
Multi-Agent Systems as Composition of Observable Systems

Mirko Viroli and Andrea Omicini
DEIS, Universit̀a degli Studi di Bologna

via Rasi e Spinelli 176, 47023 Cesena (FC)
{mviroli,aomicini }@deis.unibo.it

Abstract

Observation is becoming a crucial issue in the engineer-
ing of today’s systems: the common practice for dealing
with their complexity is to encapsulate their subcomponents
abstracting away from their internal details, namely, focus-
ing on their observable behaviour.

Starting from the framework for Observation within
computer systems that we developed in [5], in this paper we
study the impact of thinking about agents and multi-agent
systems in terms of their observable behaviour.

Firstly, we apply our ontology for observation to agents.
We claim that it can be significant to describe agents in
terms of knowledge sources of such an ontology, that is, fo-
cusing on their observable behaviour.

Then, we proceed by extending the whole framework for
observation so as to focus on the collaboration between
observable systems, where an observation manifestation is
also interpreted as an observation request for another sys-
tem. This naturally lead us to model a multi-agent system
in terms of agents sharing their knowledge through the con-
tinuous exchange of observation messages.

1 Introduction

The impetuous development of information technologies
is rapidly changing the scenario on computer science. The-
oretically, the increasing complexity of computers and com-
puter applications is making impractical to provide for com-
plete modellisation of their behaviour. Pragmatically, com-
puter systems tends to be built as aggregations of com-
ponents, which are often knowable only in terms of the
services they ask for and offer – in other words, through
their observable properties. The need for dealing with
this kind of systems has emerged in a plethora of differ-
ent concepts, models and mechanisms. Notions asinter-
faceandencapsulation, paradigms like the object-oriented
and the component-based ones, have promoted observation
to a first-class issue, by implicitly stating that complexity

of computer systems could be handled only by abstracting
away from the essence (in a broad sense) of the elements
(like objects, or components), and focusing instead on their
observable behaviour.

Agent-based technologies – which are one of the most
promising approaches for building today’s complex systems
– are contributing to this trade-off as well. In multi-agent
systems (MAS) agents are typically used as abstractions to
model systems where autonomous, possibly intelligent soft-
ware entities interact and access heterogeneous knowledge
sources in a distributed, decentralised and unpredictable en-
vironment. Very often, the only way for characterising the
behaviour of an agent, so as to make him able to work with
other agents, is to know its observable behaviour abstracting
away from its internal aspects. As a result, agents are very
often exploited as a means to deal with the unknowability
of computer-based systems. For instance, agents are viable
abstractions forlegacy systems, which might be based on a
technology that is no longer mastered within an organisa-
tion, or whose inner behaviour might be no longer known –
for historical reasons, typically, in principle independently
of its actual complexity. In general, it is frequent that in-
terpreting the observable behaviour of a system is the only
way to make it work within new systems.

Thus, the precise characterisation of the observable be-
haviour of an agent, and the study of how observation could
be promoted to a relevant issue in the engineering of MAS
as well, seem necessary efforts for harnessing the intrinsic
complexity of current and future computer systems.

In [5] we introduced an ontology and a formal frame-
work for observation. On the one hand, the ontology aims
at providing a unique assessment for concepts and mecha-
nisms related to observation, and for comparing in a qual-
itative way the observation properties of seemingly diverse
systems. On the other hand, the formal framework allows
for a precise characterisation of the observation properties,
and provides a tool for specifying the observable behaviour
of a component in multi-component systems.

In this paper, we apply both ontology and formal frame-
work to agents, modeling an agent as a knowledge source

with a hidden internal behaviour, and able to manifest part
of it as re-active and pro-active responses to observation re-
quests. This kind of model for an agent leads us to focus on
its observable behaviour, on how this is affected by the in-
teractions with the environment, and on how an agent makes
its internal state perceivable to the outside.

According to the definition given in [6], an agent is a
software entity situated in an environment and having the
properties of reactivity, proactiveness, autonomy and social
ability. We show how our model for agents allows the for-
mer three properties to be taken into account.

In order to deal with agent social ability as well, we pro-
ceed by shifting the focus of the framework to thecomposi-
tion of sources, so as to model a MAS. This approach allows
us to interpret an evolving MAS as a system of autonomous
observable sources that deliberatively share their knowledge
by continuously interacting with each other. The social abil-
ity of an agent is viewed as its disposability of manifesting
a part of its knowledge and its dynamics to other agents.

In general, common concepts related to agents – such
as environment, interaction and MAS evolution; and agent
autonomy, unpredictability, reactivity and proactiveness –
will find a new interpretation in our framework, in terms of
idea related to observation.

2 Observing a System

Our ontology for observation interprets computer sys-
tems as made of three kinds of entities:sources, observers
andcoordinators. A source is a component storing some
knowledge and intrinsically able tomanifesta part of it
– or of its dynamics – by delivering chunks of informa-
tion in forms of asynchronous messages, calledmanifesta-
tions. Observers are those entities receiving these messages,
namely,observingthe source manifestation. Coordinators
are entities able to interact with a source, so as tocondition
it to produce one or more manifestations.

Correspondingly, we model a source as the composition
of two parts: (i) thecore, representing the part of its knowl-
edge which can affect the source’s observable behaviour,
and (ii) the sourceconfiguration, containing the specifica-
tion of what manifestations the source is requested to pro-
duce, and how these can influence its future behaviour. The
evolution of a source among interactions with coordinators
and observers – that is, among the processing ofobservation
actions– is as follows.

The source starts in anequilibrium state, typically with
an empty configuration and a certain initial core status. At
a given time, this equilibrium state can be changed – cross-
ing somemotion states, firing manifestations, and then re-
turning on a new equilibrium state – by one of two events.
On the one hand, a coordinator can condition the source by
changing the content of its configuration. In general this is

accomplished through a given language, which can possi-
bly constrain the flexibility on how coordinators can influ-
ence the source’s observable behaviour. On the other hand,
the source can spontaneously change its core status, model-
ing either an internal modification event (an internal clock,
or an event related to a local processing), or an interaction
with the external environment. So, when a conditioning or
an internal change occurs, the configuration of the source
is evaluated, possibly producing some messages to be sent
out, a change on the core, and a change on the configuration.
Correspondingly, the source returns on a new equilibrium
state.

In [5] we showed how this ontology can be satisfacto-
rily exploited for modeling a broad set of mechanisms and
concepts that can be used to support observation: client-
server and publish-subscribe interactions, re-activity and
pro-activity, synchronous and asynchronous communica-
tions, trigger entities, and so on. For instance, our ontology
emphasises that from the observation viewpoint, (i) ardp
operation of Linda, (ii) a field reading in object orientation,
(iii) a property getting in Java Beans and (iv) aselectquery
in databases, are all related to the same kind of observation,
which in our ontology is calleddirect re-active observation.
Namely, the coordinator conditions the source so as to pro-
duce a message for the observer without changing its core
and its future observable behaviour. Another common kind
of observation is thedirect pro-activeone, where the con-
figuration is conditioned so as to produce a message each
time a given event occurs on the core – modeling e.g. event
notification in JavaBeans or Java Spaces.

Then, the formal framework we introduced can be ex-
ploited to describe the observable properties of a source,
and, according to this, modeling the effect of conditionings
on manifestations. Formally, the observation properties of a
source are described by a tuple〈P,C,M, J〉. P is the set of
places, modeling the current state of the core.C is the set
of configuration atoms, or c-atomsfor short; a multiset of
c-atomsc ∈ C is used to model the current state of the con-
figuration.M is the set of messages the source can produce,
while J = 〈eval, select〉 is a pair of functions calledevalua-
tion andselectionfunction. In particular, the function:

eval∈ C 7→ (P × P 7→ C⊥ × P⊥ ×M)

accepts a c-atomc and the current transition of place〈p, p′〉
– called move – and returns a tripleteval(c)〈p, p′〉 =
〈c∗, p∗,m〉. Here:

• c∗ is the new c-atom to be inserted in the configuration
updating the c-atom currently evaluatedc – or in the
casec∗ =⊥C simply modeling the dropping ofc from
the configuration;

• p∗ updates the current move from〈p, p′〉 to 〈p′, p∗〉 –
or leaves it to〈p, p′〉 if p∗ =⊥P ;

2

• m is the (multi)set of messages to be sent.

On the other hand, the selection function:

select∈ C 7→ (P × P 7→ C⊥)

accepts the currentmotion, that is the pair – current move
〈p, p′〉, current configurationc – and returns the c-atom to
be evaluatedc = select(c)〈p, p′〉, or⊥C – which means that
no c-atoms are still to be evaluated and the source can return
on equilibrium.

We represent equilibrium states by elements of the set
P ×C and denote these states by the symbolp [c] – where
p is the place andc is the configuration. Motion states are
elements of the setP × P × C, denoted by the symbol
〈p, p′〉[c] – where〈p, p′〉 is the current move andc is the
configuration. The dynamics of the source is modeled by
means of a labeled transition system with two transitions
from equilibrium states to motion states, calledcondition-
ing (C) andsourcetransition (S), one from motion states
to motion states, calledevaluationtransition (E), and one
from motion states back to equilibrium states, calledout-
put transition (O). Intuitively, from equilibrium we go to
motion through either a coordinator conditioning (C) or a
source spontaneous change (S), then we perform a number
of evaluations (E), until we return on equilibrium (O). The
semantics for these transitions is defined by the following
rules.

p [c] c−→C 〈p, p〉[c|c] (C)

p [c]
p′−→S 〈p, p′〉[c] (S)

select(c|c)(p, p′) = c
eval(c)(p, p′) = 〈c′, p∗,m〉

〈p′′, p′′′〉 =

{
〈p′, p∗〉 if p∗ 6=⊥P
〈p, p′〉 otherwise

〈p, p′〉[c|c] m−→E 〈p′′, p′′′〉[c′|c]
(E)

select(c)(p, p′) =⊥C
〈p, p′〉[c] −→O p′ [c]

(O)

The rule (C) simply states that conditioning causes a new c-
atomc to be added to the configuration. The rule (S) moves
the source to a motion state considering the spontaneous
transition of the core fromp to p′. The rule (E) (which is
fired only after either (C) or (S)), selects one c-atom from
the configuration, evaluates it, and then updates the motion
state of the source and sends the manifestations. Only when
no more c-atom can be selected the source returns on equi-
librium due to (O), updating the move〈p, p′〉 by the place
p′.

Notice that our framework leads to a slightly constrained
version of the model provided by the ontology. Condition-
ing can be made only by adding a new c-atom to the con-
figuration, namely through aregistration, and the evalua-
tion of a configuration is actually divided into a multiplicity
of atomic evaluations steps, each considering one single c-
atom and eventually firing the next step. However, in [5]
we showed that the framework has full expressiveness for
modeling the observable behaviour of well-known models
such as Linda [3], JavaSpaces [2], active databases [1] and
Java Beans [4].

3 Agents as Observable Systems

The most natural interpretations for agents in our ontol-
ogy is to view them either as observers, interested in re-
ceiving information about a knowledge source, or as co-
ordinators, autonomously acting on knowledge sources so
as to stimulate manifestations, possibly with some intelli-
gent behaviour. Instead, in this paper we claim that both
ontology and formal framework can be successfully ex-
ploited for modeling agents as observation sources. Typi-
cally, when studying issues related to agents’ behaviour, the
focus mostly concerns either intra-agent aspects – captur-
ing the agent autonomous behaviour – or inter-agent ones –
related to the social ability of the agents. Here we aim at
modeling the behaviour of the part of the agent devoted at
interfacing these two apparently separated worlds.

In general, modeling an agent as an observable source
means to concentrate on how it makes its status – or part
of it – observable to other agents, and how its observable
behaviour can be affected by its autonomous activity, by
other agents and the environment. Thus, this also leads us to
interpret agent interactions in terms of observation-related
messages, that is, incoming messages as conditionings for
an observation, and outgoing messages as manifestations of
an observation.

Suppose to consider a single agent as a knowledge
source with specification〈P,C,M, J〉. P – the set model-
ing the core of the source – represents the part of the internal
state of the agent that can affect its observable behaviour as
perceived by the observing environment, typically including
other agents. Notice that in general, this is only a sub-part of
an agent knowledge, or even some abstract view of it, which
may not have an actual counterpart in the agent. This satis-
fies the typical need of abstraction the agent methodologies
require: only a part of the agent is modeled as visible from
outside, while the rest remains hidden.
C – the set of c-atoms – represents the set of requests for

observation an agent can accept. In general, these are the
kinds of messages an agent can receive and then decide to
serve, either as soon as possible, at a given time, or never.J
gives semantics to c-atoms, that is, how their evaluation af-

3

p [c]
p′−→S 〈p0, p

′
0〉[c0]

〈p0, p
′
0〉[c0] m0−−→E 〈p1, p

′
1〉[c1] ... 〈pn−1, p

′
n−1〉[cn−1]

mn−1−−−→E 〈pn, p′n〉[cn]
〈pn, p′n〉[cn] −→O p∗ [c∗]

p [c]
m0|...|mn−1−−−−−−−−→P p

∗ [c∗]
(P)

p [c] c−→C 〈p0, p
′
0〉[c0]

〈p0, p
′
0〉[c0] m0−−→E 〈p1, p

′
1〉[c1] ... 〈pn−1, p

′
n−1〉[cn−1]

mn−1−−−→E 〈pn, p′n〉[cn]
〈pn, p′n〉[cn] −→O p∗ [c∗]

p [c]
c,m0|...|mn−1−−−−−−−−−→R p

∗ [c∗]
(R)

Figure 1. The transition system for an agent’s re-active and pro-active behaviour

fects the observable behaviour of the agent. This models the
agent’s logics implementing the interpretation of requests,
the policy of their management, and how to manifest the in-
ternal state and its dynamics outside. It can be considered
as the semantics of the agent’s interface to its environment.
Finally, M is the set of outgoing messages the agent can
emit, defining the language of its manifestation.

The evolution of an agent through the processing of ob-
servation actions can be interpreted as follows. We start
by considering the agent in an equilibrium state. In gen-
eral, this is not meant to model agent inactivity, but rather
the agent autonomously acting without any observable ef-
fect. During this state, the agent receives conditionings, in
terms of changes on its configuration, which fire evaluation.
Due to the flexibility of this mechanism, some of these re-
quests can be re-actively served, that is, producing some
message and/or some change on status of the agent, both on
its knowledge and on its future behaviour. Some other re-
quests can be actually evaluated only when some condition
on the agent occurs, modeling the situation where the agent
decides it is time to do so. Also, the agent can decide to
reject some request.

Furthermore, it can also be the case that the agent pro-
actively and autonomously interrupts its equilibrium state
and manifests some observable behaviour. This is modeled
as a spontaneous change on the agent’s core, firing an eval-
uation that possibly alters the configuration, the core, and
produces some manifestation.

4 MAS and Observation

In order to concentrate on the interactions between
agents in a MAS, so as to highlight our vision of the agents’
social ability, we move the focus outside a source. First of
all, we define a transition system modeling the behaviour
of an agent so as this can be perceived by its environment,
by wrapping the one defined in Section 2 and hiding inter-
nal details about evaluation. We introduce two transitions,
from equilibrium states to equilibrium states, thus abstract-

ing away from the motion states an agent possibly crosses.
These are respectively called pro-active (P) and re-active
(R) source transition. Their semantics is shown in Figure 1.

The pro-active transitione
m0|...|mn−1−−−−−−−−→P e′ moves an

agent from the equilibrium statee to the the equilibrium
statee′ producing the set of manifestationsm0|...|mn−1.
This is a direct interpretation of the agent pro-actively
sending messages to other agents. The re-active transition

e
c,m0|...|mn−1−−−−−−−−−→R e′, instead, makes an agent in the statee

accepting the conditioning c-atomc, correspondingly pro-
ducing the manifestationsm0|...|mn−1, and then moving to
the statee′. This is an interpretation of the agent receiving
the message containing the requestc and then re-actively
producing some outgoing messages.

On top of this transition system, we proceed by focus-
ing on a MAS. We introduce a calculus with the following
syntax:

A ::= s : p [c] Agents

µ ::= 〈s← c〉 Messages

γ ::= A An agent of a MAS
| µ A message pending in a MAS
| γ ⊕ γ a composition of MAS
| ε an empty MAS

An agents : p [c] is a source in the placep [c], having the
unique names ∈ S. A message〈s← c〉 is sent to the agent
nameds and carries the c-atomc as content. Finally, a MAS
γ is a composition of agents (supposing they have different
names) and floating asynchronous messages that wait to be
received.

The key aspect of our composition of agents is that each
message sent by an agent – which is a manifestation of its
observable behaviour – is treated, by the agent receiving it,
as a conditioning for an observation. We define a computa-
tional model for MAS as a labelled transition system onγ
terms, defined by the rules shown in Figure 2.

The rules [MAS-π] and [MAS-ρ] define the effects on
the MAS when one of its agents performs a (P) and (R)

4

p [c]
µ−→P p

∗ [c∗]
γ ⊕ s : p [c] −→π γ ⊕ s : p∗ [c∗]⊕ µ

(MAS-π)

p [c]
c,µ−−→R p

∗ [c∗]
γ ⊕ s : p [c]⊕ 〈s← c〉 −→ρ γ ⊕ s : p∗ [c∗]⊕ µ

(MAS-ρ)

γ ⊕ µ µ−→ω γ (MAS-ω)

γ
µ−→ι γ ⊕ µ (MAS-ι)

Figure 2. The transition system for MAS

transition, respectively. In the transition:

γ ⊕A −→π γ ⊕A′ ⊕ µ

the agentA situated in the MASγ pro-actively sends the
messagesµ and turns itself intoA′, according to semantics
of the rule [MAS-π]. In the transition:

γ ⊕A⊕ 〈s← c〉 −→ρ γ ⊕A′ ⊕ µ

the agentA with names and situated in the MASγ, re-
actively consumes the message〈s← c〉, sends the mes-
sagesµ and turns itself intoA′, according to semantics of
the rule [MAS-ρ].

Thus, each message〈s← c〉 produced by an agent, and
containing the c-atomc, is a manifestation remaining in
the MAS until the agent with names actually consumes it.
When this happens,c is considered by this agent as a condi-
tioning. The reader should notice that independently from
which pattern of message passing exists between the agents
of the MAS, this can always be modeled as a sequence of
(MAS) transitions [MAS-π] or [MAS-ρ].

The rules [MAS-ω] and [MAS-ι] allow messages to be
respectively dropped and put in the MAS by the external en-
vironment. On the one hand, the rules [MAS-π] and [MAS-
ρ] can be considered computational rules of the MAS, since
they describe the semantics of the evolution of the MAS. On
the other hand, the rules [MAS-ω] and [MAS-ι] describe the
interactions of the MAS with its environment.

After this ”syntactic” composition of sources, now it is
time to recover the corresponding meaning from the obser-
vation viewpoint. We start by focusing on the rules [MAS-
π] and [MAS-ρ]. Initially, each agent has its own knowl-
edge, only a part of which is observable by its environ-
ment. Each transition corresponds to the agent manifesting
part of its knowledge to other agents, possibly (in the case
of [MAS-ρ]) by itself accepting a manifestation from an-
other agent as a conditioning. In general, the MAS evolves
through a continuous exchange of manifestations between
agents. As transitions occur, the knowledge of each agent
tends to be shared through all the agents of the MAS.

In other words, provided that the social behaviour of
agents takes place through the message they exchange, then
the observation viewpoint makes it possible to interpret the
social behaviour as the process of sharing individual knowl-
edge (beliefs, desires, information), so as to grow a shared,

social knowledge. The social ability of an agent, then, can
be viewed as its disposability of manifesting part of its
knowledge so as to contribute to the creation of the MAS
shared knowledge.

Finally, the rules [MAS-ι] and [MAS-ω] makes it pos-
sible to have a certain degree of openness in the MAS.
The rule [MAS-ι] models the fact that the environment of
the MAS can potentially contribute in defining the global
shared knowledge, by adding information via floating mes-
sages. On the other hand, the rule [MAS-ω] models man-
ifestations not conditioning other agents in the MAS, but
being consumed by the environment. In some sense, this
can allows to view a MAS itself as a an observation source,
receiving conditionings and sending manifestations.

5 Conclusions

In this paper we applied general concepts related to Ob-
servation within computer systems, as defined in [5], to the
field of MAS.

As a first step, we modeled agents as observable sources.
This is a somewhat infrequent point of view, since agents
are not usually seen as knowledge sources making observ-
able their status, but rather as autonomous components
eventually cooperating with other agents. This interpreta-
tion allows us to see agent interactions as incoming requests
for an observation and as outgoing manifestations of an ob-
servation. To this end, the formal framework introduced
in [5] turned out to be a successful tool for specifying the
observable behaviour of an agent. Its key property is to ab-
stracts away from those issues related to an agent’s internal
management not affecting its interactions with the environ-
ment. Moreover, this framework also forces us to focus on
one aspect that the current research seems not to systemat-
ically address, that is, the interface between the intra-agent
and the inter-agent viewpoints.

Then, we extended the framework so as to focus on the
cooperation of sources, by introducing a calculus for MAS
based on a transition system. In the corresponding model,
a MAS is seen as a computational system able to accept
conditionings from the external environment, and able to
manifest its internal changes. A MAS internal evolution is
naturally interpreted as a continuous exchange of manifesta-
tions between its agents, leading to the share of each agent’s

5

local knowledge, so as to grow a social MAS knowledge.
We claim that observation should be promoted to a first-

class issue in the modelling and the engineering of Multi-
Agent Systems. As a consequence, this work is meant to
pose the conceptual and formal framework for reasoning
about the observation issue in the field of Multi-Agent Sys-
tems. Our future work is devoted at clearly understanding
the consequences of this approach, and to apply correspond-
ing ideas, concepts and models, to define effective engineer-
ing methodologies for Multi-Agent Systems.

References

[1] P. Fraternali and L. Tanca. A structured approach for the defi-
nition of the semantics of active databases.ACM Transaction
on Database Systems, 20(4):414–471, December 1995.

[2] E. Freeman, S. Hupfer, and K. Arnold.JavaSpaces: Prin-
ciples, Patterns, and Practice. The Jini Technology Series.
Addison-Wesley, 1999.

[3] D. Gelernter. Generative communication in Linda.ACM
Transactions on Programming Languages and Systems,
7(1):80–112, January 1985.

[4] Sun Mycrosystems. Enterprise Java Beans download & spec-
ifications, 2000.http://www.java.sun.com .

[5] M. Viroli, G. Moro, and A. Omicini. On Observation as a
coordination paradigm: an ontology and a formal framework.
In ACM Symposium on Applied Computing – Proceedings of
16th International Conference (SAC01), pages 166–175, Las
Vegas (NV), USA, March 2001. ACM.

[6] M. Woolridge. Reasoning about Rational Agents. The
MIT Press, Cambridge, Massachusetts, and London, England,
2000.

6

