continuously refined and
updated, the facilities it embeds have been formally tested or
at least carefully examined by physicians. Some of the peculiar
features of GLARE (with respect to the other computer-
based approaches to clinical guidelines in the literature) are
its decision-making facilities, which also involve advanced
decision theory features [32], and its treatment of temporal
constraints [30]. Despite the fact that several specialized
”reasoning” facilities are provided by GLARE (see, e.g., [30],
[32]), extensive logical reasoning capabilities such as the one
which can be provided by theorem proving and/or model
checking techniques can provide critical advances (see also
[23]). We thus started to analyze (i) how clinical guidelines
(such as the one represented by the GLARE system) can be
modeled in our framework (ii) how the reasoning facilities
provided by the model checker can be exploited within the
clinical application environment.

As regards modeling, clinical guidelines are a hierarchical
description of clinical procedures. At the lower level, they are
basically composed by sequences of elementary actions (corre-
sponding to actions to be executed on the specific patient) and
decision actions needed to choose among alternative paths. All
the elementary actions in a chosen path must be necessarily
executed, unless their preconditions are not satisfied by the
patient’s data. This can be easily modeled by making use
of precondition laws and obligations. Decisions are the core
elements in clinical guidelines and are preceded by a data
acquisition phase, which can be modeled as an interaction
between the physician executing the guideline, the clinical
record containing the patient data and, possibly, laboratories,
which can be modeled as follows. The physician sends a
data request to the database containing clinical records, which
is committed to send back the requested data (if available)
together with a timestamp stating their time of validity. If the
data are not available or not up to date, the physician asks
for them to the proper laboratories and waits for the answers.
When all the up to date data are available, the decision process
can start. In the GLARE approach, decision is modeled as
an interaction between the system and the physician. On the
basis of the decision criteria embodied in the guideline, and
of the patient’s data, the system proposes to the physician the
subset of alternative paths suggested for the given patient. The
physician can commit to one of the suggested alternatives or
even to a non suggested one. In the latter case, however, the
system sends a warning to the physician.

As regards reasoning, model checking can be used in order
to instantiate a guideline on a specific patient, for instance, by
checking, on the basis of the patient data, whether there are ex-
ecutable paths. Analogously, guidelines can be contextualized
to specific hospitals, considering locally available laboratories
and resources. Moreover, model checking capabilities can be

WOA 2005 175

used to look for executable paths which satisfy a given set
of requirements (concerning e.g. costs, execution times, goals
and intention).

VI. CONCLUSIONS

In the paper we have presented an approach to the specifi-
cation and verification of interaction protocols in a multiagent
system that has been developed in the context of the national
project PRIN 2003 “Logic-based development and verification
of multi-agent systems”. We are currently investigating the ap-
plicability of the approach, on the one hand to the specification
and verification of clinical guidelines and, on the other hand,
to the specification and verification of Web Services, with a
particular regard to the problem of service composition.

REFERENCES

[1] M. Alberti, D. Daolio and P. Torroni. Specification and Verification of
Agent Interaction Protocols in a Logic-based System. SAC’04, March
2004.

[2] F. Bacchus and F. Kabanza. Planning for temporally extended goals. in
Annals of Mathematics and AI, 22:5–27, 1998.

[3] D. Calvanese, G. De Giacomo and M.Y.Vardi. Reasoning about Actions
and Planning in LTL Action Theories. In Proc. KR’02, 2002.

[4] FIPA Contract Net Interaction Protocol Specification, 2002. Available
at http://www.fipa.org.

[5] E.M.Clarke, O.Grumberg, and D. Peled, Model Checking, MIT Press,
2000.

[6] F.Dignum and M.Greaves. Issues in Agent Communication: An In-
troduction”. In F.Dignum and M.Greaves (Eds.), Issues in Agent
Communication, LNAI 1916, pp. 1-16, 1999.

[7] Special Issue on Workflow Management and Clinical Guidelines, D.B.
Fridsma (Guest ed.), JAMIA, 22(1), 1-80, (2001).

[8] N. Fornara and M. Colombetti. Defining Interaction Protocols using a
Commitment-based Agent Communication Language. Proc. AAMAS’03,
Melbourne, pp. 520–527, 2003.

[9] R. Gerth, D. Peled, M.Y.Vardi and P. Wolper. Simple On-the-fly
Automatic verification of Linear Temporal Logic. In Proc. 15th Work.
Protocol Specification, Testing and Verification, Warsaw, June 1995,
North Holland.

[10] L. Giordano and A. Martelli. On-the-fly Automata Construction for
Dynamic Linear Time Temporal Logic. TIME 04, June 2004.

[11] L. Giordano, A. Martelli, and C. Schwind. Reasoning About Actions
in Dynamic Linear Time Temporal Logic. In The Logic Journal of the
IGPL, Vol. 9, No. 2, pp. 289-303, March 2001.

[12] L. Giordano, A. Martelli, and C. Schwind. Verifying Communicating
Agents by Model Checking in a Temporal Action Logic. JELIA 2004,
Lisbon, Portugal, September 27-30, 2004, pp. 57-69.

[13] L. Giordano, A. Martelli, and C. Schwind. Specifying and Verifying
Interaction Protocols in a Temporal Action Logic. Journal of Applied
Logic (Special issue on Logic Based Agent Verification), Accepted for
publication, 2005.

[14] F. Giunchiglia and P. Traverso. Planning as Model Checking. In Proc.
The 5th European Conf. in Planning (ECP’99), pp.1–20, Durham (UK),
1999.

[15] C. Gordon and J.P. Christensen, Health Telematics for Clinical Guide-
lines and Protocols. IOS Press, Amsterdam, 1995.

[16] M. Greaves, H. Holmback and J. Bradshaw. What Is a Conversation
Policy?. Issues in Agent Communication,LNCS 1916 Springer, pp. 118-
131, 2000.

[17] F. Guerin. Specifying Agent Communication Languages. PhD Thesis,
Imperial College, London, April 2002.

[18] F. Guerin and J. Pitt. Verification and Compliance Testing. Communi-
cations in Multiagent Systems, Springer LNAI 2650, pp. 98–112, 2003.

[19] J.G. Henriksen and P.S. Thiagarajan. Dynamic Linear Time Temporal
Logic. in Annals of Pure and Applied logic, vol.96, n.1-3, pp.187–207,
1999

[20] G.J. Holzmann The SPIN Model Checker. Primer and Reference Manual.
Addison-Wesley, 2003

[21] Y. Labrou and T. Finin, A semantic approach for KQML - a general
purpose communication language for software agents. In 3rd Int Conf.
on Information and Knowledge Management, CIKM’94, pp.447-455,
1994.

[22] M.P. Huget and M. Wooldridge. Model Checking for ACL Compliance
Verification. ACL 2003, Springer LNCS 2922, pp. 75–90, 2003.

[23] M. Marcos, M. Balser, A. ten Teije, F. van Harmelen, C. Duelli
Experiences in the formalisation and verification of medical protocols,
AIME’03.

[24] N. Maudet and B. Chaib-draa. Commitment-based and dialogue-game
based protocols: new trends in agent communication languages. In The
Knowledge Engineering Review, 17(2):157-179, June 2002.

[25] S. Narayanan and S. McIlraith. Simulation, Verification and Automated
Composition of Web Services. In Proceedings of the Eleventh Interna-
tional World Wide Web Conference (WWW-11), May, 2002.

[26] M.Pistore and P.Traverso. Planning as Model Checking for Extended
Goals in Non-deterministic Domains. Proc. IJCAI’01, Seattle, pp.479-
484, 2001.

[27] R. Reiter. The frame problem in the situation calculus: a simple solution
(sometimes) and a completeness result for goal regression. In Artificial
Intelligence and Mathematical Theory of Computation: Papers in Honor
of John McCarthy, V. Lifschitz, ed.,pages 359–380, Academic Press,
1991.

[28] M. P. Singh. A social semantics for Agent Communication Languages.
In IJCAI-98 Workshop on Agent Communication Languages, Springer,
Berlin, 2000.

[29] P. Terenziani, G. Molino, and M. Torchio, A Modular Approach for
Representing and Executing Clinical Guidelines. Artificial Intelligence
in Medicine 23, 249-276, 2001.

[30] P. Terenziani, C. Carlini, S. Montani. Towards a Comprehensive Treat-
ment of Temporal Constraints in Clinical Guidelines. Proc. TIME’02,
Manchester, UK, IEEE Press, 20-27, 2002.

[31] Terenziani, P., Montani, S., Bottrighi, A., Torchio, M., Molino, G.,
Correndo, G. A context-adaptable approach to clinical guidelines. Proc.
MEDINFO’04, M. Fieschi et al. (eds), Amsterdam, IOS Press, (2004),
169-173.

[32] P. Terenziani, S. Montani, A. Bottrighi. Exploiting Decision Theory for
Supporting Therapy Selection in Computerized Guidelines. Proc. Int’l
Conf. Artificial Intelligence in Medicine Europe, LNCS, Sprinter Verlag,
2005.

[33] P.Traverso and M.Pistore. Automated Composition of Semantic Web
Services into Executable Processes. Proc. Third International Semantic
Web Conference (ISWC2004), November 9-11, 2004, Hiroshima, Japan.

[34] M. Wooldridge, M. Fisher, M.P. Huget and S. Parsons. Model Checking
Multi-Agent Systems with MABLE. In AAMAS’02, pp. 952–959,
Bologna, Italy, 2002.

[35] P. Yolum and M.P. Singh. Flexible Protocol Specification and Execution:
Applying Event Calculus Planning using Commitments. In AAMAS’02,
pp. 527–534, Bologna, Italy, 2002.

WOA 2005 176

Personalization, verification and conformance for
logic-based communicating agents

Matteo Baldoni, Cristina Baroglio, Alberto Martelli,
Viviana Patti, Claudio Schifanella, Laura Torasso

Dipartimento di Informatica
Università degli Studi di Torino

C.so Svizzera, 185 — I-10149 Torino (Italy)
Email: {baldoni,baroglio,mrt,patti,schi,ltorasso}@di.unito.it

Viviana Mascardi
Dipartimento di Informatica e Scienze dell’Informazione

Università degli Studi di Genova
Via Dodecaneso, 35 — I-16146 Genova (Italy)

Email: mascardi@disi.unige.it

Abstract— This paper is an overview of the work that we have
carried on in the last two years in the context of the MASSiVE
project. The main research lines have concerned personalization
of the interaction with web services, personalization of course-
ware, web services interoperability, and integrated environments
for agent oriented software engineering. All of them can be seen
as applications of different reasoning techniques to a declarative
specification of interaction. A declarative specification makes
the study of properties easy and allows a fast prototyping of
applications. In particular, we applied reasoning about actions
and change to the personalized selection and composition of
web services and to the construction of courseware that satisfies
the user’s needs and goals. This kind of reasoning has also
been integrated in the DCaseLP MAS prototyping environment.
Declarative specifications have also been helpful to face the
problem of proving policy conformance in a way that guarantees
web service interoperability. Finally, the adoption of process
languages for web services for expressing the procedural behavior
of adaptive BDI-style agents have been explored.

I. INTRODUCTION

Computational logics and declarative languages are being
rediscovered as a tool for some of the most innovative applica-
tion areas: the Semantic Web and Web Services. By definition,
the Semantic Web comprises a machine-shareable representa-
tion of knowledge, and it both requires the development of
languages for expressing information in a machine-processable
form, and the use of inferencing mechanisms that allow a
content-aware navigation. The desired result is an overall
behavior that is closer to the user’s intuition and desire and the
possible applications are really various, depending on the kind
of resource that is described and on the tasks to be performed.
On the other hand, it is getting more and more common
describing and realizing applications as sets of cooperative
services. This is the case, for example, for manifacturing
processes, on-line markets, distributed network management.
The traditional approach is based on a functional view, in
which the different components require some specific input,
and produce some specific output. The system’s architecture
is based on the principle of static-functional decomposition,
where the interactions among the different components are
given by their dependencies. Other approaches are, however,
being studied which involve describing at a high-level the
behavior of the services. The aim is to enable the adoption

of automated reasoning mechanisms for retrieving, composing,
invoking services. One of these approaches is the Multi-Agent
paradigm, in which the different components dynamically
communicate and coordinate with each other, by means of
declarative languages, to reach some common (or their own)
goal. Among the social aspects, specifically relevant is the
ability of expressing behavioral rules, aiming at controlling
the organization of the system; communication protocols are
the most significant example of such rules. Protocols are used
to rule the agents’ interaction, therefore, they can be used to
check if a given agent can, or cannot, take part into the system,
or to check whether the system is behaving as expected.
In general, based on this abstraction, open systems can be
realized, in which new components can dynamically join the
system. The insertion of a new component in an execution
context is determined according to some form of reasoning
about its behaviour: it will be added provided that it satisfies
the body of the rules within the system, intended as a society.

The researches that we have carried on the last two years
tackle different aspects related to the Semantic Web and Web
Services, in the setting of Multi-Agent Systems. In particular,
we have extended the DyLOG language [13], which is the
common tool used in all the branches of the research that
we have carried on. The extension [9] mainly concerns the
introduction of a communication kit aimed at tackling commu-
nication in a way that is fully integrated with the representation
and reasoning mechanisms of the language. Each of the next
sections describes one of the lines of research that we have
been pursued and the work carried on in that context. Section
II reports about work in the context of personalization of
courseware; Section III discusses personalization in the service
selection and composition processes; Section IV reports results
concerning the proof of interoperability and conformance of
services to a global description of their interaction; Section V
describes the adoption of process languages for expressing the
procedural behavior of adaptive BDI-style agents; Section VI
describes an integrated environment for AOSE.

II. PERSONALIZATION OF COURSEWARE

Personalized information systems aim at giving the in-
dividual user optimal support in accessing, retrieving, and

WOA 2005 177

storing information. The individual requirements of the user
are to be taken into account in such different dimensions
like the current task, the goal of the user, the context in
which the user is requesting the information, the previous
information requests or interactions, the working process s/he
is involved in, the level of expertise, the device s/he is using
to display the information, the bandwidth and availability
of the communication channel, the abilities (disabilities or
handicaps) of the user, his/her time constraints, and many,
many more. Different research disciplines have contributed
to explore personalization techniques and to evaluate their
usefulness within various application areas: adaptive hypertext
systems, collaborative filtering, recommender systems, artifi-
cial intelligence, uncertainty management, and so forth. In this
section we will focus on an e-learning scenario and see how
reasoning can help personalization in this context, beginning
with the annotation of the learning resources. exploit a new
level of knowledge thus allowing a better personalization.

A learning object can profitably be used if the learner
has a given set of prerequisite competences; by using it, the
learner will acquire a new set of competences. It is, therefore,
appropriate to interpret learning objects as actions. The idea
that we have proposed is to introduce at the level of the
learning objects, some additional annotation for describing
both their pre-requisites and their effects and to do this by
exploiting standard representation languages, like LOM, and
ontologies, for using terms with a clear and sharable meaning.

The proposed annotation expresses a set of learning depen-
dencies between ontological terms, dependencies which can
be expressed in a declarative formalism, and can be used
by a reasoning system. So, given a set of learning objects,
each annotated in this way, it is possible to use the standard
planners, developed by the Artificial Intelligence community
(for instance, the well-known Graphplan [16]), for building
the reading sequences.

General-purpose planners search a sequence of interest in
the whole space of possible solutions and allow the construc-
tion of learning objects on the basis of any learning goal.
This is not always adequate in an educational application
framework, where the set of learning goals of interest is fairly
limited and the experience of the teachers in structuring the
courses and the learning materials is important. This kind of
constraint cannot be exploited by a general-purpose planner,
being related to the strategy adopted by the teacher. The ideal
solution is to express them as rules that specify an overall
structure in terms of ontological terms (competences). We will
call such rules learning strategies.

Given a set of learning strategies, it is possible to build a
learning object by refining a general rule according to specific
requirements and, in particular, by choosing those components
that best fit the user. An emblematic example is preparing
the material for a basic computer science course: the course
may, in fact, have different contents depending on the kind
of student to whom it will be offered (e.g. a Biology student,
rather than a Communication Sciences student, rather than a
Computer Science student). In particular, having a learning

strategy and a set of annotated learning objects, it is possible
to apply procedural planning for assembling a reading path
that is a sequence of learning resources that are annotated as
required by the strategy. Opposite to general-purpose planners,
procedural planning searches for a solution in the set of the
possible executions of a learning strategy.

Since the strategy is based on competences, rather than on
specific resources, the system might need to select between
different courses, annotated with the same desired competence,
which could equally be selected in building the actual learning
path. This choice can be done based on external information,
such as a user model, or it may be derive from a further
interaction with the user. Decoupling the strategies from the
learning objects results in a greater flexibility of the overall
system, and simplifies the reuse of the learning objects. As
well as learning objects, also learning strategies could be made
public and shared across different systems. Results of these
researches in the context of Massive are reported in [14], [6].

III. PERSONALIZATION OF THE INTERACTION WITH WEB

SERVICES

In the last years distributed applications over the World-
Wide Web have obtained wide popularity and uniform mech-
anisms have been developed for handling computing problems
which involve a large number of heterogeneous components,
that are physically distributed and that interoperate. These
developments have begun to coalesce around the web service
paradigm, where a service can be seen as a component
available over the web. Each service has an interface that is
accessible through standard protocols and that describes its
interaction capabilities, and it can be combined and integrated
with others to develop new applications over the web.

In this scenario, one of the needs that have inspired recent
research [15] is the study of declarative descriptions of web
services, aimed at allowing forms of automated interoperation
that include, on the one hand, the automation of tasks like
matchmaking and execution, on the other, the automation of
service selection and composition, in a way that is customized
w.r.t. the user’s goals and needs, a task that can be consid-
ered as a form of personalization [6]. Indeed, selection and
composition not always are to be performed on the sole basis
of general properties of the services themselves and of their
interactive behavior, such as their category or their functional
compositionality, but they should also take into account the
user’s intentions (and purposes) which both motivate and
constrain the search or the composition. As a quick example,
consider a service that allows buying products, alternatively
paying cash or by credit card: a user might have preferences
on the form of payment to enact. In order to decide whether
or not buying at this shop, it is necessary to single out the
specific course of interaction that allows buying cash. This
form of personalization can be obtained by applying reasoning
techniques on a description of the service process. Such a
description must have a well-defined meaning for all the
parties involved. In this issue it is possible to distinguish three
necessary components:

WOA 2005 178

• web services capabilities must be represented according
to some declarative formalism with a well-defined seman-
tics, as also recently observed by van der Aalst [43];

• automated tools for reasoning about such a description
and performing tasks of interest must be developed;

• in order to gain flexibility in fulfilling the user’s request,
reasoning tools should represent such requests as abstract
goals.

The approach that we propose in [8] inherits from the
experience of the research community that studies MAS and,
in particular, logic-based formalizations of interaction aspects.
Indeed, communication has intensively been studied in the
context of formal theories of agency [24], [23] and a great
deal of attention has been devoted to the definition of standard
agent communication languages (ACL), e.g. FIPA [29] and
KQML [28]. Recently, most of the efforts have been devoted
to the definition of formal models of interaction among agents,
that use conversation protocols. The interest for protocols is
due to the fact that they improve the interoperability of the
various components (often separately developed) and allow
the verification of compliance to the desired standards.

The basic idea is to consider a service as a software
agent and the problem of composing a set of web services
as the problem of making a set of software agents interact
and cooperate within a multiagent system (or MAS). This
interpretation is, actually, quite natural, and shared in proposals
that are closer to the agent research community and more
properly set in the Semantic Web research field [18], [41].
Among the other proposals, let us recall the OWL-S [37]
(formerly DAML-S) experience. In [18] the goal of providing
greater expressiveness to service description in a way that
can be reasoned about has been pursued by exploiting agent
technologies based on the action metaphor. In particular, at the
level of abstraction of the process model, a service is described
as atomic, simple or composite in a way inspired by the agent
language GOLOG and its extensions [35], [30], [36]; therefore
reasoning techniques supported by the language are used to
produce composite and customized services.

On this line, we have studied the possible benefits provided
by a declarative description of their communicative behavior,
in terms of personalization of the service selection and com-
position. Indeed we claim that a better personalization can
be achieved by focussing on the abstraction of web services
as entities, that communicate by following predefined, public
and sharable interaction protocols and by allowing agents
to reason about high level descriptions of the interaction
protocols followed by web services. We model the interaction
protocols provided by web services by a set of logic clauses,
thus at high (not at network) level. The language we have used
for describing conversation protocols, is based on an extension
of the agent programming language DyLOG [13], [7].

Having a logic specification of the protocol, it is possible
to reason about the effects of engaging specific conversations.
In particular, we propose to use techniques for reasoning
about actions for performing the automatic selection and
composition of web services, in a way that is customized w.r.t.

the users’s request. Communication can, in fact, be considered
as the behavior resulting from the application of a special
kind of actions: speech acts. The reasoning problem that this
proposal faces can intuitively be described as looking for a
an answer to the question “Is it possible to make a deal with
this service respecting the user’s goals?”. Given a logic-based
representation of the service policies and a representation of
the customer’s needs as abstract goals, expressed by a logic
formula, logic programming reasoning techniques are used for
understanding if the constraints of the customer fit in with the
policy of the service.

Our proposal can be considered as an approach based on
the process ontology, a white box approach in which part
of the behavior of the services is available for a rational
inspection. A description of the communicative behavior by
policies is definitely richer than the list of input and output,
precondition and effect properties usually taken into account
for the matchmaking. Actually, the approach can be considered
as a second step in the matchmaking process, which narrows a
set of already selected services and performs a customization
of the interaction with them.

Moreover the idea of focussing on abstract descriptions
of the communicative behavior is, actually, a novelty also
with respect to other proposals that are set in the Semantic
Web research field. The deductive process on communication
policies can exploit more semantic information: in fact, it does
not only take into account the pre- and post-conditions, as
in OWL-S proposal, it also takes into account the complex
communicative behavior of the service.

IV. WEB SERVICE INTEROPERABILITY

According to Agent-Oriented Software Engineering [33],
a distinction is made between the global and the individual
points of view of interaction. The global viewpoint is captured
by an abstract protocol, expressed by formalisms like AUML,
automata or Petri Nets. The local viewpoint, instead, regards
one of the agents and is captured by its policy; being part of the
agent’s implementation, the policy is usually written in some
executable language. Having these two levels of description it
is possible to decide whether an agent can take a role in an
interaction. In fact, this problem can be read as the problem of
proving if the agent’s policy conforms to the abstract protocol
specification.

A similar need of distinguishing a global and a local view of
the interaction is recently emerging also in the area of Service
Oriented Architectures. In this case a distinction is made
between the choreography of a set of services, i.e. a global
specification of the way in which they should interact, and
the concept of behavioral interface, seen as the specification
of the interaction from the point of view of the individ-
ual service. The recent W3C proposal of the choreography
language WS-CDL [45], well-characterized and distinguished
from languages for business process representation, like BPEL,
is emblematic.

Taking this perspective, choreographies and agent commu-
nication protocols undoubtedly share a common purpose. In

WOA 2005 179

fact, they both aim at expressing global interaction protocols,
i.e. rules that define the global behavior of a system of
cooperating parties. The respect of these rules guarantees the
interoperability of the parties (i.e. the capability of actually
producing an interaction), and that the interactions will satisfy
given requirements.

In this context, one problem that becomes crucial is the
development of formal methods for verifying if the behavior
of a service respects a choreography. The applications would
be various. A choreography could be used at design time
(a priori) for verifying if the internal processes of a service
enable it to participate appropriately in the interaction. At run-
time, choreographies could be used to verify if everything
is proceeding according to the agreements. A choreography
could also be used unilaterally to detect exceptions (e.g. a
message was expected but not received) or help a participant
in sending messages in the right order and at the right time.

In the last years the agent community already started to face
the two above mentioned kinds of conformance w.r.t. MASs
[31] (e.g. see [25], [26], [11], [10] for a priori conformance,
and [2] for run-time conformance). In the web service commu-
nity the problem of conformance is arising only recently [21]
because so far the focus has been posed on the specification of
single services and on standards for their remote invocation.
The new interest is emerging due to the growing need of
making services, that are heterogeneous (in kind of platform
or in language implementation), to interoperate. Therefore,
there is a need of giving more abstract representations of the
interactions that allow to perform reasoning in order to select
and compose services disregarding the specific implementation
details. Given our experience in the area of MASs, where the
heterogeneity of the components is a fundamental characteris-
tic, we agree with the observation by van der Aalst [43] that
there is a need for a more declarative representation of the
behaviour of services.

In this line, the work in [11], [10] about conformance of
agent implementations w.r.t. protocol specifications has been
adapted to the case of web services in [12]. In particular, in
[12] we focus on testing a priori conformance and develop
a framework based on the use of formal languages. In this
framework a global interaction protocol (a choreography), is
represented as a finite state automaton, whose alphabet is
the set of messages exchanged among services. It specifies
permitted conversations. Atomic services, that have to be
composed according to the choreography, are described as
finite state automata as well. Given such a representation we
capture a concept of conformance that answers positively to
all these questions: is it possible to verify that a service,
playing a role in a given global protocol, produces at least
those conversations which guarantee interoperability with
other conformant service? Will such a service always follow
one of these conversations when interacting with the other
parties in the context of the protocol? Will it always be able to
conclude the legal conversations it is involved in? Technically,
the conformance test is based on the acceptance of both the
service behavior and the global protocol by a special finite

state automaton. Briefly, at every point of a conversation, we
expect that a conformant policy never utters speech acts that
are not expected, according to the protocol, and we also expect
it to be able to handle any message that can possibly be
received, once again according to the protocol. However, the
policy is not obliged to foresee (at every point of conversation)
an outgoing message for every alternative included in the
protocol (but it must foresee at least one of them).

The interesting characteristic of this test is that it guarantees
the interoperability of services that are proved conformant
individually and independently from one another. By inter-
operability we mean the capability of an agent of actually
producing a conversation when interacting with another. The
conformance test has been proved decidable when the lan-
guages used to represent all the possible conversations w.r.t.
the policy and w.r.t. the protocol are regular.

The application of our approach is particularly easy in
case a logic-based declarative language is used to implement
the policies. In logic languages indeed policies are usually
expressed by Prolog-like rules, which can be easily converted
in a formal language representation. In [10] we show this by
means of a concrete example where the language DyLOG
[13], based on computational logic, is used for implementing
the agents’ policies. On the side of the protocol specification
languages, currently there is a great interest in using informal,
graphical languages (e.g. UML-based) for specifying protocols
and in the translation of such languages in formal languages
[22], [27]. By this translation it is, in fact, possible to prove
properties that the original representation does not allow. In
this context, in [11] we have shown an easy algorithm for
translating AUML sequence diagrams to finite state automata
thus enabling the verification of conformance. Of course,
having a declarative representation of the choreographies as
well, would help the proof of these properties in the context
of the web services.

V. WEB SERVICE PROCESS LANGUAGES FOR BDI-STYLE

AGENTS

The adoption of process languages for (semantic) WSs as
a means for specifying the behaviour of agents and MASs is
envisaged by a growing number of researchers working in the
MAS community. For example, in [20] P. Buhler and J. M.
Vidal discuss a technique for providing agent software with
dynamically configured capabilities described with DAML-S,
that can represent atomic or orchestrated WSs. In [19], the
same authors advance the idea that BPEL can be used as a
specification language for expressing the initial social order of
a MAS, which can then intelligently adapt to changing envi-
ronmental conditions. K. Sycara, M. Paolucci, J. Soudry, and
N. Srinivasan suggest to extend the OWL-S Model Processing
Language by adding to it a new statement called exec that
takes a process model as input and executes it in order to
support a broker agent in both discovery and mediation [42].
More recently, C. Walton [44] proposes to decompose agents
into a stub that executes Agent Interaction Protocols and is
responsible for communication between agents, and a body

WOA 2005 180

which encapsulates the reasoning processes, and is encoded
as a set of decision procedures. Both the stub and the body
are implemented as WSs.

Our approach to the specification of the agents’ behavioural
knowledge by means of process languages for WSs is driven
by our previuos research on cooperative BDI agents, and thus
differs from all the existing proposals discussed so far. In
[3], we discuss the idea that BDI-style agents [38] can be
extended with a built-in mechanism for retrieving plans from
cooperative agents (thus becoming “CooBDI” agents), for
example when no local plans suitable for achieving a certain
desire are available. This feature turns out to be useful in many
application fields such as: Personal Digital Assistants (PDAs),
whose limited physical resources make dynamic loading and
linking of code necessary; Self-repairing agents, namely agents
situated in a dynamically changing software environment and
able to identify the portions of their code that should be
updated to ensure their correct functioning in the evolving
environment; Digital butlers, i.e. agents that assist a human
user in some task such as managing her/his agenda, filtering
incoming e-mail, retrieving interesting information from the
web; digital butlers adapt their behaviour to the user’s needs
by cooperating both with more experienced digital butlers, and
with the assisted user.

We have implemented the ideas behind the CooBDI theory
by means of WS technologies, obtaining what we named
“CooWS” agents [17]. A CooWS agent adopts the following
metaphor inspired by CooBDI.

• Beliefs. The variables local to the BPEL processes that
constitute the body of the agent’s plans can be considered
as a metaphor for the agent’s beliefs local to that plan,
that are not explicitly represented.

• Desires. Desires may be either messages structured ac-
cording to the FIPA ACL standard (http://www.
fipa.org/), or unstructured Java strings.

• Actions. There are two kinds of actions: those that may
appear inside the BPEL specification of the agent’s plan
body (that, in turn, may be delivery of ordinary events;
achievement of new desires; and invocation of existing
WSs by means of the BPEL invoke statement), and
those that must be executed in case of success or failure
of the achievement of a desire. Cooperative requests for
plans are managed transparently to the agent, and do not
belong to the set of actions that can be programmed by
the user.

• Plans. Plans are defined by a unique plan identifier, a
trigger (the desire for which the plan has been defined);
a body (a BPEL process); and an access specifier (which
may assume one of the three values OnlyTrusted(Set) –
the plan may be shared only with the agents in the trusted
agents set –, Private – the plan is private to the agent –,
and Public – the plan may be shared with any agent).

• Intentions. An intention contains a stack of desires,
a boolean attribute defining the intention’s state (either
active or suspended), and the success and failure actions.
The set of plans currently available to the agent for man-

aging a given desire, is associated with the corresponding
desire on the stack. The set of these “relevant” plans
is generated by exploiting the cooperation mechanism
(transparent to the user), thus retrieving both local and
external plans useful for achieving the desire.

• Events. There are three kinds of events: cooperation, or-
dinary, and achieve events. A cooperation event is either a
request, characterised by the desire for which the request
has been issued, or a provide event, characterised by the
set of plans that are relevant for the desire appearing in
the corresponding request. Ordinary events consist of the
reception of messages from other agents, while achieve
events implement the plan nesting mechanism.

The implementation of the CooWS platform, downloadable
from the web site http://coows.altervista.org,
relies entirely on opensource tools that include ActiveBPEL,
Apache Tomcat and Axis, jUDDI, UDDI4J, and MySQL.
In order to validate the feasibility of our approach, we are
currently working on the implementation of digital butlers that
query Google (which can be accessed as a web service) to
arrange travels and to organise meetings for their principals.
The plans available to the digital butlers do not cover all
the requests that may arrive from their principals, and the
lack of plans for coping with an incoming request fires the
collaborative exchange of plans.

In the future, we are willing to explore: 1) the ability
to integrate an ontology into the system, so that matching
between desires and triggers of plans can become more
sophisticated than a simple comparison of strings; 2) the ability
to dynamically update the set of trusted partners following
reputation mechanisms such those described in [40].

VI. INTEGRATED ENVIRONMENTS FOR AGENT-ORIENTED

SOFTWARE ENGINEERING

The correct and efficient engineering of heterogeneous,
distributed, open, and dynamic applications is one of the
technological challenges faced by Agent-Oriented Software
Engineering (AOSE). The lack of mature methodologies, tools,
and environments for agent-based system development limits
the effectiveness and impact of AOSE [1].

MAS development requires engineering support for a di-
verse range of non-functional properties, such as understand-
ability of the MAS at various conceptual levels, integrability
of heterogeneous agent architectures, usability, re-usability,
and testability. Creating one monolithic AOSE approach to
support all these properties is not feasible. Rather, we expect
different approaches to be suitable for modelling, verifying,
or implementing various properties. By providing the MAS
developer with an integrated set of languages and tools, and
allowing for the choice of the most suitable language/tool to
model, verify, or implement each property, we could make a
step towards a modular approach to AOSE [34].

DCaseLP [4], [32] provides a prototyping environment
where agents specified and implemented in a given set of
languages can be seamlessly integrated. It also provides an
AOSE methodology to guide the developer during the analysis

WOA 2005 181

of the MAS requirements, its design, and the development of
a working MAS prototype.

DCaseLP supports UML and AUML (http://www.
auml.org/) for the specification of the general structure
of the MAS, and Jess (http://herzberg.ca.sandia.
gov/jess/), Java and tuProlog (http://lia.deis.
unibo.it/research/tuprolog/) for the implementa-
tion of the agents.

As discussed in [4], DCaseLP adopts an existing multi-view,
use-case driven and UML-based method in the phase of re-
quirements analysis. Once the requirements of the application
have been clearly identified, the developer can use UML and/or
AUML to describe the interaction protocols followed by the
agents, the general MAS architecture and the agent types and
instances. Moreover, the developer can automatically translate
the UML/AUML diagrams, describing the agents in the MAS,
into Jess rule-based code. The Jess code obtained from the
translation of AUML diagrams must be manually completed
by the developer with the behavioural knowledge which was
not explicitly provided at the specification level. The developer
does not need to have a deep insight into rule-based languages
in order to complete the Jess code, since he/she is guided by
comments included in the automatically generated code.

The agents obtained by means of the manual completion
of the Jess code are integrated into the JADE (Java Agent
Development Framework, (http://jade.tilab.com/))
middleware. By integrating Jess into JADE, we were able
to easily monitor and debug the execution of Jess agents
thanks to the monitoring facilities that JADE provides. A
recent extension of DCaseLP, discussed in [32], has been the
integration of a Prolog implementation: tuProlog. The choice
of tuProlog was due to two of its features:

1) it is implemented in Java, which makes its integration
into JADE easier, and

2) it is very light, which ensures a certain level of efficiency
to the prototype.

By extending DCaseLP with tuProlog we have obtained the
possibility to execute agents, whose behavior is completely
described by a Prolog-like theory, in the JADE platform.
For this purpose, we have developed a library of predicates
that allow agents specified in tuProlog to access the com-
munication primitives provided by JADE: asynchronous send,
asynchronous receive, and blocking receive (with and without
timeout). Finally, a methodological integration of DyLOG into
DCaseLP has been proposed in [5]. So far, the integration of
DyLOG into DCaseLP is only “methodological” in the sense
that it extends the set of languages supported by DCaseLP
during the MAS engineering process and augments the ver-
ification capabilities of DCaseLP, without requiring any real
integration of the DyLOG working interpreter into DCaseLP.
Nevertheless, DyLOG can also be used to directly specify
agents and execute them inside the DCaseLP environment, in
order to exploit the distribution, concurrency, monitoring and
debugging facilities that DCaseLP offers.

We have already tested – on a toy application – the ability
of Jade, Jess and tuProlog agents to be integrated into the

same MAS and to communicate with each other. Currently,
we are developing a much more sophisticated application in
the electronic auctions field, whose basic building block are
described in [39].

VII. CONCLUSIONS

Mainstream research in Web Services (WS) is looking
at two main aspects: first, formally describing interactions
among services (possibly over long periods of time and having
multiple real-world effects, including legally binding actions);
second, finding and combining services (e.g., by extending
the simple catalogue contained in UDDI repositories with
semantically rich descriptions and using the latter for auto-
mated composition via planning and for formal verification).
As observed in AgentLink III, 2004, and by M. N. Huhns,
2002, much work made in the intelligent agents area can be
applied to these issues.

One of the problems that we have studied is the verification
of the a priori conformance of the communication policy of
an agent (or web service) w.r.t. a general interaction protocol
specification, that rules a system of cooperating parties. The
interesting characteristic of the test that we have proposed
is that it guarantees the interoperability of services that are
proved conformant individually and independently from one
another. It emerged that the application of our approach is
particularly easy in case a logic-based declarative language is
used to implement the policies.

For what concerns the specification languages, the mod-
elling languages commonly used in the “requirements specifi-
cation” and “software design” phases proposed in the AOSE
community, like AUML, are not declarative and, as such,
they do not provide any automatic proof mechanism. In this
context it is interesting to study translations between modelling
languages and languages with a formalized semantics to enable
the use of the automatic proof mechanisms associated to them.
For instance in [10] we have proposed the use of finite state
automata as formal representation of protocols which supports
the proof of conformance and an algorithm for translating a
subset of AUML into finite state automata has been proposed
in [11]. However this is just a first step and more research
should be devoted to the issue of the transformation from
semi-formal to formal specification languages.

We have studied how the above approach applies to some
concrete domain such as web services and e-learning. In
particular web services are an example of a highly dynamic
application domain where a challenging problem that we have
studied is the development of formal methods for verifying if
the behavior of a single service respects a choreography. More
specifically the problem consists in deciding if the internal
processes of a service enable it to participate appropriately in
the interaction encoded by a choreography. Another related
problem that it would be interesting to address is the use
of choreographies at run-time to verify that everything is
proceeding according to the agreements. In this context a
choreography could also be used unilaterally to detect ex-
ceptions (e.g. a message was expected but not received) or

WOA 2005 182

help a participant in sending messages in the right order and
at the right time. Also in this case there are logic techniques
developed in the agent community that can be adapted to tackle
the problem in the web service domain [2].

REFERENCES

[1] AgentLink III, “Agent technology roadmap: Overview and consultation
report,” 2004.

[2] M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni, “Spec-
ification and verification of agent interactions using social integrity
constraints,” in Proc. of the Workshop on Logic and Communication
in Multi-Agent Systems, LCMAS 2003, ser. ENTCS, W. van der Hoek,
A. Lomuscio, E. de Vink, and M. Wooldridge, Eds., vol. 85(2). Eind-
hoven, the Netherlands: Elsevier, 2003.

[3] D. Ancona and V. Mascardi, “Coo-BDI: Extending the BDI model with
cooperativity,” in Post-proc. of DALT’03, 2004, pp. 109–134.

[4] E. Astesiano, M. Martelli, V. Mascardi, and G. Reggio, “From Re-
quirement Specification to Prototype Execution: a Combination of a
Multiview Use-Case Driven Method and Agent-Oriented Techniques,”
in Proc. of SEKE’03, 2003, pp. 578–585.

[5] M. Baldoni, C. Baroglio, I. Gungui, A. Martelli, M. Martelli, V. Mas-
cardi, V. Patti, and C. Schifanella, “Reasoning about agents’ interaction
protocols inside DCaseLP,” in Proc. of DALT 2004, 2004, pp. 112–131.

[6] M. Baldoni, C. Baroglio, and N. Henze, “Personalization for the Seman-
tic Web,” in Reasoning Web, ser. LNCS Tutorial, vol. 3564. Springer,
2005, pp. 173–212.

[7] M. Baldoni, C. Baroglio, A. Martelli, and V. Patti, “Reasoning about self
and others: communicating agents in a modal action logic,” in Proc. of
ICTCS’2003, ser. LNCS, vol. 2841. Springer, 2003, pp. 228–241.

[8] ——, “Reasoning about interaction protocols for web service compo-
sition,” M. Bravetti and G. Zavattaro, Eds. Elsevier Science Direct,
2004, pp. 21–36, vol. 105 of Electronic Notes in Theoretical Computer
Science.

[9] ——, “Reasoning about interaction protocols for customizing web
service selection and composition,” The Journal of Logic and Algebraic
Programming, 2005, accepted for publication after major revision.

[10] ——, “Verification of protocol conformance and agent interoperability,”
in Pre-proc. of Sixth International Workshop on Computational Logic
in Multi-Agent Systems, CLIMA VI, 2005, pp. 12–27.

[11] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Schifanella, “Ver-
ifying protocol conformance for logic-based communicating agents,”
in Proc. of 5th Int. Workshop on Computational Logic in Multi-Agent
Systems, CLIMA V, ser. LNCS, no. 3487, 2005, pp. 192–212.

[12] ——, “Verifying the conformance of web services to global interaction
protocols: a first step,” in Proc. of 2nd Int. Workshop on Web Services
and Formal Methods, WS-FM 2005, ser. LNCS, no. 3670, 2005, pp.
257–271.

[13] M. Baldoni, L. Giordano, A. Martelli, and V. Patti, “Programming
Rational Agents in a Modal Action Logic,” Annals of Mathematics and
Artificial Intelligence, Special issue on Logic-Based Agent Implementa-
tion, vol. 41, no. 2–4, pp. 207–257, 2004.

[14] M. Baldoni, C. Baroglio, V. Patti, and L. Torasso, “Reasoning about
learning object metadata for adapting SCORM courseware,” in Int.
Workshop on Engineering the Adaptive Web, EAW’04: Methods and
Technologies for Personalization and Adaptation in the Semantic Web,
Part I, L. Aroyo and C. Tasso, Eds., Eindhoven, The Netherlands, August
2004, pp. 4–13.

[15] A. Barros, M. Dumas, and P. Oaks, “A critical overview of the web
services choreography description language(ws-cdl),” Business Process
Trends, 2005, http://www.bptrends.com.

[16] A. Blum and M. Furst, “Fast planning through planning graph analysis,”
Artificial Intelligence, vol. 90, pp. 281–300, 1997.

[17] L. Bozzo, V. Mascardi, D. Ancona, and P. Busetta, “CooWS: Adaptive
BDI agents meet service-oriented computing,” in Proc. of the Int’l
Conference on WWW/Internet, 2005.

[18] J. Bryson, D. Martin, S. McIlraith, and L. A. Stein, “Agent-based
composite services in DAML-S: The behavior-oriented design of an
intelligent semantic web,” 2002. [Online]. Available: citeseer.nj.nec.
com/bryson02agentbased.html

[19] P. Buhler and J. M. Vidal, “Adaptive workflow = web services + agents,”
in Proc. of the Int’l Conference on Web Services, 2003, pp. 131–137.

[20] ——, “Semantic web services as agent behaviors,” in Proc. of Agentci-
ties: Challenges in Open Agent Environments, 2003.

[21] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro, “Chore-
ography and Orchestration: a synergic approach for system design,” in
Proc. the 3rd Int. Conf. on Service Oriented Computing, 2005.

[22] L. Cabac and D. Moldt, “Formal semantics for auml agent interaction
protocol diagrams,” in Proc. of AOSE 2004, 2004, pp. 47–61.

[23] F. Dignum, Ed., Advances in agent communication languages, ser.
LNAI, vol. 2922. Springer-Verlag, 2004.

[24] F. Dignum and M. Greaves, “Issues in agent communication,” in Issues
in Agent Communication, ser. LNCS, vol. 1916. Springer, 2000, pp.
1–16.

[25] U. Endriss, N. Maudet, F. Sadri, and F. Toni, “Protocol conformance for
logic-based agents,” in Proc. of the 18th International Joint Conference
on Artificial Intelligence (IJCAI-2003), G. Gottlob and T. Walsh, Eds.
Morgan Kaufmann Publishers, August 2003, pp. 679–684.

[26] ——, “Logic-based agent communication protocols,” in Advances in
agent communication languages, ser. LNAI, vol. 2922. Springer-Verlag,
2004, pp. 91–107, invited contribution.

[27] R. Eshuis and R. Wieringa, “Tool support for verifying UML activity
diagrams,” IEEE Trans. on Software Eng., vol. 7, no. 30, 2004.

[28] T. Finin, Y. Labrou, and J. Mayfield, “KQML as an Agent Communi-
cation Language,” in Software Agents, J. Bradshaw, Ed. MIT Press,
1995.

[29] FIPA, “Communicative act library specification,” FIPA (Foundation for
Intelligent Physical Agents), Tech. Rep., 2002.

[30] G. D. Giacomo, Y. Lesperance, and H. Levesque, “Congolog, a concur-
rent programming language based on the situation calculus,” Artificial
Intelligence, vol. 121, pp. 109–169, 2000.

[31] F. Guerin and J. Pitt, “Verification and Compliance Testing,” in Com-
munication in Multiagent Systems, ser. LNAI, M. Huget, Ed., vol. 2650.
Springer, 2003, pp. 98–112.

[32] I. Gungui and V. Mascardi, “Integrating tuProlog into DCaseLP to engi-
neer heterogeneous agent systems,” in Proc. of CILC 2004. Available at
http://www.disi.unige.it/person/MascardiV/Download/CILC04a.pdf.gz.

[33] M. P. Huget and J. Koning, “Interaction Protocol Engineering,” in
Communication in Multiagent Systems, ser. LNAI, H. Huget, Ed., vol.
2650. Springer, 2003, pp. 179–193.

[34] T. Juan, M. Martelli, V. Mascardi, and L. Sterling, “Customizing AOSE
methodologies by reusing AOSE features,” in Proc. of AAMAS’03, 2003,
pp. 113–120.

[35] H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B. Scherl,
“GOLOG: A Logic Programming Language for Dynamic Domains,” J.
of Logic Programming, vol. 31, pp. 59–83, 1997.

[36] S. McIlraith and T. Son, “Adapting Golog for Programmin the Semantic
Web,” in 5th Int. Symp. on Logical Formalization of Commonsense
Reasoning, 2001, pp. 195–202.

[37] OWL-S, “http://www.daml.org/services/owl-s/1.1/,” 2004.
[38] A. S. Rao and M. P. Georgeff, “Modeling rational agents within a BDI–

architecture,” in Proc. of KR’91, 1991, pp. 473–484.
[39] D. Roggero, F. Patrone, and V. Mascardi, “Designing and implementing

electronic auctions in a multiagent system environment,” 2005, dISI
Technical Report.

[40] J. Sabater, “Trust and reputation for agent societies,” IIIA Monographs,
vol. 20, 2003.

[41] K. Sycara, “Brokering and matchmaking for coordination of agent
societies: A survey,” in Coordination of Internet Agents, A. O. et al.,
Ed. Springer, 2001.

[42] K. Sycara, M. Paolucci, J. Soudry, and N. Srinivasan, “Dynamic dis-
covery and coordination of agent-based semantic web services agents,”
IEEE Internet Computing, vol. 8, no. 3, pp. 66–73, 2004.

[43] W. M. P. van der Aalst, M. Dumas, A. H. M. ter Hofstede, N. Russell,
H. M. W. Verbeek, and P. Wohed, “Life after BPEL?” in Proc. of WS-
FM’05, ser. LNCS, vol. 3670. Springer, 2005, pp. 35–50, invited
speaker.

[44] C. Walton, “Uniting agents and web services,” AgentLink News, vol. 18,
pp. 26–28, 2005.

[45] WS-CDL, “http://www.w3.org/tr/2004/wd-ws-cdl-10-20041217/,” 2004.

WOA 2005 183

Protocol specification and verification by using
computational logic

Federico Chesani,
Anna Ciampolini,

Paola Mello,
Marco Montali,
Paolo Torroni

DEIS, University of Bologna
Viale Risorgimento, 2
40136 Bologna (Italy)

Email:
{fchesani|aciampolini|pmello|

mmontali|ptorroni}
@deis.unibo.it

Marco Alberti,
Sergio Storari

ENDIF, University of Ferrara
Via Saragat, 1

44100 Ferrara (Italy)
Email:

{malberti|sstorari}
@ing.unife.it

Abstract— The aim of this paper is to report on some prelim-
inary results obtained in the context of the MASSIVE research
project (http://www.di.unito.it/massive/) relating the
formal specification and verification of protocols in some dif-
ferent application field. A protocol is a way to express the
right behavior of entities involved in a (possibly complex and
distributed) process. The formalism to be used for protocol
description should be as intuitive as possible, but it should be
also formally defined, in order to allow formal checks both on
the features of the protocol itself (e.g. termination), and also on
the execution of it. To this purpose, we will show some results
obtained by exploiting the SOCS − SI logic-based framework
for the specification and the verification of protocols in various
applicative fields such as electronic commerce, medicine and e-
learning. We will also present a new graphical notation to express
medical guidelines, which could be automatically translated into
the SOCS formalism.

I. INTRODUCTION AND OBJECTIVES

The advent of distributed systems has focused the attention
of the scientific community to interaction protocols between
multiple interacting entities. There are many application ar-
eas where the concept of protocol has already reached a
crucial importance; in some other field this concept has a
great potential for improving the design and the execution
of application specific processes. Protocols are the way to
express the right behavior of entities involved in a (possibly
complex and distributed) process; for instance, in a multi-agent
setting, an interaction protocol expresses the rules that agents
must follow in order to correctly perform the interaction.
Even in application areas traditionally far from the computer
science area, the protocol concept has been imported and used
with a more specialized meaning and a different name. For
instance, in the clinical field, protocols are named clinical
guidelines and express the correct ways for treating given
classes of clinical cases, possibly involving several actors,

each representing a specific medical operator (e.g., a physician,
a nurse, a laboratory technician, etc.).

Whatever the considered application field is, once a protocol
has been specified it could be very useful (in some cases it
is mandatory) to be able to verify that actors executing that
protocol are compliant with the behavior rules that the protocol
expresses.

To this purpose, the research on protocol verification has
greatly benefited from some important contributions achieved
in the distributed and concurrent systems research area [1],
[2], [3]. Among them, the SOCS european project [4] and
the MASSIVE italian project [5] have defined a logic based
framework for the specification and the verification of agent
interactions within an open and heterogeneous society. This
framework allows to specify the rules of each interaction
protocol by means of a logic-based formalism based on in-
tegrity constraints. This formal language is associated with an
operational counterpart implemented by means of an abductive
proof procedure, which is able to verify during the execution
(on the fly) agents compliance with given protocols, and
possibly to detect rule violations.

Although the SOCS-SI framework can be used for protocol
specification and verification in a wide range of applica-
tions, the language provided by SOCS-SI is logic-based and
therefore it is not particularly user-friendly: it is likely a
formalism not suitable to be used by protocol designers in
non technological application areas, such as the medicine
one. Therefore, in order to support protocol execution and
verification in a wider scenario, it is crucial to have a more
intuitive way to specify protocols, while the formal rigour in
their description.

In the past, the need of formal languages for the definition
of interaction protocols had not always been perceived as a
fundamental requirement. The case of the TCP protocol (the

WOA 2005 184

Transmission Control Protocol, [6]) is exemplary: the protocol
is described through an informal graphical notation, and the
semantic of messages is expressed in natural language; a wide
part of the protocol (e.g., the timing) is even not specified at
all.

The use of a graphical language for protocols definition
instead is universally considered a necessary step to the aim
of simplifying the job of protocols developers. In the multi-
agent system development area, several proposals of graphical
languages have been introduced, mostly based on finite state
automata. Only recently two languages that follow a different
approach (AUML [7], [8] and AML [9]) have been proposed,
both extending Interaction Diagrams of standard UML to
the aim of modeling agents interactions. However, although
these graphical formalism are easy and intuitive, a complete
formalization of them still lacks; consequently the support for
the formal verification property of the protocol lacks too.

The aim of this paper is to report some preliminary results
obtained in the context of the MASSIVE research project [5]
relating the formal specification and verification of protocols
in some different application field.

The paper is structured as follows. Section 2 briefly sketches
on the features of the SOCS framework, with a special focus
on verification and specification. Section 3 describes some
experiences in protocol specification in the SOCS frame-
work, regarding examples taken from different application
areas. Section 4 introduces graphical languages for protocol
specifications, and then presents GOSPEL, a new graphical
notation which is suitable for the specification of protocols,
with particular regard to medical guidelines, and which has
been designed to allow automatic translation of protocols into
the SOCS framework. Conclusions follow.

II. SOCS-SI: A FRAMEWORK FOR PROTOCOLS
FORMALIZATION AND VERIFICATION

In this section we give the necessary background on the
formal framework proposed by Alberti et al. [10], [11], [12]
for the specification of agent interaction in open 1 societies of
agents. The reader is referred to those papers for a complete
description. This system was initially aimed at agent interac-
tion protocols; however, in the following section we will show
how this framework could be successfully exploited also in
other different settings.

The framework assumes the existence of an entity (Social
Compliance Verifier or SCV, for short) which is external
to agents, and is devoted to check their compliance to the
specification of agent interaction.

The SCV is aware of the ongoing social agent social
behaviour: this is represented by a set of (ground) facts called
events, and indicated by functor H.

For example, H(request(ai, aj , give(10$), d1), 7) represents
the fact that agent ai requested agent aj to give 10$, in the

1We intend openness in societies of agents as Artikis et al. [13], where
agents can be heterogeneous and possibly non-cooperative.

context of interaction d1 (dialogue identifier) at time 7.2

In open agent societies, the agent behaviour is unpre-
dictable, because agents are autonomous; however, when inter-
action protocols are defined, we are able to determine what are
the possible expectations about future events. This represents
in some sense the “ideal” behaviour of a society. Expectations
can be positive (events expected to happen, indicated by the
functor E) or negative (events expected not to happen, functor
EN). Expectations have the same format as events, but they
will, typically, contain variables, to indicate that expected
events are not completely specified. CLP [14] constraints can
be imposed on variables to restrict their domain.

For instance,
E(accept(ak, aj , give(M), d2), Ta) ∧
M ≥ 10 ∧ Ta ≤ 15
represents the expectation for agent ak to accept giving agent
aj an amount M of money, in the context of interaction d2

(dialogue identifier) at time Ta; CLP constraints say that M
is expected to be greater or equal than 10, and Ta to be less
or equal than 15.

The way expectations are generated, given the happened
events and the current expectations, is specified by means of
Social Integrity Constraints (ICS).

Let us consider an example with two agents involved
(although ICS can be applied to any-party agent interaction):

H(request(A,B, P, D), T1)
→E(accept(B, A, P, D), T2) ∧ T2 ≤ T1 + τ

∨E(refuse(B, A, P, D), T2) ∧ T2 ≤ T1 + τ

(1)

states that, if agent A makes a request of P to agent B, in the
context of interaction D at time T1, then agent B is expected
to accept or refuse P by τ time units after the request.

The following ICS :

H(accept(A,B, P,D), T1)
→EN(refuse(A,B, P, D), T2) ∧ T2 ≥ T1

(2)

H(refuse(A,B, P, D), T1)
→EN(accept(A, B, P, D), T2) : T2 ≥ T1

(3)

express, instead, mutual exclusiveness between accept and
refuse: if an agent performs an accept, it is expected not to
perform a refuse with the same content after the accept, and
vice versa. In this way, we are able to define protocols as sets
of forward rules, relating events to expectations.

Abduction [15] is a reasoning paradigm which consists of
formulating hypotheses (called abducibles) to account for ob-
servations; in most abductive frameworks, integrity constraints
are imposed over possible hypotheses in order to prevent
inconsistent explanations. The idea behind our framework is
to formalize expectations about agent behaviour as abducibles,
and to use Social Integrity Constraints such as (1), (2) or (3)
to prevent such agent behaviour that is not compliant with
interaction protocols.

2We make the simplifying assumption about time of events, that the time of
sending a message is the same as receiving it, and that such time is assigned
by the social framework.

WOA 2005 185

Given the partial history of a society (i.e., the set of already
happened events), an abductive proof procedure (SCIFF, [16])
generates expectations about agent behaviour so as to comply
with Social Integrity Constraints. SCIFF is inspired by the
IFF proof procedure [17], augmented as needed to manage
CLP constraints and universal variables in abducibles. The
most distinctive feature of SCIFF, however, is its ability to
check that the generated expectations are fulfilled by the actual
agent behaviour (i.e., that events expected (not) to happen have
actually (not) happened), which cannot be assumed a priori
in an open society of autonomous agents.

The SCIFF proof procedure (implemented using SICStus
Prolog [18] and Constraint Handling Rules [19]) has been
integrated into the Java-based SOCS-SI tool.

III. POTENTIAL FOR REAL EXPLOITATION OF THE SOCS
FRAMEWORK

The previous section has shown the main features of the
SOCS framewok with a special focus on agents interaction
protocols. The SOCS proof procedure deals with events in
general, that in the case of agents interaction are mapped
into communicative acts. However the concept of event can
be abstracted from multi-agent systems and, dependently on
the particular setting, it may represent different actions. In the
following we will show how this can be applied to real-life
scenarios.

A. Medical guidelines

Medical guidelines [20] are clinical behaviour’s recommen-
dations that are used to support physicians in the definition of
the most appropriate diagnosis and/or therapy within determi-
nate clinical circumstances.

Unfortunately, guidelines are today described by using sev-
eral formats, such as flow charts and tables, so that physicians
are not properly supported in the detection of possible errors
and incompleteness: it is difficult to evaluate who made an
error within the protocol’s flow and when. As a consequence,
guideline’s application often loses its benefits.

In the following we show that the logic-based formalism
provided by the SOCS framework is general enough to allow
us to formally describe medical protocols. The main advantage
of using ICs in the context of medical guidelines is the
capability to discover some forms of inconsistency and to
perform an on-the-fly verification of the protocol’s application
on a specific patient.

In order to effectively test the potentialities of this approach,
we formalized a microbiological guideline [21] which de-
scribes how to manage an infectious patient from his arrival
at a hospital’s emergency room to his recovery and tested this
guideline on a set of clinical trials.

The guideline may be structured in seven phases: patient’s
arrival at the hospital’s emergency room; patient examination
at the emergency room; possible admission in a specific
hospital ward and first therapy prescription made by the ward
physician; request of a microbiological test (consisting of
many sub-phases, involving both human and artificial actors);

return of the microbiological test report to the ward physician,
who must decide the definitive therapy; management of drugs
by nurses; evaluation of patient’s health and, in case of
symptoms persistence, new prescription of microbiological
test. In order to formalize the guideline described before, we
detected, first of all, all the actors involved (e.g. the patient,
wards physicians, the microbiological laboratory, etc.) and
secondly pointed out all the actions which should be executed
(or not, i.e. expected or not expected) for an appropriate
patient’s disease treatment. Each actor has been then mapped
into an agent with a specific role, and actors actions (e.g,
examinations, analysis, etc) has been modeled as SOCS events.
For example, the following IC:

H (enter (Patient, emergency ward) , Tent)
→ E (examinate (Physician, Patient) , Texam)
∧Texam < Tent + 6 ∗ 60

(4)

expresses that when a patient arrives at the emergency room
(at time Tent), we expect that at least one physician would
visit him (at time Texam) within the deadline of 6 hours. This
deadline is expressed as a CLP constraint, which says that
Texam should be lower than Tent plus 6 hours. The complete
specification of this protocol consists of about 20 social ICs. It
has been tested via the SOCS-SI software, using different set
of events, compliant and not. For instance, a non compliant set
is the following: a patient (patientA) arrives at the hospital’s
emergency room at time 10, but no physician visits him within
6 hours. The event

enter (patientA, emergency ward) , 10

matches with the antecedent of (1), generating the expectation
in the consequent that a physician should visit patientA at time
Texam, such that Texam < 10+6*60. No event is afterward
registered until this deadline, therefore a violation is raised by
the proof procedure.

In this way a simple medical guideline may be mapped into
a set of social integrity constraints in the context of SOCS
infrastructure, thus enabling an on-the-fly verification about
the compliance of the hospital staff to it. We have successfully
tested this specification using the SOCS-SI tool with some
set of events, compliant and not. Of course, this is only the
first step towards an effective tool for defining and verifying
guidelines in a clinical environment.

In literature, several formalisms have been proposed for
representing medical protocols, like for example GLARE [22]
and PROforma [23]. These are complete tool capable to
manage both guidelines acquisition and execution, but, to the
best of our knowledge, their are not able to verify compliance
of actions and interactions of the kind here presented.

B. Electronic Auctions and E-commerce

Auctions have been practically used for centuries in human
commerce, and their properties have been studied in detail
from economic, social and computer science viewpoints. The
raising of electronic commerce has pushed auctions as one of

WOA 2005 186

the favorite dealing protocols in the Internet. Now, the software
agent technology seems an attractive paradigm to support
auctions [24]: agents acting on behalf of end-users could re-
duce the effort required to complete auction activities. Agents
are intrinsically autonomous and can be easily personalised
to embody end-user preferences. In addition, they could be
adaptive and capable of learning from both past experience and
their environment, in order to cope with changing operating
conditions and evolving user requirements [25]. In fact, while
in the past bidders were only humans, recent Internet auction
servers [26] allow software agents to participate in the auction
on behalf of end-users, and some of them even have a built-in
support for mobile agents [27].

A first, important issue in e-commerce and, in particular, in
electronic auctions, is trust [28]. Amongst the various aspects
of trust in MASs (often related to credibility levels between
agents), we find utterly important that human users trust their
representatives: in order for the system to be used at all, each
user must trust its representative agent in the auction.

A typical answer to such issues is to model-check the agents
with respect to both their specifications and requirements
coming from the society. However, this is not always possible
in open environments: agents could join the society at all times
and their specifications could be unavailable to the society.
Thus, the correct behavior of agents can be checked only
from the external in an open environment: by monitoring the
communicative actions of the agents.

A second, very important issue in e-commerce, is the deliv-
ery of the auctioned good: the auctioneer must be guaranteed
that he will receive the money, and the winner must be
guaranteed that he will get the good.

A possible answer to this problem consists of crafting an
interaction protocol for the delivery phase, such that both the
seller and the buyer are guaranteed of their rights. An example
of such a protocol has been shown in [29], where a third
trusted entity (a bank) act as guarantee for the seller and the
buyer.

Both the issues presented above show that the verification
of the correct behavior of participants to agents plays a
fundamental role, since the desired properties are guaranteed
only if the agents behave properly w. r. t. the protocols. The
SOCS framework provides an answer to this problem, since it
is able to determine if an interaction, observed from an external
viewpoint, respects a given protocol definition. Some of the
integrity constraints ruling a single-item auction protocol are
presented in the Specification III.1. In order to cope also
with the delivery problem, some rules have been added to
the auction protocol; these rules are mainly inspired by the
delivery phase presented in the Netbill protocol. The ICS 5,
for example, states that each time a bidding event happens,
the auctioneer should have sent an openauction event (to all
bidders); this is equivalent to assert that no one can place a
bid if an auction was not previously declared as “open”. The
ICS 6 implies instead that the auctioneer should answer to
each bid, and that the answer should be sent after the auction
is closed within the deadline Tdeadline. Finally, the ICS 7

imposes that if a bid has been declared a winning bid, then
the bidder should deliver items involved in the bid.

Specification III.1 The auction protocol expressed using the
ICS language.

H(tell(B, A, bid(ItemList, P), Anumber), Tbid)

→ E(tell(A, B, openauction(Items, Tend, Tdeadline), Anumber), Topen),

Topen < Tbid ∧ Tbid ≤ Tend

(5)

H(tell(B, A, bid(ItemList, P), Anumber), Tbid) ∧
H(tell(A, B, openauction(Items, Tend, Tdeadline), Anumber), Topen)

→ E(tell(A, B, answer(X, S, ItemList, P), Anumber), Tanswer),

Tanswer ≥ Tend ∧ Tanswer ≤ Tdeadline, X :: [win, lose]

. . .
(6)

H(tell(B, A, bid(ItemList, P), Anumber), Tbid) ∧
H(tell(A, B, answer(win, B, ItemList, P), Anumber), T1) ∧
Tbid < T1

→ E(tell(B, A, deliver(ItemList, P), Anumber), T3) ∧
T3 > T1

. . .
(7)

C. E-learning by doing
E-learning is a new paradigm for the learning process, based

on the growing availability of technology resources such as
personal computers and the Internet. The main idea of e-
learning consist of distributing the knowledge onto new media
support like cd, dvd, or directly through the internet. Around
this idea a set of support technologies have been developed,
such as content management systems and applications for real-
time streaming and interactions. Many advantages are offered
by this paradigm: just to mention the more evident, teacher
and student are not constrained anymore to be in the same
place. Moreover, teacher and student can be decoupled also
in the time dimension: it is no longer needed that teacher and
student attend the lesson at the same time instant. The learning
process can be adapted to each student’s needs, taking into
account previous knowledge, time availability, and learning
capabilities of the student himself.

Several e-learning paradigms have been developed, and
amongst them, e-learning “by doing” is one of the most
promising in terms of the learning quality. The “by doing”
paradigm consists of teaching a topic by letting the student
directly practice the argument onto a real system, or a model
that simulates the real system. This approach can be applied
also to the e-learning processes, and in particular to software
applications learning. Of course, the degree of interaction
between the student and the teacher, and the possibility to
receive help when needed, are of the utmost importance in
such process. The student in fact must not be left alone
during the learning process, but rather he should be followed
interactively, and he should receive help, hints and feedback
whenever it is opportune.

WOA 2005 187

To support the e-learning by doing process, it is necessary
to tackle several issues: firstly, a mechanism for evaluating
the acquired skills is needed, in order to be able to proceed
to advanced topics. The evaluation mechanism must provide
support for a-posteriori evaluation, as well as run-time eval-
uation to hint the student. Secondly, it is quite common that
the same learning goal can be achieved in more than one way:
the tutoring system must be able to evaluate all the options,
and should adapt in response to the student choices.

The SOCS framework, and in particular the SOCS-SI ap-
plication, are general enough to be used also in the context
of e-learning by doing. We have tried successfully to adopt
our protocol definition language for representing the action
expected by the user of a e-learning by doing system (a
sort of a protocol where only one peer participate). We have
focussed our experiments on the learning process of a writing
application within the offices program suites. We developed
our prototype on two applications, the MS Word program (part
of the Microsoft Office Suite), and the Writer application of
the OpenOffice suite. For both applications, a specific filter
has been developed, with the purpose of capturing the actions
performed by the student. Those actions, after a transformation
process, are communicated to the SOCS-SI application, that
provide to check the conformance to a special protocol defi-
nition. Such definition can be seen in the Specification III.2,
where it is defined how the student can achieve the goal of
closing the application after printing a file.

Specification III.2 An e-learning goal represented through the
ICS language.

H(tell(U, S, keyboard event(print), DialogId), TP rint)

→ E(tell(U, S, mouse event(menu File Close), DialogId), TClose)

∧ TClose > TP rint

∨ E(tell(U, S, mouse event(menu File Exit), DialogId), TExit)

∧ TExit > TP rint

∨ E(tell(U, S, keyboard event(quit), DialogId), TExit)

∧ TExit > TP rint

∨ E(tell(U, S, keyboard event(alt + f), DialogId), TF ile)

∧ E(tell(U, S, mouse event(menu File Close), DialogId), TClose)

∧ TP rint < TF ile ∧ TF ile < TClose

∨ E(tell(U, S, keyboard event(alt + f), DialogId), TF ile)

∧ E(tell(U, S, mouse event(menu File Exit), DialogId), TExit)

∧ TP rint < TF ile ∧ TF ile < TExit

∨ E(tell(U, S, close document, DialogId), TClose)

∧ TClose > TP rint

∨ E(tell(U, S, close office, DialogId), TClose)

∧ TClose > TP rint

(8)

The ICS 8 shows how it is possible to represent multiple
solutions for solving the learning goal. Seven different alter-
natives are considered, from using the “File” menu and the
corresponding voice, to closing directly all the application.

Once the learning goal has been defined through ICS , the
SOCS-SI application can use it in three different ways:

1) the tool can be used as evaluator of the actions of the

student: if at the end of the practicing session, at least
one expectation is not satisfied, then the goal has not
been achieved;

2) the tool can be used also as an on-the-fly checker: if
the student perform an action that will block him for
reaching the goal, then it is possible to advice him
immediately, rather than waiting for the end of the
exercise;

3) the tool can be finally used as a suggesting system: if
the student does not know how to achieve the goal, it is
possible to hint him the next action by communicating
the expectations about his future behavior.

Of course it is up to the teacher (or the e-learning content
manager) to decide which modality is more opportune.

IV. TOWARDS A HIGH-LEVEL LOGIC-BASED
SPECIFICATION USING GRAPHICAL LANGUAGES

The problem of the specification of protocols involving
several entities is becoming a topical subject in many different
contexts.

In the multi-agent system development area, several pro-
posals of graphical languages for protocol definition have
been introduced, mostly based on finite states automata [30],
[31]. Only recently two languages that follow a different
approach, AUML [7], [8] and AML [9] have been proposed.
AUML proposes an extension of the Interaction Diagram of
standard UML to the aim of modeling agents interactions.
AUML supports the heterogeneity of interacting entities, since
it abstracts from the inner architecture of the agents; it allows
to define in an intuitive way which are the actors participants
to the interaction, and the messages (specifying both the sender
and the addressee) allowed in the protocol. Although the
AUML graphical formalism is easy and intuitive, a complete
formalization of the language still lacks. The AML language
extends the AUML protocols graphical specification language;
however it still does not supply a complete language semantics
and therefore it does not support any formal verification of
properties too.

Although the formalism to be used for protocol description
should be as intuitive as possible, it should be also formally
defined, in order to allow the execution of automatic checks
both on the features of the protocol itself (e.g. termination,
etc.), and also on the execution of it. To this purpose, in the
following we will present GOSPEL, a new graphical notation
to express protocols, with particular regard to medical guide-
lines, which has been designed to be automatically translated
into the SOCS formal language. The automatic translation is
ongoing work, and the first experimental results suggest that
it feasible.

A. GOSPEL

In literature, several graphical notations have been proposed
proposed to represent medical protocols, like for example
GLARE [22] and PROforma [23]. These are complete tool
capable to manage both guidelines acquisition and execution,
but, as for as we are concerned, their are not able to verify

WOA 2005 188

compliance of actions and interactions as those presented in
Section III-A.

If we want to effectively bring these advantages in the
clinical environment we have to incorporate the SOCS ap-
proach in a tool that allows both guidelines acquisition and
execution. The first step toward this goal is represented by
the Guideline prOcess SPEcification Language (GOSPEL).
GOSPEL is a graphical language, inspired by flow charts, for
the specification and representation of all the activities that
belong to a process and their flow inside it.

The GOSPEL representation of a guideline consists of
two different parts: a flow chart, which models the process
evolution, and an ontology, which describes at a fixed level
of abstraction the application domain and gives a semantic to
the diagram. The GOSPEL flow chart language is described
in Section IV-A.1. The GOSPEL ontology management is
described in Section IV-A.2. Section IV-A.3 describes how
we plan to integrate GOSPEL with the SOCS approach in
real world applications.

1) GOSPEL flow chart language: The GOSPEL flow chart
language describes the process evolution using blocks, which
can represent distinct process activities, and connections be-
tween blocks.

About the blocks, the ones proposed by GOSPEL are shown
in Table I.

LEAF BLOCKS
action autom. ex-or parallel synch

decision

START BLOCKS MACROBLOCKS
start cyclic complex iteration while

start action

END BLOCKS
return end

TABLE I
GOSPEL BLOCKS

These blocks are grouped into four families:
• Leaf blocks, blocks which represent atomic process ac-

tivities at the desired abstraction level;
• Macroblocks, blocks that are threated at their level like

simple blocks but that encapsulate a sub-process (that is
represented as another GOSPEL guideline);

• Start blocks, start points of (sub)processes;
• End blocks, end points of (sub)processes.
Among leaf blocks, action blocks are used to represent

single atomic process activities. The other leaf blocks are

crucial for modeling complex guidelines as they are used to
express workflow’s branches and forks, the former related to
decision points, the latter to activities parallelization.

GOSPEL supports two different types of decision blocks:
the first one, called ex-or decision leaf block, is used sim-
ply for expressing mutual exclusion between successors; the
second one, called automatic decision leaf block, permits to
automatically decide which path should be followed. In the
second case, each outcoming relation is guarded. In order
to maintain mutually exclusion, the designer should give a
preference about guards evaluation: the i-th guard is evaluated
iff the i-1-th previous guards fail.

Concurrence of activities is expressed using parallel and
synch leaf blocks. When the process flow reaches the parallel
leaf block it is splitted in several subprocesses represented as
outcoming relations. When these subprocesses are executed,
they are regrouped by the synch leaf block in the main process
flow.

Thanks to macroblocks, GOSPEL allows guideline designer
to follow a top-down approach for guideline process descrip-
tion as it is possible to split recursively the process into sub-
processes, bringing down the level of abstraction. We said that
Macroblocks are special blocks threated like atomic actions at
their level, but that incapsulate a new subprocess. Therefore,
each macroblock is associated to one start block, representing
the initial point of the (sub)process, and one or more exit
blocks; when an exit point is encountered, the flow will return
to the parent level; entering in and exiting from a macroblock
follow the same approach of procedure calls. A macroblock
defines both its inner subprocess and how the flow will walk
through it.

GOSPEL proposes three macroblock types: Complex action
macroblock, Iteration macroblock and While macroblock. The
simplest one is the one of complex action macroblock, in
which we specify directly a new (sub)process. The entire
guideline may be viewed as a big complex action. Other
macroblocks show different behavior, because they express
workflow cycles. Cycles modeling in GOSPEL is similar
to structured programming: the Iteration macroblock models
a for structure, saying how many times the (sub)process
should be repeated and the While macroblock represents a
do...while structure, expressing the exit condition with
a logic guard. In the case of cyclic macroblocks, the modeled
(sub)process corresponds to one iteration step. In order to say
that the generic step is terminated and that the next should
begin (if the cycle condition agrees), we create a connection
that goes back into the start point, which is actually a cyclic
start. The presence of an exit block within a cyclic macroblock
means that the cycle should be prematurely terminated; the
same happens in structured programming when we write a
break command.

About block connections, GOSPEL defines three types of
binary relations (connections that involve two blocks): Order
relation, Conditional order relation and Time relation.

An order relation is an oriented connection used to specify
which activity follows a specific one in the process evolution.

WOA 2005 189

A conditional order relation may be associated to a logic
guard containing the knowledge necessary to automatically
choose if the process evolution will walk through this con-
nection. If this knowledge is not modeled, the choice is left
to participants.

The time relation is used to express a constraint between
the execution time of involved activities. As described in III-A,
Integrity Constraints can be used to model a protocol in term
of observable events. GOSPEL follows the same approach:
an action block models a relevant and observable activity in
the workflow. Since an activity is observable and has a well-
defined execution time it possible to made temporal constraints
related to the execution time of several of them.

An example of a GOSPEL guideline fragment is shown in
Figure 1.

Fig. 1. Example of GOSPEL language: a fragment of a hypothetical clinical
guideline

In the example, a ward physician (Phy) should mea-
sure (meas temp(Phy,Pat,Temp) the patient’s temperature .
If the measured value is greater or equal than 38 celsius
degrees then two nurses should register that value regis-
ter(Nur2,Pat,Temp) and administer paracetamol to the patient
administer(Nur1,Pat,’paracetamol’). In this case, the patient is
held in the emergency room hold(Phy,Pat) for further inves-
tigations. Otherwise, if the measured value is lower than 38
celsius degrees then the physician should decide if is necessary
to hold the patient or to let him go away release(Phy,Pat).

2) GOSPEL ontology: Another crucial component of
GOSPEL is the guideline ontology. Since GOSPEL is a
general-purpose language, potentially useful in any context
that requires to model a workflow, it avoids to fix an ontology
a priori.

The guideline ontology is used to specify the semantic
associated to an activity. It is mainly composed by two
hierarchies: a hierarchy of all the activities which belongs to
the process domain and a hierarchy of participants, entities
that play a role in one or more activities.

This ontology may be created and maintained by using Pro-
tege [stanford.protege.org], an open source tool, developed
by the Stanford University. The Protege JAVA libraries are
used in the graphical guideline editor of GOSPEL to specify

actions and guards. Figure 2 shows and example of action
specification in the GOSPEL editor.

Fig. 2. Action specification in the GOSPEL editor

The complete specification of an action consists of choosing
an ontological activity and associating one or more participants
to it. Participants are introduced within macroblocks giving
them a logical name; macroblocks realize also precise visibility
rules of participants. During an action specification, visible
participants can be associated to the selected ontological
activity.

3) Integrating GOSPEL with the SOCS approach:
GOSPEL is part of a complex system that aims to support
designers in both the modeling and the execution phases. With
respect to the modeling side, we have implemented a GOSPEL
editing tool that integrates ontologies developed in Protege.
We are working now on a visitor application (the Translator
shown in Figure 3) that is capable to walk through a GOSPEL
diagram and translate it into a set of social integrity constraints.

From this perspective, ontological activities become hap-
pened events and participants logical variables involved in the
events. The visitor makes possible to exploit the benefits of
SOCS computational model, providing a framework for the
verification of participant behavior compliance to GOSPEL
modeled processes. In order to better explain how the visitor
works, we take into account, for example, the GOSPEL
diagram shown in Figure 1. In this example, the temperature
measurement becomes an happened event. The presence of
an automatic decision with two outcoming relations splits the
diagram into two different ”worlds”, the former associated to
a temperature’s value greater or equal than 38, the latter to a
value lower than 38; therefore, the visitor generates ICS 9
and 10, mapping directly the parallel and the ex-or decision
blocks into logical AND and exclusive OR.

WOA 2005 190

Specification IV.1 first part of the diagram in Figure 1
translated into ICS

H(temp meas(Phy, Pat, Temp), Tm)
∧ Temp ≥ 38

→ E(register(Nur1, Pat, Temp), Tr)
∧ Tr > Tm

∧ E(administer(Nur2, Pat, paracetamol), Ta)
∧ Ta > Tm

(9)

H(temp meas(Phy, Pat, Temp), Tm)
∧ Temp < 38

→ E(hold(Phy, Pat), Th)
∧ Th > Tm

∧EN(release(Phy, Pat), Tr)
∧ Tr > Th

∨ E(release(Phy, Pat), Tr)
∧ Tr > Tm

∧EN(hold(Phy, Pat), Th)
∧ Th > Tr

(10)

Finally, the diagram shows that when the temperature is
≥ 38 and both nurses have finished their tasks, the physician
should hold the patient. This behavior translates into a third
integrity constraint (ICS 11).

Specification IV.2 third ICS generated visiting the diagram
example

H(register(Nur1, Pat, Temp), Tr)
∧H(administer(Nur2, Pat, paracetamol), Ta)

→ E(hold(Phy, Pat), Th)
∧ Th > Tr

∧ Th > Ta

(11)

In a real application, we cannot rely on a manual delivery
of relevant events to the proof. We have rather to identify
the different types of events sources and try to extract auto-
matically the happened events from them. Many events are
recorded in the business database management system, which
can be considered as a source of events.

Therefore, at the execution side we are developing an
infrastructure that is capable to map ontological activities into
a concrete data base management system and interact with it
in order to extract at run-time the corresponding events. Two
forms of interaction are considered: a polling mode and an
interrupt mode (implemented via triggers).

The complete architecture of the guideline tool integrating
both GOSPEL and SOCS is shown in Figure 3.

Fig. 3. Overview of the integration between GOSPEL and SOCS

V. CONCLUSIONS

In this paper we have reviewed some of the applications
of the logic-based SOCS social framework, and we have
introduced the GOSPEL graphical notation for expressing
protocols.

The research reported in this paper represents a first step
towards a methodology of protocol design meant to exploit the
best of two worlds: the ease of use and simplicity of graphical
formalisms, and the well-defined declarative and operational
semantics of logic-based formalisms.

The next (ongoing) step of our research is the automatic
translation of GOSPEL-based protocol specifications to the
SOCS framework.

ACKNOWLEDGEMENTS

This work was partially funded by the IST programme of
the EU under the IST-2001-32530 SOCS project, by MIUR
under the COFIN2004 project ”MASSIVE: Sviluppo e verifica
di sistemi multiagente basati sulla logica” and under the
COFIN2003 project ”La Gestione e la negoziazione automat-
ica dei diritti sulle opere dell’ingegno digitali: aspetti giuridici
e informatici”, by ”SPINNER: Servizi per la Promozione
dell’INNovazione e della Ricerca” Project 45/04.

We wish to thank the other partners of the MASSIVE
project, Evelina Lamma and Marco Gavanelli for their collabo-
rative participation and for precious comments and suggestions
on our work.

REFERENCES

[1] D. Gollman, “Analysing security protocols,” in Proceedings FASec, ser.
LNCS, A. Abdallah, P. Ryan, and S. Schneider, Eds., vol. 2629, 2002,
pp. 71–80.

[2] E. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press,
2000.

[3] B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci,
and P. Schnoebelen, Systems and Software Verification. Model-Checking
Techniques and Tools. Springer, 2001.

WOA 2005 191

[4] “Societies Of ComputeeS (SOCS), IST-2001-32530,
http://lia.deis.unibo.it/research/socs/ .” [Online]. Available: HomePage:
\url{http://lia.deis.unibo.it/Research/SOCS/}

[5] “Massive - sviluppo e verifica di sistemi multiagente basati sulla logica,”
http://www.di.unito.it/massive/.

[6] J. Postel, Transmission Control Protocol, IETF, September 1981, sTD
7, RFC 793.

[7] M. P. Huget, “Agent uml notation for multiagent system design,” Internet
Computing, IEEE, vol. 8, no. 4, pp. 63– 71, Jul-Aug 2004.

[8] J. P. M. B. Bauer and J. Odell, “Agent uml: A formalism for speci-
fying multiagent interaction,” in Agent-Oriented Software Engineering,
P. Ciancarini and M. Wooldridge, Eds. Berlin: Springer-Verlag, 2001,
pp. 91–103.

[9] R. Cervenka and I. Trencansky, “Agent modeling language, language
specification,” Whitestein Technologies, Tech. Rep., 2004, draft proposal
v. 0.9.

[10] M. Alberti, A. Ciampolini, M. Gavanelli, E. Lamma, P. Mello, and
P. Torroni, “A social ACL semantics by deontic constraints,” in Multi-
Agent Systems and Applications III. Proceedings of the 3rd International
Central and Eastern European Conference on Multi-Agent Systems,
CEEMAS 2003, ser. Lecture Notes in Artificial Intelligence, V. Mar̆ı́k,
J. Müller, and M. Pĕchouc̆ek, Eds., vol. 2691. Prague, Czech Republic:
Springer-Verlag, June 16–18 2003, pp. 204–213.

[11] M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni, “Spec-
ification and verification of agent interactions using social integrity
constraints,” Electronic Notes in Theoretical Computer Science, vol. 85,
no. 2, 2003.

[12] ——, “An Abductive Interpretation for Open Societies,” in AI*IA 2003:
Advances in Artificial Intelligence, Proceedings of the 8th Congress
of the Italian Association for Artificial Intelligence, Pisa, ser. Lecture
Notes in Artificial Intelligence, A. Cappelli and F. Turini, Eds., vol.
2829. Springer-Verlag, Sept. 23–26 2003, pp. 287–299. [Online].
Available: http://www-aiia2003.di.unipi.it

[13] A. Artikis, J. Pitt, and M. Sergot, “Animated specifications of
computational societies,” in Proceedings of the First International
Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS-2002), Part III, C. Castelfranchi and W. Lewis Johnson, Eds.
Bologna, Italy: ACM Press, July 15–19 2002, pp. 1053–1061. [On-
line]. Available: http://portal.acm.org/ft gateway.cfm?id=545070&type=
pdf&dl=GUIDE&dl=ACM&CFID=4415868&CFTOKEN=57395936

[14] J. Jaffar and M. Maher, “Constraint logic programming: a survey,”
Journal of Logic Programming, vol. 19-20, pp. 503–582, 1994.

[15] A. C. Kakas, R. A. Kowalski, and F. Toni, “Abductive Logic Program-
ming,” Journal of Logic and Computation, vol. 2, no. 6, pp. 719–770,
1993.

[16] M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni, “Speci-
fication and verification of interaction protocols: a computational logic
approach based on abduction,” Dipartimento di Ingegneria di Ferrara,
Ferrara, Italy, Technical Report CS-2003-03, 2003, available at http:
//www.ing.unife.it/informatica/tr/.

[17] T. H. Fung and R. A. Kowalski, “The IFF proof procedure for abductive
logic programming,” Journal of Logic Programming, vol. 33, no. 2, pp.
151–165, Nov. 1997.

[18] “SICStus prolog user manual, release 3.11.0,” Oct. 2003, http://www.
sics.se/isl/sicstus/.

[19] T. Frühwirth, “Theory and practice of constraint handling rules,” Journal
of Logic Programming, vol. 37, no. 1-3, pp. 95–138, Oct. 1998.

[20] C. Gordon, “Practice guidelines and healthcare telematics; towards an
alliance,” Health telematics for clinical guidelines and protocols, pp.
3–15, 1995.

[21] D. Brock, M. Madigan, J.M.Martinko, and J. Parker, Microbiologia.
Prentice-Hall International, Milano, 1995.

[22] P. Terenziani, P. Raviola, O. Bruschi, M. Torchio, M. Marzuoli, and
G. Molino, “Representing knowledge levels in clinical guidelines,”
Proceedings of the Join European Conference on Artificial Intelligence
in Medicine and Medical Decision Making, vol. 1620, pp. 254–258,
1999.

[23] J. Fox, N. Johns, A. Rahmanzadeh, and R. Thomson, “Disseminating
medical knowledge: the proforma approach,” Artificial Intelligence in
Medicine, vol. 14, pp. 157–181, 1998.

[24] A. Chavez and P. Maes, “Kasbah: An agent marketplace for buying
and selling goods,” in Proceedings of the First International Conference
on the Practical Application of Intelligent Agents and Multi-Agent
Technology (PAAM-96), London, Apr. 1996, pp. 75–90.

[25] R. Guttman, A. Moukas, and P. Maes, “Agent-mediated electronic
commerce: A survey,” Knowledge Engineering Review, vol. 13(2), pp.
143–147, 1998.

[26] P. Wurman, M. Wellman, and W. Walsh, “The michigan internet auc-
tionbot: A configurable auction server for human and software agents,”
in Proceedings of the Second International Conference on Autonomous
Agents (Agents-98), 1998.

[27] T. Sandholm, “eMediator: a next generation electronic commerce
server,” in Proceedings of the Fourth International Conference on
Autonomous Agents (Agents-2000), 2000.

[28] S. Marsh, “Trust in distributed artificial intelligence,” in Artificial Social
Societies, ser. Lecture Notes in Artificial Intelligence, C. Castelfranchi
and E. Werner, Eds., no. 830. Springer-Verlag, 1994, pp. 94–112.

[29] B. Cox, J. Tygar, and M. Sirbu, “Netbill security and transaction
protocol,” in Proceedings of the First USENIX Workshop on Electronic
Commerce, New York, July 1995.

[30] M. Barbuceanu and M. Fox, “Cool: a language for describing coordina-
tion in multi-agent systems,” in Proc. of 1st Intnl. Conf. on Multiagent
Systems (ICMAS-95), 1995, pp. 17–24.

[31] K. Kuwabara, T. Ishida, and N. Osato, “Agentalk:describing multiagent
coordination protocols with inheritance,” in 7th Int. Conf. on Tools for
Artificial Intelligence (ICTAI-95), 1995.

WOA 2005 192

