
Enlightened Agents in TuCSoN
Alessandro Ricci Andrea Omicini Enrico Denti

Abstract—In the network-centric computing era, applications often in-
volve sets of autonomous, unpredictable, and possibly mobile entities in-
teracting within open, dynamic, and possibly unreliable environments: In-
telligent Environments are a typical case. The complexity of such scenar-
ios requires novel engineering tools, providing effective support from the
analysis to the deployment stage. In this paper we illustrate the impact
of a general-purpose coordination infrastructure for multiagent systems –
providing a model, a run-time, and suitable deployment tools – on the en-
gineering of such applications. As a case study, we consider the intelligent
management of lights inside a building: despite its simplicity, this problem
endorses the typical challenges of this class of applications. The case study
is built upon the TuCSoN coordination infrastructure, which provides en-
gineers with both the abstractions and the run-time support for effectively
managing the application complexity.

I. INFRASTRUCTURES FOR NETWORK-CENTRIC

COMPUTING

The technological progress – concerning chip density, pro-
cessor speed and network bandwidth, to cite some – makes
it possible to conceive new classes of applications: Ubiqui-
tous [1], Proactive [2], and Network Centric [3] computing are
among the most important areas of interest. Intelligent / Smart
Environments [4], [5] are prominent cases of such application
classes (see [6] for a comprehensive and up-to-date collection
of references – projects, publications, and conferences), whose
aim is to remodel the environments where people live and act,
considering the new services that can be provided by embed-
ding (intelligent) software in network-enabled subsystems, such
as sensors, actuators, mobile devices and general-purpose com-
puters.

Traditional software engineering approaches are known to be
inadequate to face the complexity of these scenarios [7], [8], so
new paradigms and models are required. The agent paradigm
[9], originated in the distributed artificial intelligence context
and now central also in software engineering research [10], [11],
appears to be more effective and to provide better support in
the application analysis, design, development and deployment
stages.

However, the engineering of these systems, which are charac-
terised by the integration and coordination of open and dynamic
sets of (heterogeneous) agents, calls for other abstractions, such
as the society concept [12]. This is the focus of several research
efforts, introducing notions such as social agency [13], social-
ware [14], and social laws [15].

So, new engineering methodologies, models, infrastructures
and technologies are needed to explicitly face the design of
both the single agents and the society itself: social tasks, social
laws, and collective behaviour should be considered first-class

A. Ricci is with the DEIS, Università di Bologna
Via Rasi e Spinelli, 176, 47023 – Cesena (FC), Italy
email: aricci@deis.unibo.it

A. Omicini is with the DEIS, Università di Bologna
Via Rasi e Spinelli, 176, 47023 – Cesena (FC), Italy
email: aomicini@deis.unibo.it

E. Denti is with the DEIS, Università di Bologna
Viale Risorgimento, 2, 40136 – Bologna, Italy
email: edenti@deis.unibo.it

issues, constituting the system social / global intelligence [16].
This approach includes, for instance, the ability of specifying
goals, constraints, and desired properties that are not specific
of a given agent, but of a community of agents, as well as the
ability to adapt / modify this social glue dynamically, at run-
time. Furthermore, it should be possible to specify and enforce
the coordination activities that involve an open (and possibly
a-priori unknown) set of agents: since agent, thanks to their au-
tonomy, can be perceived only by their observable behaviour,
acting upon them means / requires interacting with them.

The case study considered in this paper – the management
of lights inside a building – is taken here as a simple represen-
tative of this class of applications: our aim is to describe how
to model, design and develop this application as a society of
agents. In particular, we show how the social aspects of the
system can be properly engineered by means of a suitable coor-
dination model (for analysis and design) and infrastructure (for
development and deployment). The coordination infrastructure
of choice, TuCSoN, provides both a coordination model and a
technology for development and deployment, including a run-
time environment and IDE tools.

In the following, Section II introduces the case study, fo-
cusing on the application requirements. Section III discusses
the application analysis and design, adopting the SODA agent-
oriented software engineering methodology, while develop-
ment and deployment are considered in Section IV, where
the TuCSoN coordination infrastructure is introduced and ex-
ploited. The case study concludes in Section V, by discussing
the impact of integrating a new service into the application: Sec-
tion VI then discusses the benefits and drawbacks of TuCSoN
in the engineering of the application. Conclusions are finally
drawn in Section VII.

II. THE LIGHT MANAGEMENT CASE STUDY

This work has been inspired by current research on agent in-
frastructures for intelligent environments [17], [18], [19]. De-
spite its simplicity, the case study below is representative of a
broad class of applications, where autonomous and (possibly)
mobile agents interact in an open environment, like the Internet.

In the case study presented here, agent coordination requires
the management of resources (lights) shared by autonomous
agents (visitors), whose desires and preferences call for differ-
ent coordination policies, to be changed and adopted dynami-
cally. In particular, the application goal is to manage the lights
in the rooms of a building so as to automatically adapt their
intensities to the visitors’ preferences while respecting the ex-
isting constraints – and more generally to apply light policies
that could change over the time.

A. Structure

Each room has its own light policy, ruling the behaviour
of lights: light policies can be added / removed dynamically.
Henceforth, we will refer to the visitors of the building as visitor



agents. Visitor agents freely move from room to room accord-
ing to their purpose: their light preference is kept into account
when either they stop moving, or change their preference explic-
itly. Each light source is characterised by the zone enlightened
by its light: only visitors currently inside this zone contribute,
by their preference, to determining the source lightness.

There are two kinds of light sources: zone lights and direc-
tional lights. Zone lights are room lamps whose influence zones
do not to overlap. Directional lights, instead, are extra sources
that can overlap zone lights, so as to produce a local light en-
hancement.

The intensity of a zone light is computed according both to
the preferences of agents inside the specific zone, and other con-
straints such as energy management. We consider three differ-
ent kinds of (simple) light policies:

• mean value – the light intensity of a lamp is computed as
the mean value of the preferences of visitors in the influ-
ence zone of the lamp;

• min value – the light intensity of a lamp is computed as the
minimum value of such preferences;

• max value – the light intensity of a lamp is computed as the
maximum value of such preferences.

We also consider different types of visitor agents: agents mov-
ing randomly from room to room, agents looking for a room
with their preferred light intensity, and agents looking for empty
rooms where to stay alone. From the viewpoint of the multia-
gent system, however, all such visitors have the same (private)
goal: getting the light intensity of the room they are visiting -
or, better, of the lamp which they are influencing - as nearest to
their preference as possible.

B. Key Issues

The management of a dynamic set of shared resources (lights)
among an (open) set of autonomous agents (visitors) is a typical
coordination problem. In our case, there is no a-priori knowl-
edge about which agents, and how many, will visit the rooms,
nor is there any assumption about their structure or behaviour:
we can only observe them or interact with them, with no chance
of knowing or changing their behaviour (or their code) in order
to coordinate them.

Also, in this case study light management policies can be
changed dynamically and must be enforced in a prescriptive
way, without relying on agents’ finding an agreement by them-
selves: this requirement implies the adoption of a coordination
model enabling coordination policies to be specified outside
the coordinated agents, providing the capability of enforcing
them prescriptively, and supporting the dynamic specification
/ change of coordination laws – all without bothering the (un-
aware) agents.

From the single agent viewpoint, the case study underlines
agent autonomy, since visitors express their light preference
where and when they want autonomously, and move inside the
building according to their own plans. In addition, it requires
(virtual) mobility, since visitors - moving from room to room -
meet different social contexts, find different light policies and,
more generally, heterogeneous local interaction contexts, each
with its own coordination laws and constraints.

III. CASE STUDY: ANALYSIS AND DESIGN

Analysis and design are carried out using the SODA [16]
agent-oriented software engineering methodology.

A. Analysis sketch

In the SODA methodology the analysis stage is performed
by identifying three models: the role model, the resource model
and the interaction model.

The role model is aimed at identifying both the individual and
the social roles. In our case study, a reasonable model is to con-
sider three individual roles: the Visitor, the Light Master, and
the Light Installer. The Visitor role represents visitors moving
from a room to another, whose only responsibility is to express
a preference about the light intensity of a room. In the context
of this multiagent system, a Visitor has no specific competence.
The Light Master role represents the one who changes the light
policies of the rooms, while the Light Installer is the one who
installs / removes room lights. In addition, there is one social
role, the Room Group, which is composed by all the Visitors
currently in a room: its social tasks is to set the room light in-
tensity according both to the current light policy of the room,
and to the preferences of the room Visitors. To be able to do so,
the Room Group must have the right of accessing light sources
to change light intensity.

With respect to the resource model, the following types of re-
sources can be identified: the Building, the Rooms, and the Light
sources. The Building is a set of rooms: as such, it provides ser-
vices to get information about the building planimetry and sim-
ilar issues. A Room is defined in a bi-dimensional space, and
represents the place where light sources are located and visitors
move to: its dimension is expressed in blocks. A room provides
services to add / remove lights, to retrieve the light intensity in
a specific point inside it, and to specify and select the current
light policy. Light sources are characterised by their light inten-
sity and influence zone, which is the (rectangular) patch of the
room influenced by their light. Lights can be of two types, zone
lights – the main, not-overlapping room lights – and directional
lights: these have a fixed 2 × 2 block influence zone size, and
can be installed only in addition to already-existing zone lights.
Services provided by a light source concern setting / getting its
light intensity.

The SODA interaction model includes interaction protocols
for individual roles and resources, and interaction rules for so-
cial roles. Each Room is an interaction context, with its own
protocols and rules. One further interaction protocol enables
visitors to express their current preference about the desired
light intensity in the point of the room where they are currently
situated. Interaction rules are associated to the Room Group:
the fundamental rule takes care of setting light intensity ac-
cording to the current light management policy of the room.
This involves collecting visitor preferences, applying the cur-
rent light policy associated to the room, and then accessing the
corresponding light sources to set the light intensity.

B. Design sketch

According to the SODA methodology, the design stage is
aimed at defining three models – the agent model, the society



model, and the environment model – as the design counterparts
of the analysis models (role model, resource model, interaction
model). More precisely, the agent model is the counterpart, at
the design stage, of the individual roles of the role model, while
the society model captures the social roles of the role model; the
environment model, in its turn, represents the counterpart of the
resource model.

So, here the agent model must define a mapping for the Vis-
itor, the Light Master, and the Light Installer roles, while the
Room Group role is to be mapped by the society model. It is the
resource model’s goal to define mappings for the Building, the
Rooms, and the Light sources resources.

For each individual role, the agent model should define (1)
the mapping class, (2) the cardinality of the class, (3) the agent
locality degree (mobile vs. fixed agent), and (4) the agent’s
source. The Visitor role is mapped onto the Visitor class
(an agent class in SODA terminology) : the cardinality of the
class is 0 ÷∞, locality is mobile, and the source is outside the
system. The Light Master role is mapped onto the LightMan-
ager agent class: cardinality is one per room, locality is fixed,
and the source is inside the system. Finally, the Light Installer
role is mapped onto the LightInstaller agent class: car-
dinality, locality, and source are identical as above.

With respect to the society model, the Room Group social
role is mapped onto the Room Society abstraction: the role’s
responsibility is to set the intensity of light sources according
to visitors’ preferences and to the light management policy cur-
rently defined for that room resource. The Room Society is de-
signed around the Light coordination medium, which embeds
the interaction rules of the Room Group role in terms of coordi-
nation laws.

The environment model is involved with resources. Building
is mapped onto the Building class (an infrastructure class in
SODA terminology), and provides information about planime-
try and available rooms: its services can be accessed by visitor
agents entering the building. This resource is located and ac-
cessible via the Building coordination medium: its cardinality
is one. Rooms are mapped on the Room infrastructure class,
which provides services to add / remove lights and to ask for
the desired light intensity at a specific position in the room. The
first service is accessible only to Light Installers, while the sec-
ond is available to all Visitor agents. The Room class is accessi-
ble only via its own Light coordination medium. Light Sources
are mapped on the LightSource class, which allows to set /
get the light intensity: these services are available to the Room
Group role only. So, Light Sources, too, are located and acces-
sible via the Light coordination medium.

IV. DEVELOPMENT AND DEPLOYMENT IN TuCSoN

Application development and deployment has been carried
out upon a mobile agent platform based on the TuCSoN coor-
dination infrastructure.

A. TuCSoN overview

The TuCSoN coordination model and infrastructure is based
on the notion of (logic) tuple centre [20], which is a Linda tuple
space [21] empowered with the ability to define its behaviour

in response to communication events according to the specific
coordination needs.

It has been argued [22] that the openness and the wideness of
the Internet scenario make it suitable to conceive the Internet as
a multiplicity of independent environments (e.g. Internet nodes
or administrative domain of nodes), and to design applications
in terms of agents that explicitly locate and access resources
in this environment. So, TuCSoN is based on a multiplicity of
independent interaction spaces – tuple centres – that abstract the
role of the environment. (Mobile) agents access tuple centres
by name, either locally in a transparent way, or globally on the
Internet in a network-aware fashion [23].

A local interaction space can be used by agents to access
the local resources of an environment and as an agora where
to meet other agents and coordinate activities with them. This
is why tuple centres, as fully distributed interaction media, can
be understood as social abstractions [24], allowing to constrain
agent interactions explicitly and to enforce the coordination and
cooperation activities that define the agent aggregation as a so-
ciety.

TuCSoN supports both subjective and objective coordination
[25] – that is, the logic of coordination can be either embedded
in agents, directly coordinating themselves via generative com-
munication in pure Linda-style, or, better, left outside agents,
embedded in tuple centres. By doing so, the application social
rules are captured in terms of tuple centres’ coordination laws,
expressed in the Turing-equivalent, logic-based ReSpecT lan-
guage.

Interaction protocols can then be designed and distributed
among agents and media, adopting the balance that is the most
adequate to the specific application goals. One first conse-
quence is the enhancement of agent autonomy, since agents can
be designed focusing only on their own goals and tasks, dis-
regarding dependencies with other agents, and with no need
to track (open) environment evolution. Another key issue is
the enactment of prescriptive coordination, thus constraining
agent interactions so as to reflect sound behaviours. Finally, tu-
ple centres spread over the network and living in infrastructure
nodes visited by rambling agents enhance the decentralised na-
ture of the multiagent system. So, the topological nature of the
TuCSoN global interaction space systems [23] makes it pos-
sible to deal with the typical issues of distributed systems –
namely to enforce flexible security policies, workload alloca-
tion policies, fault tolerance policies.

The TuCSoN technology [26], fully developed in Java, is
based on two main ingredients: Java as the main standard Inter-
net “glue technology”, and tuProlog [27] as the logic-based lan-
guage to support high-level inter-agent communication and co-
ordination. Both an agent run-time system and an effective co-
ordination technology, with a comfortable IDE and specialised
tools, are provided to effectively support the system develop-
ment process.

One first advantage of a Java based technology is that any
Internet node can become a TuCSoN node by simply starting
up the Java-based run-time system: the local coordination space
is then immediately available both to local and remote agents.
Moreover, as a logic-based technology, higher-level inter-agent
communication and coordination is based on first-order logic:



the Java-based tuProlog virtual machine is a light-weight Pro-
log interpreter used to provide both the communication and the
coordination language. So, both Java and tuProlog agents inter-
act by exchanging logic tuples, even though this is transparent
to Java agents. Logic tuples are used also for ReSpecT pro-
grams: both the ordinary tuple space and the specification space
of a tuple centre are represented as first-order logic theories.

Besides featuring classes and tools to build Java and tuProlog
agents, the TuCSoN technology provides special IDE agents,
GUI agents and the Inspector, to enable developers to operate
over tuple centres for deployment, debugging and monitoring
purposes. GUI agents provide a (graphical) interface to ac-
cess tuple centres by means of TuCSoN coordination primi-
tives (out, in,rd,inp,rdp,setSpec, getSpec), while the Inspector is
specifically tailored to the TuCSoN metaphors: since a tuple
centre is characterised at any time by the set T of its (ordinary)
tuples, the set W of its pending queries, and the set S of its
reaction specifications [20], the Inspector makes it possible to
view, edit and control tuple centres from the data, the pending
query and the specification viewpoints – thus providing both
a data-oriented (from the communication and the coordination
viewpoints) and a control-oriented view over the space of agent
interaction, along with the control capabilities required to man-
age it effectively.

B. Development

From the topology point of view, we assume that there is ex-
actly one distinct TuCSoN node for each room of the building.
Moreover, we also suppose that a TuCSoN node represents the
building as a whole , so that its coordination media can manage
information about the building topology and accessible rooms –
in particular, storing the addresses of the room TuCSoN nodes.

With respect to agents, the Visitor class has been imple-
mented as a TuCSoN mobile agent: there are different kinds of
visitors, according to different ways of exploring the building.
LightManager and LightInstaller class are TuCSoN
agents, too. The Light coordination medium of each room has
been mapped directly onto a tuple centre named Light, located
at the TuCSoN node of the corresponding room. The interac-
tion rules associated to Light, which represent light manage-
ment policies and agent coordination rules, have been encoded
in the ReSpecT language and used to program the behaviour of
the Light tuple centre. LightSource and Room resources
are wrapped in components accessible only indirectly, by suit-
ably interacting with the local Light tuple centre: for instance,
to set the intensity of a light source requires a tuple such as
set light(LampId,Value) to be output into Light by
means of an out operation.

This approach underlines the role of local interaction spaces
as agent interfaces to local resources, thus outlining the rele-
vance of coordination media as the middleware enabling inter-
actions, whatever they may be.

C. Deployment

Fig. 1 shows the run time evolution of our system, with
rooms, light zone and some mobile agents visiting the building
and expressing preferences about lights. The dark gray zones
represent zones with an installed (zone) light source, currently

Fig. 1. A snapshot of MAS dynamics with rooms and visitors (mobile agents)

switched off. An indication of the currently installed light pol-
icy is shown for each room: in Fig. 1, for instance, the meeting
room adopts the mean value policy.

As a test, we can change at run time the light management
policy of the meeting room to the min value policy (say, to save
energy). We can do so either using an agent, or directly on our
own via the Inspector tool, inspecting the Light tuple centre
of the meeting room, opening the specification set and replac-
ing the coordination rules involved in the light management (see
Fig. 2). In this way, the social laws can be adapted dynamically,
with no need of acting on visitor agents, and focusing only on
the coordination activities, encapsulated in a suitable abstrac-
tion.

V. INCREMENTAL DEVELOPMENT

Now, suppose we want to provide an intelligent service
which, analysing the history of the dynamics inside a room,
suggests where to place new directional light sources so as to
enhance future visitors’ overall satisfaction.

To this end, a new role must be introduced - the History Anal-
yser - aimed at analysing the history of visitors’ satisfaction
and possibly provide suggestions. In the environment model,
the Room resource must provide a new history service to trace
agents’ satisfaction, computed as the difference between actual
light intensity in the place of the room where they are, and their
preference. Of course this service must be accessible by His-
tory Analysers only. The interaction model should be updated
with new protocols for History Analysers, allowing to start trac-
ing and then to retrieve history information – both accessing the
Room resource.

At the design stage, the History Analyser role is mapped on
the HistoryAnalyser SODA agent class, whose cardinal-
ity is one and whose source is outside the system. The inter-



Fig. 2. Inspecting Light tuple centre

face to the Room class via the Light coordination medium is
enhanced to provide the new history service.

At the implementation stage, the History Analyser is mapped
onto a TuCSoN mobile agent, and the new history services are
provided by extending the previous behaviour of the Light tu-
ple centre with new coordination laws. What is interesting here
is that the new interaction protocols and the new room services
are provided by extending the social rules embedded in Light
incrementally, at run-time, adapting the behaviour of the agent
social infrastructure dynamically.

VI. BENEFITS, LIMITS, AND COMPARISONS

First, let us consider the benefits of tuple centres as objective
coordination models. One first advantage is that the tuple centre
model guarantees the consistence and the enforcement of the co-
ordination laws representing light policies: as local interaction
spaces, tuple centres enable the overall system consistence to be
maintained despite the inherent openness and distribution of the
environment.

Moreover, the social rules (light policies) encapsulated as co-
ordination laws within tuple centres can be changed dynami-
cally, via the Inspector and agents, in a seamless way: synchro-
nisation issues involved in the run-time change of policies are
handled automatically, thanks to the properties of the tuple cen-
tre model. Also, the dynamic change of the light policies is
performed without affecting visitor agents, which can be com-
pletely unaware of that – a crucial point in the engineering of
open environments.

So, tuple centres, as first-class abstractions where social rules
can be dynamically specified and enforced, provide direct sup-
port for the incremental design and development of agent soci-
eties: as shown in the Deployment subsection of Section IV, the
behaviour of a tuple centre can not only be inspected, but also
enhancedby adding new coordination activities without neces-
sarily knowing the existing ones.

Inspectability of tuple centres, along with the logic nature
of the communication and of the ReSpecT languages, enables
sound (automated) reasoning about the interactions occurring in
a tuple centre and the involved coordination activities. For in-
stance, the history service discusses in the case study requires
the observation of agent satisfaction about light evolution, in-
specting and reasoning about interactions, and finally adapting
the environment (and the coordination policies – not shown in
this paper) accordingly.

For comparison purposes, let us consider how the same prob-
lems could be modelled and engineered with a subjective co-
ordination model. In that context, two kinds of solutions are
usually adopted: either to use special agents as coordinators or
mediators of light preferences, thus encapsulating the coordina-
tion policies into specialised agents; or to spread coordination
policy management among agents – for instance, using proto-
cols like contract net, where managers are light source agents
and contractors are visitor agents.

The first case involves the creation of a specific coordina-
tor agent – a typical situation in multiagent systems where co-
ordination media are not modelled as first class abstractions.
Typically, such a coordinator agent has a reactive, complex
behaviour, since it has to manage all the many dependencies
among the open set of agents, reacting to agents interactions,
facing coordination activities at different levels, including con-
currency and synchronisation issues, resource allocation, etc.

In this approach, there is no explicit coordination model, and
every coordination aspect is faced at a mechanism (implemen-
tation) level: as a consequence, no engineering and structured
reuse of coordination activities is possible. The description
of the coordination activity has to be extracted from the agent
source code, mangled with its computational behaviour in pos-
sibly any language: of course, this makes it quite hard to build
a reusable framework for inspection, formal specification and
verification of coordination activities. Moreover, adapting or



changing coordination activities dynamically is very difficult:
typically, it is necessary to shutdown the coordinator agent,
change its behaviour and then spawn it again – which is unfea-
sible in an open, always-on environment. Alternatively, one can
build a general purpose coordinator agent, able to accept a new
coordination specification dynamically: yet, doing so means to
admit precisely the need of considering the problem at a more
abstract level – which opens the way towards the definition of a
coordination medium.

Inspecting and changing dynamically the coordination activi-
ties is an even-worse problem in the second approach, where co-
ordination activities are completely distributed among the open
set of involved agents. In this case, maintaining the conceptual
unity of coordination, and making changes while keeping the
global consistence of the social tasks intact is a really hard task.
Therefore, here agents must have the skills not only to use, but
also to build the coordination process execution. This character-
istic implies some drawbacks: the society is less open (because
of the requirements on the agent skills), and the agent autonomy
is reduced since they cannot pursue only their specific tasks, but
have to participate to other activities, which are in some sense
outside their actual goals.

With respect to performance, coordination infrastructures in
general can be of help to improve system performance, in that
they provide explicit structures to organise interactions ratio-
nally and to adapt them according to the dynamism of the en-
vironment. Here we have shown how an objective coordination
model such as tuple centre, by providing first-class coordina-
tion abstractions that are not specific agents but part of the in-
frastructure, allows to enforce coordination while minimising
negotiation, contracting stages and interactions in general, thus
making the coordination process more fluid and automated.

VII. CONCLUSIONS AND FUTURE WORK

The paper has shown the positive impact of using a coordi-
nation model and infrastructure to support the engineering of
complex applications in the Network-Centric computing era. In
particular, the SODA methodology and the TuCSoN coordi-
nation infrastructure have been used to engineer a simple case
study about the intelligent management of lights in a building,
taken as an example of Smart Environment application. We il-
lustrated the benefits of carrying out the analysis, design and
development of systems explicitly at two distinct levels – the
agent level and the society level –, focusing in particular on the
last one.

Future work will be devoted to the deployment of the
TuCSoN technology in more complete and demanding appli-
cations in the Intelligent Environment context.

REFERENCES

[1] Mark Weiser, “Hot topic: Ubiquitous computing”, IEEE Computer, vol.
26, no. 10, pp. 71–72, Oct. 1993.

[2] David Tennenhouse, “Proactive computing”, Communications of the
ACM, vol. 43, no. 5, May 2000.

[3] Jim Waldo, “The Jini architecture for network-centric computing”, Com-
munications of the ACM, vol. 42, no. 7, pp. 76–82, July 1999.

[4] Victor Lesser, Micheal Atighetchi, Brett Benyo, Bryan Horling, Anita
Raja, Regis Vincent, Thomas Wagner, Ping Xuan, and Shelley Zhang,
“A multi-agent system for intelligent environment control”, in Proceed-
ings of the Third International Conference on Autonomous Agents. 1999,
ACM Press.

[5] Michael Huhns, “Networking embedded agents”, IEEE Internet Comput-
ing, vol. 3, no. 1, pp. 91–93, Jan. 1999.

[6] Microsoft, “Intelligent environments resource page”,
http://research.microsoft.com/ierp/.

[7] Nicholas R. Jennings and Micheal Wooldridge, “Agent-oriented software
engineering”, in Proceedingsof the 9th European Workshopon Modelling
Autonomous Agents in a Multi-Agent World : Multi-Agent System Engi-
neering (MAAMAW-99), Francisco J. Garijo, , and Magnus Boman, Eds.
30– 2 1999, vol. 1647, pp. 1–7, Springer-Verlag: Heidelberg, Germany.

[8] Martin Griss and Gilda Pour, “Accelerating developmentwith agent com-
ponents”, IEEE Computer, vol. 34, no. 5, pp. 37–43, May 2001.

[9] Michael J. Wooldridge and Nicholas R. Jennings, “Intelligent agents:
Theory and practice”, The Knowledge Engineering Review, vol. 10, no. 2,
pp. 115–152, 1995.

[10] Nicholas R. Jennings, “On agent based software engineering”, Artificial
Intelligence, vol. 117, no. 2, pp. 277–296, 2000.

[11] Micheal Wooldridge and Paolo Ciancarini, “Agent-oriented software en-
gineering: The state of the art”, in Handbook of Software Engineering
and Knowledge Engineering. 2001, World Scientific Publishing.

[12] Paolo Ciancarini, Andrea Omicini, and Franco Zambonelli, “Multiagent
system engineering: the coordination viewpoint”, in Intelligent Agents VI
— Agent Theories, Architectures, and Languages, Nicholas R. Jennings
and Yves Lespérance, Eds. February 2000, vol. 1767 of LNAI, pp. 250–
259, Springer-Verlag.

[13] Munindar Singh, “Agent communication languages: Rethinking the prin-
ciples”, IEEE Computer, vol. 31, no. 12, 1998.

[14] Fumio Hattori, Ohguro Takeshi, Makoto Yokoo, Shigeo Matsubara, and
Sen Yoshida, “Socialware: Multiagent systems for supporting network
communities”, Communication of the ACM, vol. 42, no. 3, 1999.

[15] Joav Shoham and Moshe Tennenholtz, “Social laws for artificial agent
societies: Off-line design”, Artificial Intelligence, vol. 73, 1995.

[16] Andrea Omicini, “SODA: Societies and infrastructures in the analy-
sis and design of agent-based systems”, in 1st International Workshop
“Agent-Oriented Software Engineering” (AOSE 2000), Paolo Ciancarini
and Michael J. Wooldridge, Eds., Limerick (Ireland), 10 June 2000, pp.
84–93.

[17] Rune Gustavsson, “Agents with power”, Communications of the ACM,
vol. 42, no. 3, pp. 41–47, Mar. 1999.

[18] Victor Lesser, “Reflections on the nature of multi-agent coordination and
its implications for an agent architecture”, Autonomous Agents and Multi-
Agent Systems, vol. 1, pp. 89–111, 1998.

[19] Nelson Minar, Matthew Gray, Oliver ROUP, Raffi Krikorian, and Pattie
Maes, “Hive: Distributed agents for networking things”, in Proceedings
of the First International Symposium on Agent Systems and Applications
and Third International Symposium on Mobile Agents ASA/MA, 1999.

[20] Andrea Omicini and Enrico Denti, “From tuple spaces to tuple centres”,
Science of Computer Programming, vol. 40, no. 2, July 2001.

[21] David Gelernter, “Generative communication in Linda”, ACM Transac-
tions on Programming Languages and Systems, vol. 7, no. 1, pp. 80–112,
1985.

[22] Giacomo Cabri, Letizia Leonardi, and Franco Zambonelli, “Mobile-agent
coordination models for internet applications”, IEEE Computer, vol. 33,
no. 2, pp. 82–89, Feb. 2000.

[23] Andrea Omicini and Franco Zambonelli, “Coordination for Internet appli-
cation development”, Autonomous Agents and Multi-Agent Systems, vol.
2, no. 3, pp. 251–269, Sept. 1999, Special Issue: Coordination Mecha-
nisms for Web Agents.

[24] Micheal Huhns and Munindar Singh, “Social abstractions for informa-
tion agents”, in Intelligent Information Agents: Agent-Based Information
Discovery and Management on the Internet, Matthias Klusch, Ed. 1999,
Springer-Verlag.

[25] Michael Schumacher, Objective Coordination in Multi-Agent System En-
gineering – Design and Implementation, vol. 2039 of LNAI, Springer-
Verlag, Apr. 2001.

[26] “TuCSoN home page”,
http://lia.deis.unibo.it/tucson/.

[27] Enrico Denti, Andrea Omicini, and Alessandro Ricci, “tuProlog: A light-
weight Prolog for Internet applications and infrastructures”, in Practi-
cal Aspects of Declarative Languages, I.V. Ramakrishnan, Ed. 2001, vol.
1990 of LNCS, pp. 184–198, Springer-Verlag, 3rd International Sympo-
sium (PADL 2001), Las Vegas (NV), 11–12 Mar. 2001, Proceedings.


