

 From Design to Intention: Signs of a Revolution

 Franco Zambonelli
 Dipartimento di Scienze dell’Ingegneria – Università di Modena e Reggio Emilia

 Via Vignolese 905 – 41100 Modena – ITALY
 Phone: +39-059-2056133 – Fax: +39-059-2056126

 franco.zambonelli@unimo.it

 Abstract
 In this paper, we identify and analyze a set of issues that are
more and more influencing the characteristics of today's
complex software systems, and that make them distinguish
from "traditional" software systems. Several examples in
different areas show that these issues do not influence a few
application domains only, but are instead widespread. Then,
we discuss how these issues are likely to dramatically
impact on the very way software is modeled and engineered.
In particular, we show that we are on the edge of a
revolutionary shift of paradigm, likely to change our very
attitudes, and making us conceive software systems no
longer in terms of mechanical systems, but rather in terms of
intentional or physical systems.

1 Introduction

 Computer science and software engineering are going to
dramatically change. Scientists and engineers are spending a
great deal of efforts in the attempt of continuously adapting
and improving well-established models and methodologies
for software development. However, the complexity raised
in software systems by several emerging computing
scenarios seems to be no longer affordable in terms of the
abstractions and methodologies promoted by traditional
approaches to computer science and software engineering,
such as object-oriented and component-based ones.

 The so called "software crisis" occurred in the 70's and
having led to modular and object-oriented programming
paradigm was mainly caused by a problem of size. The
required amount of functionality in software systems were
increasing over the limits to be effectively handled by
adopting an "algorithmic" approach to software modeling
and an "artisan-based" approach to software development,
and led to an "architectural" approach to software systems
design and modeling. The same driving force has primarily
driven research and technological efforts till today, leading
to modern approaches to object-oriented and component-
oriented programming. The crisis that we are going to face
in the next few years will be of a very different nature, and
the never stopping increase in size of software systems will
represent only a single facet of it.

 The scenario that will cause the next software crisis is

rapidly forming under the eyes of everybody: computing
systems are going to be everywhere and will be always
connected and active [Ten00]. On the one hand, computer
systems are going to be embedded in every object, e.g., in
our everyday clothes, in our home furniture, in our homes
themselves, not to mention the computing capabilities of
handheld computing devices and cellular phones, which are
already a reality. On the other hand, also due to the advances
in wireless technologies, network connectivity will be
pervasive, and every computing device will be somehow
connected in a network, whether the "traditional" Internet or
some ad-hoc network. The diffusion of WAP and of the
incoming UMTS technology, as well as the possibility of
accessing the Internet via electricity grids, are nothing but
the first embryonic stage of this trend. Finally, computing
systems will always "do something", i.e, will be always
active to perform some activity on our behalf, let these
activities be devoted to improve our comfort at home or to
control and automate manufacturing processes in industries.
After all, daemons and assistant agents already populates our
PCs and workstations, devoted to monitor and handle our
computing and digital resources.

 In this paper, we argue that the above scenarios do not
simply quantitatively affects – in terms of number of
components and effort required – the design and
development of software systems. Instead, we argue that
there will be a qualitative change in the characteristics of
software systems, as well in the methodologies adopted to
develop them. In particular, we argue that 4 main
characteristics – in addition to the quantitative increase in
interconnected computing systems – distinguish future
software systems from traditional ones: situatedness,
openness, locality in control, and locality in interactions.

 Any researcher having worked in the area of agent-based
computing will immediately recognize the above
characteristics as the main distinguishing ones of agents and
of multi-agent systems. However, in this paper we go into
details about the above four characteristics and will try to
show how, to different extents and with different
terminology, several research communities are already
recognizing their importance and are already adapting their
models and technologies to take them into account. Thus, a
first contribution of this paper is attempting at synthesizing
in a single conceptual framework a multitude of novel

concepts and abstractions that – often because of a lack of
interaction and common terminology between research
groups – are emerging in different areas without recognition
of the basic commonalties.

 Following the above synthesis attempt, the paper argues that
the integration of the above concepts and abstractions in
software modeling and design does not simply represent a
proper evolution of current models and methodologies.
Instead, the paper claims that we going to pass though a real
revolution, a radical change of paradigm [Kuh96]. Such a
revolution will dramatically change the very way we
conceive and model "software components" and "software
systems", as well as the way we will build such systems. In a
sentence, the paper argues that next generation software
systems will no longer be modeled and designed in terms of
"mechanical" or "architectural" systems, but rather in terms
of "physical" or "intentional" systems. Accordingly, the
paper tries to identify the impact of such a change of
paradigm in computer science and software engineering
practices.

2 What’s New?

In this section, we go into details about the four
characteristics identified in the introduction, namely
situatedness, openness, local control, local interactions, and
shows how they affect most of today’s software systems,
other than agent-based ones.

2.1 Situatedness
 Today’s computing systems are situated. That is, they have
an explicit notion of the environment in which components
are allocated and execute, are affected in their execution by
the environmental characteristics, and their components
often explicitly interact with that environment.

 We emphasize that software systems have never worked in
isolation, but have always been and will always be immersed
in some sort of environment. For instance, a running process
in a multi-threaded machine is intrinsically affected in its
execution by the dynamics of the multiprocessing system.
However, traditional modeling and engineering approaches
have always tried to mask the presence of the environment.
In most of the cases, specific objects and components were
devoted to “wrap” the environment and to model it in terms
of a "normal" component. That is, the environment in itself
did not exist as a primary abstraction in approaches to
software development. Unfortunately, the environment in
which components live and with which they interact indeed
exists and may impact on application execution and on
application modeling:

• several entities with which software components may be
in need of interacting are too complex in their structure
and behavior to enable a trivial wrapping;

• for a software system whose explicit goal is to monitor

(sense) and control (affect) a physical environment or a
logical – software – environment masking such an
environment seems simply not a natural choice;

• the environment can have its own dynamics,
independent of the intrinsic dynamic of a software
systems. Wrapping the environment into an application
entity, will introduce forms of unpredictability non-
determinism in the behavior of some parts of our
applications.

 Due to the above reasons, the current trend in both computer
science and software engineering is to explicitly elect the
environment in which a software system executes as a
primary abstraction. This implies explicitly defining both the
"boundaries" separating the software systems and its
environment and the reciprocal influences of the two
systems. On the one hand, this avoids odd wrapping
activities needed to model each component of the external
world as an internal application entity. On the other hand,
this allows a software system to deal in a more natural with
its activities on a real-world environment it is devoted to
monitor and control. In addition, the explicit modeling of the
environment and of its activities enable to clearly identify
and confine the sources of dynamicity and unpredictability,
and concentrate on our software components in terms of
deterministic entities that have to deal with a dynamic –
possibly unpredictable – environment.

 Examples. There are several notable examples of this trend.
Systems for the control of manufacturing systems and, more
generally, embedded systems for the control of physical
environments (traffic control systems, home care and health
care system) tends to be built by explicitly managing
environmental data, and by explicitly taking into account the
unpredictable dynamics of the environment via specific
event-handling policies. Internet applications and web-based
systems, to be dived into the existing and intrinsically
dynamic Internet environment, are typically engineered by
clearly defining the boundaries of the system in terms of
"application-level", including the new application
components to be developed, and "middleware" level, as the
environmental substrate in which components will be dived.
Even more, clearly identifying and defining such boundaries
is one of the key point in web-application engineering. As a
further example, several systems for workflow management
and computer supported collaborative work are built around
shared data spaces abstractions, to be exploited as the
common environment for the execution of workflow
processes and agents. As a final example, it is worth noting
that several promising proposals in the area of distributed
problem solving and optimization (i.e., works on ant-based
colonies [Par01]), are based on a model centered around a
dynamic virtual environment influencing the activities of
distributed problem solver processes.

2.2 Openness
Living in an environment, perceiving it, and being affected
by intrinsically implies some sort of openness of a software
system. In fact, the system cannot be longer conceived as an
isolated world, but it must be instead considered as
permeable sub-system, through which boundaries reciprocal
side-effects may occur. However, this form of reciprocal
influence system-environment often assume extreme and
very complex forms, making it difficult to clearly identify
boundaries between the systems and its environment.

In several cases, software systems are explicitly designed to
interact with external software components, whose
functionality and characteristics are required for the system
in itself to achieve the objectives it is designed for. From the
opposite perspective, the component of a software system
may be designed to be involved in interactions with other
components, to provide them services or data. More in
general, different software systems – independently designed
and modeled – are likely to "live" in the same environment
and explicitly interact with each other. These forms of open
interactions call for common ontologies, communication
protocols, and suitable broker infrastructures, to enable
interoperability. However, this is only a small part of the
problem.

Simply enabling interoperability is not enough when
software system may come to life and may death in an
environment independently of each other, in a very dynamic
way, or when a software system (or a part of it) can
explicitly move across different environments during its life.
These characteristics introduce additional problems:

• a component getting to life in an environment (or having
somehow moved to a specific environment) requires
somehow being made aware of what's around in the
environment, and of what other components are there
for interaction;

• when a component interacts with other components in
other software systems, and when components move
across different environment, it may become hard if not
impossible clearly identifying to which system a
component belongs to or – which is the same – it
becomes difficult to clearly understand the boundaries
of software systems;

• allowing components to enter and leave an environment
in a fully free way, and interact with each other may
make it very hard to understand and control the overall
behavior of these software systems and even of a single
software system.

 Due to the above problems, the current trends in computer
science and software engineering is to start considering the
problem of not only modeling the environment in which
systems execute, but also of the context in which they
execute. In fact, the aim is also to understand the way

software components can be made somehow aware of the
context in which they execute, and the way interaction of
independent components in an open context con be
controlled and ruled.

 Examples. Let us consider those control systems for critical
environments, such as traffic control systems, public
telephony services, health care systems, as well as
manufacturing systems. All this systems are forever running,
cannot be stopped, and sometimes cannot even be removed
from the environment in which they are embedded.
Nevertheless, this systems need to be continuously updated,
and the environment is which they live is likely to change
frequently, with the addition of new physical components
and, consequently, of new software components and
software systems. For all these systems, managing openness
and the capability of establishing new effective interactions
with new components is of dramatic importance, as it is
important the capability of a component of safety and
effectively entering new execution contexts. Moreover, it is
important that execution contexts are able to somehow
constraints and control the dynamic interactions there
occurring. Very similar considerations apply to Internet
based and open distributed computing. There, software
services must survive the dynamics and uncertainty of the
Internet, must be able to serve any client component, and
must be as well able to enact security and resource control
policy in their local context. As a final example in which
openness and context plays a very important role relates to
mobility. Mobility, whether of users, of software, or of
devices, moves the concept of openness at the extreme, by
making components actually move from one context to
another during their execution [Whi97, CabLZ01]. Of
course, more than in other application areas, this requires the
capability of components of dynamically acquiring
knowledge about the context in which they execute, and the
capability of controlling component interaction in a context.

2.3 Local Control
The "flow of control" concept has always been one of the
key aspect of computer science and software engineering, at
all levels, from the hardware level up to the high-level
design of applications. However, when software systems and
components live and interact in an open world the concept of
flow of control simply lose any meaning.

Independent software systems have their own autonomous
flows of control, and their mutual interactions do not imply
any join of this flows. Therefore, the modeling and designing
of open software not only makes the concept of "software
system" rather vague, as discussed in Subsection 2.2, but it
also make the concept of "global execution control"
disappear.

This trend is exacerbated by the fact that not only
independent systems have their own flow of control, but also
different components in a system may be autonomous in

control. In fact, most components of today's software
systems are active entities (e.g., active objects with internal
threads of control, processes, daemons) rather than passive
one (e.g., "normal" objects, functions, etc.).

We are aware that having multiple threads of control in a
system is not a big novelty, and that concurrent and parallel
programming are here since a long time ago. However,
efficiency and performance mainly drove traditional
concurrent and parallel programming in introducing multiple
threads of control in applications. Apart from that, most of
the approaches ion the area aimed at limiting as much as
possible the independence of these multiple threads of
control, via strict synchronization and coordination
mechanisms, with the goal of preserving determinism and
high-level control over applications. Today's autonomy of
application components is here for different reasons and has
to be faced in very different way:

• in an open world, autonomy of execution facilitates a
components in moving across systems and environments
without having to report back to (or wait for ack by) its
original application;

• when components and systems are immersed in a highly
dynamic environment, and there is need of monitoring
and controlling the evolution of the environment, an
autonomous components can be effectively delegated of
taking care of (a portion of) the environment
independently of the global flow of control;

• several software systems are not only made up of
software components, but integrates also computer-
based systems, which are for their very nature
autonomous systems, and can be modeled accordingly;

• as the dimension of a software system increases, the
need of delegating control to components is no longer
simply a matter of performance, but it becomes a matter
of conceptual simplicity. In fact, coordinating a global
flow of control within a very large number of
components may become unfeasible. Autonomy then
becomes an additional dimension of modularity,
naturally extending the concepts of autonomy in data
management promoted by object-oriented computing
[Par97].

It is worth outlining that our concept of autonomy
encompasses the concept of autonomy usually adopted in the
area of agent-based computing, in that it refer not only to
those software components that are explicitly designed as
autonomous, but also to those components that can be
perceived as autonomous.

Examples. Almost all of today's software systems integrates
autonomous components. At weakest, autonomy reduces to
the capability of a component of reacting to and handling
events, as it can be the case of graphical interfaces or simple
embedded sensors. However, in many cases, autonomy
implies that a component integrates an autonomous thread of

execution, and can execute in a proactive way. This is the
case of most of modern control systems, in which control is
not simply reactive but proactive, realized via a set of
cooperative autonomous processes or, as it is often the case,
via embedded complete computer-based systems interacting
with each other. Internet based distributed applications are
typically made up of autonomous processes, possibly
executing on different nodes, and cooperating with each
other, a choice driven by conceptual simplicity rather than
by the actual need of autonomous concurrent activities.
Finally, the integration in distributed applications and
systems of mobile devices, which are autonomous
computing systems, can be tackled only by modeling them in
terms of autonomous software components.

2.4 Local Interactions
Directly deriving from the above three issues, the concept of
"local interactions in a global world" is more and more
pervading today's software systems.

By now, we have delineated a scenario in which software
systems components are immersed in an specific
environment, execute in the context of a specific
(sub)system, and are delegated of performing some task in
autonomy. Taken all together, the above aspects naturally
lead to a strict enforcement of locality in interactions. In
fact:

• autonomous component can interact with the
environment in which they are immersed, by sensing
and effecting it. If the environment is of a physical
nature, the amount of physical world a single
component can sense and effect is locally bounded by
physical laws. If the environment is a logical one,
minimization of conceptual and management
complexity suggest in any case modeling it in terms of a
locality and limiting the effect of a single component on
the environment;

• components can normally interact with each other in the
context of the software system they belong to, that is,
locally to their system. In open work, however, a
component of a system can also interact with
(components of) another systems. In these cases,
minimization of conceptual complexity suggest
modeling the component in terms of a component that
has temporarily "moved" to another context, and that
interact locally in the new context [CabLZ01];

• in an open world, components need some form of
context-awareness to execute and interact effectively.
However, for a component to be effectively (and
efficiently) made aware of its context, this context must
be necessarily locally confined.

As a final note, it is worth outlining that it is well known that
locality in interactions is a strong requirement when the
number of components in a system increases, or as the

dimension of the distribution scale increases. In any case, it
is worth outlining that the presence of autonomous threads of
control may make tracking and controlling concurrent,
autonomous, and autonomously initiated interactions much
more difficult than in object-based and component-based
applications, even if these interactions are strictly local.

Examples. Control and manufacturing systems tend to
enforce local interactions because of their very nature. Each
control component is delegated to control a portion of the
environment, and its interactions with other components are
usually limited to those ones that control neighboring
portions of that environment, with which it typically has
strict coordination requirements. Applications distributed in
the Internet have to take into account the specific
characteristics of the local administrative domain in which
its components execute and have to interact, and components
are usually allocated in Internet nodes so as to enforce as
much as possible locality in Interactions. In mobile
computing applications, there included applications for
wearable systems, the very nature of wireless connections
forces locality in interactions. Being wireless communication
capabilities of limited range, a mobile computing component
can directly interact – at a given time – only with a limited
portion of the world.

Fig. 1. The Scenario of Modern Software Systems

2.5 A General Model
Summarizing, software systems can be more and more
assimilated to the general scheme of Figure 1.

Software systems (dashed ellipses) are made up of
autonomous components (black circle), interacting locally
with each other and possibly with the components of other
systems. Accordingly, some components may though as be
part of several software systems at different times,
depending on their current interaction activities.
Systems and components are immersed in an environment,
typically composed by (or modeled as) a set of different
environment partitions. Components in a system can sense
and effect a local portion of the environment. Also, since the

portions of the environment that two components may access
may overlap with each other, two components may interact
indirectly with each other via the environment. From the
point of view of components, however, this form of
interaction is perceived in terms of environmental dynamics.

It is worth noting that the figures depict a scenario that is
very different from the one of component-based and object-
based programming. Here, the notion of "application" is
substituted by the notion of "interacting systems". Here, not
only objects and components are part of the system, but the
environment too – and its not controllable dynamics – are
first order abstractions. Here, the contractually specified and
typically static patterns of interaction of object-based
programming are substituted by dynamic and autonomously
initiated interaction patterns. Dynamic interactions also
include those of a component with the environment and the
indirect interactions between components that can occur via
the environment.

The outlined scenario is the one that has already been largely
adopted as the basic model of agent-based computing
[Jen01]. In fact, agents are considered as situated software
entities (that is, that live dipped in an environment) that
executed in autonomy (i.e., have local control on their
actions) and that interact with other agents (local interactions
are often promoted, although they are not explicitly
mentioned as part of the model). Despite this fact,
"traditional" computer scientist and software engineers do
not admit that they are already doing system that can be
assimilated to agent-based computing and modeled as agent-
based systems. Neither most of the scientist working on
agent-based computing recognize that agents and agent-
based computing have to potential to be a general model for
today's computing system: the general opinion is that if
agents are not intelligent, they are nothing.

It is our hope that the issues discussed in this paper can have
somehow helped clarifying these strict relationships.

3 Changing our Attitudes

 Till now, software systems have been modeled by adopting a
mechanical attitude, and engineered by adopting a design
attitude. On the one hand, computer scientists are both
burdened and fascinated by the urge of defining suitable
formal theories of computation, of proving properties of
software systems, and of providing formal framework to the
use of engineering. On the other hand, software engineers
are used at analyzing the functionality that a system should
exhibits, and at designing software architectures as reliable
multi-component machines, capable of providing the
required functionality in an efficient and predictable way.

 In the future, scientist and engineer will have to design
software system so as to execute in a world where an
uncountable multitude of autonomous, embedded, and
mobile software components, are already executing and

interacting with each other and with the environment on the
basis of local interaction patterns. However, such a scenario
may require different models and methodology to be faced
than the traditional ones.

3.1 How Will Computer Science Change?
Modeling and handling a very large number of components
can be feasible is such components are not autonomous, i.e.,
are subject to a single flow of control. However, when the
activities of these components are autonomous, it is hard – if
not impossible – to track them one by one and, so, to
precisely describe the behavior of a system in terms of the
behavior of its components. Instead, all that can be done in
these cases is describing and modeling the system as a
whole, in terms of macro-level characteristics, the same as a
chemist describes the characteristics of a gas in terms of
properties like pressure and temperature.

The above problem is exacerbated by the fact that
components will interact with each other. Accordingly, the
overall behavior of a system will emerge not only as the sum
of the behavior of its components, but also as a result of their
mutual interactions. One may argue that since interactions
tends to be usually confined within a locality, as explained in
Subsection 2.4, this should not represent a big problem and,
instead, it should be quite easy to control the effect of
interactions. Unfortunately, this is not the case, and the
effect of local interactions in a global world can be very
difficult to predict. In fact, a large number of components
locally interacting with each other can produce global macro
scale effects on the behavior of a system, and these effects
can be impossible to be evaluated without knowing exactly
the initial status of the system [PriS91].

As a final additional problem, we must consider that
software systems will execute in an open and dynamic
environment, that new components can be added and
removed at any time, and that some of these components can
autonomously move from one part of the other of the system.
Thus, not only the behavior of the system is difficult to be
exactly predicted and controlled, but it is also very hard to
predict how such behavior can be influenced by external
driving forces, such as of the environmental dynamics.
Modern thermodynamic, as well as modern social sciences,
tells us that that environment forces can produce very
strange and large scale behaviors on open system. Thus, we
can expect the same large-scale effects to emerge on situated
and open software systems.

Taken all together, the above problems will force computer
scientist to dramatically change their attitudes in the
modeling of complex software systems. The dream of
building fully formalizing systems has already started to
vanish the advent of concurrent and interactive systems
[Web97], and it will definitely disappear in the next few
years. The next challenge is to find alternative models or –
more radically – to adopt a brand new scientific background

for the study of software system.

Some signals of this trend can already be found in different
areas and research community. Recent study and monitoring
activities on the Internet have made it clear that
unpredictable and large-scale behaviors are already here,
requiring new models and tools to be described [CroB96].
Some approaches to model and describe software systems in
terms of thermodynamic systems have already been
proposed [ParB01]. Not surprisingly, one of the areas in
which such trend is highly evident is modern artificial
intelligence. The concept of "rational" intelligence, as it
should have emerged from a complex machine capable of
manipulating facts and logic theories, is being abandoned.
Now, the abstractions promoted by agent-based computing
(well matching the characteristics of today's software
systems, as explained in Subsection 2.5) have put emphasis
on the concept of "intentional" intelligence, i.e., the
capability of a component or of a system to behave in
autonomy so as to achieve a given goal. Organizational
[Zam01] and social science [MosT95] are starting
influencing research works, in that it is recognized that the
behavior of large scale software system – rather than to a
logic or mechanical system – can be assimilated to a human
organization aimed at reaching a global organizational goal,
or to a society in which the overall global behavior derives
from the self-interested intentional behavior of its individual.
In addition, the complex mechanisms of biological
ecosystem are more and more providing inspiration to
computer scientist [HubH93].

In the future, we expect theories and models from complex
dynamical systems, from modern thermodynamics, as well as
from biology, social science, and organizational science, to
become the sine-qua-non cultural background of computer
scientist.

3.2 How Will Software Engineering Change?
The change in the modeling and understanding of complex
software systems will also dramatically impact in the way
such systems are designed, maintained, and tested.

By now, software systems are designed so as to exhibit a
specific, predictable, and deterministic behavior at any level
of the software system: from the level of single units up to
the level of the whole systems. The next challenge for the
effective building of large software systems, overcoming the
impossibility of controlling the behavior of each of its single
components and their interactions, is to build it so as to
(reasonably) guarantee that the system will behave as desired
despite the exact knowledge about its micro-behavior. For
instance, by adopting a "physical" attitude on software
design, a possible approach could be to build a system that,
despite the uncertainty on the initial conditions, is able to
reach a given stable basin of attraction. By adopting a
"teleological" attitude, the idea could be to build an
ecosystem, or a society of components, able to behave in an

intentional way, and robust enough to direct its global
activities toward the achievement of the required goal.

Again, it is possible to identify a few works that are already
adopting such a novel software engineering perspective. In
the area of distributed operating systems management,
policies for the management of distributed resources are
already being designed in terms of autonomous components
able to guarantee the achievement of a global goal via local
actions and local interactions [Cyb89]. Cellular automata
can be made evolve so as to exhibit useful global behaviors
without anyone having directly programmed such behaviors
[Sip99]. Systems of ant-colonies are shown to be able to
solve very complex problems via the interactions of very
simple autonomous components [Par97].

In addition to the change in the way software is designed, the
new scenario will also dramatically impact in the way
software is tested and maintained, and evaluated.

A large software system will be no longer tested with the
goal of finding errors in it, but it will be rather tested with
regard to its capability of behaving as needed as a whole,
independently of the exact behavior of its components and of
their initial conditions [Huh01]. Moreover, a software
system that is likely to be dived in an existing dynamic
environment, where other systems are already executing and
cannot be stopped, cannot be simply tested and evaluated in
terms of its capability of achieving the required goal.
Instead, the test must also evaluate the effect of the
environment on the software system, as well as the effects of
the software system on the environment. The better and
more robust a system, the higher its capability of acting
towards its goals despite the dynamics of the environment.

Maintaining software will change too. When a large software
system does no longer behave as needed, as when the
external condition will require some change in the behavior
of a software system, update will imply no longer stopping
the system, re-build it, and re-testing it. Instead, it will imply
intervening on the system from the external, by adding new
components with different attitudes and by removing some
of its existing components so as to change the overall
behavior of the system as needed.

4 Conclusions

Modern software systems, in different application areas,
exhibit characteristics that make them very different from the
software systems that we, as scientists and engineers, are
used to deal with. These characteristics are likely to
dramatically impact on the very way software systems will
be modeled and engineered, leading to a true revolution in
computer science and software engineering [Kuh96]. In fact,
we will be required to change our traditional "design"
attitude, leading to a mechanical perspective, into an
"intentional" attitude, leading to physical, biological, and
teleological perspectives. Despite the opposing forces and

the difficulties inherent in any revolutionary phase, there
included the need of re-structuring our cultural background,
this revolution will definitely open up the door for new
interesting research and engineering challenges.

References
 [CabLZ01] G. Cabri, L. Leonardi, F. Zambonelli, “Engineering Mobile

Agent Applications via Context-Dependent Coordination”, 23rd

International Conference on Software Engineering, ACM,
Toronto (CA), May 2001.

 [Cap97] F. Capra, The Web of Life: The New Understanding of Living
Systems, Doubleday, Oct. 1997.

 [CroB96]M. Crovella, A. Bestavros, "Self-Similarity in World Wide Web
Traffic: Evidence and Causes" ACM Sigmetrics, pp. 160-169,
1996.

 [Cyb89] G. Cybenko, “Dynamic Load Balancing for Distributed Memory
Multiprocessors”, Journal of Parallel & Distributed
Computing, 7(2), Feb. 1989.

[HubH93] B. A. Huberman, T. Hogg, "The emergence of computational
ecologies", in Lectures in complex systems, Addison-Wesley,
1993.

 [Huh01] M. Huhns, "Interaction-Oriented Programming", 1st International
Workshop on Agent-Oriented Software Engineering, LNCS No.
1957, Jan. 2001.

 [Jen01] N. R. Jennings, "On Agent-Based Software Engineering",
Artificial Intelligence, 117(2), 2000.

 [Kuh96] T. Kuhn, The Structure of Scientific Revolutions, University of
Chicago Press, 3rd Edition, Nov. 1996.

[MosT95] Y. Moses, M. Tenneholtz, “Artificial Social Systems”,
Computers and Artificial Intelligence, 14(3):533-562, 1995.

 [ParB01]V. Parunak, S. Bruekner, "Entropy and Self-Organization in
Agent Systems", 5th International Conference on Autonomous
Agents, ACM Press, May 2001.

 [Par97] H. V. D. Parunak, “Go to the Ant: Engineering Principles from
Natural Agent Systems”, Annals of Operations Research,
75:69-101, 1997.

 [PriS91] I. Prigogine, I. Steingers, The End of Certainty: Time, Chaos,
and the New Laws of Nature, Free Press, 1997.

[Sip99] M. Sipper. The Emergence of Cellular Computing. IEEE
Computer, 37(7):18-26, July 1999.

 [Ten00] D.Tennenhouse, "Proactive Computing", Communications of
the ACM, May 2000.

 [Weg97]P. Wegner. "Why Interaction is More Powerful than Computing",
Communications of the ACM, 1997.

 [Whi97] J. White, “Mobile Agents”, in Software Agents, AAAI Press,
Menlo Park (CA), pp. 437-472, 1997.

 [Zam01] F. Zambonelli, N. R. Jennings, M. J. Wooldridge,
“Organizational Abstractions for the Analysis and Design of
Multi-agent Systems, 1st International Workshop on Agent-
Oriented Software Engineering, LNCS No. 1957, Jan. 2001.

