
Object Oriented Mapping for HTML Documents

Francesco Garelli <garelli@acm.org>
Carlo Ferrari <carlo@dei.unipd.it>

Department of Electronics and Informatics
Università di Padova

via Gradenigo 6a - 35131 Padova. Italy

Abstract

Emerging distributed technologies aim to provide simple
and powerful tools for web services design and implemen-
tation. Main vendors provide modern frameworks so that a
good coordination between web interfaces and object ori-
ented paradigms can be supported. These frameworks aim
to divide a web application in different logical tiers and they
describe these tiers by a object oriented architecture. Un-
luckily the object oriented facilities are usually constrained
to the application components which belong to the applica-
tion, while a comfortable way to access external web ser-
vices which run on different hosts, is missing.

In this article we describe a strategy which simplifies the
creation of object oriented container for existing web ser-
vices. First we introduce a method to collect relevant in-
formation from existing HTML services, like search engines
or web based mailboxes. Then we define a tool which con-
vert a HTML template into a Java class. This class acts
as a wrapper for the services that a web site offers. A ap-
plication model access to the web site by calling the class
instances methods.

1 Introduction

Sometimes a question that appears easy and harmless re-
veals to be very difficult and hostile . Among those ques-
tions there is the following one: "What is a world wide web
document?". If you believe that question is trivial try to
ask it to different people; unlikely you will get a single and
definitive answer.

The reason you will probably get different answers is be-
cause the HTTP protocol and the HTML language evolved
during the last years towards complex features.

The HTML format was created by Tim Bernerns-Lee and

Robert Caillau at CERN in 1991. The language only de-
scribed the logical structure of documents because the orig-
inal motivation was to keep track of experimental data.
Quickly non physicist users wanted more control over the
appearance of the pages. Starting from HTML 3.0 browsers
got commercial value and software companies, namely
Netscape and Microsoft, proposed some non-standard ex-
tensions. At the same time web server developers intro-
duced specific protocols in order to support dynamic con-
text.

Since 1991 the HTTP based architectures evolved both
on client and server sides [2]:

� a better look and feel. Web pages became more inter-
active. New graphical items, like layers or styles, some
scripting (e.g. javascript) and Java applets provide an
improved appearance.

� dynamic and user customized contents. Modern web
sites are based on dynamic environments. Usually a
user needs to authenticate himself before he can ac-
cesses to the provided services. Thanks to this authen-
tication, the web application can maintain user related
information between different sessions and the showed
pages can be customized according to the user’s de-
sires. For example all web-based email services re-
quire this authentication. Even when the authentica-
tion is not a requirement, the retrieved content often
depends on the information that the user submitted to
the web server in advance.

These complex features make the development of web ap-
plications more difficult. In order to face this increas-
ing complexity, vendors are designing new object oriented
paradigms on the server side. The most challenging emerg-
ing technologies are the .NET platform from Microsoft and
the J2EE platform from Sun [3]. These architectures aim

to offer an homogeneous and practical environment to de-
velop applications both in classic graphical user interfaces
and web-based interfaces. The web application is built in
accordance with object oriented design and the use of third-
part components: this strategy reduces the development
time and effort. These frameworks don’t allow the reuse
of existing online web services although.

In this article we propose a object oriented mapping for
HTML documents in order to access to existing web ser-
vices. Thanks to this mapping we can envelope a HTML
document inside a object oriented container. In the next sec-
tion we discuss the properties of web interfaces and some
modern frameworks which support their development. The
third section deals with a typical HTML language problem:
the presence of logical and layout data mixed in the same
page. Therefore it describes a method to extract relevant
information from documents. The forth section introduces
a process to envelope this relevant information in a object-
oriented container. It describes also a Java tool which makes
this process easier and faster. The last section resumes the
article content and it hints at some open problems.

2 Object oriented paradigms and web inter-
faces

The need for an object oriented representation of web in-
formation depends on the . The browser is no more a tool
for leafing through textual documents, but it is a graphical
terminal for applications which run remotely. As graphical
interface the web browser supplies many advantages which
a classic client application built by the local operating sys-
tem widgets doesn’t offer:

1. the web interface is auto-explaining, it contains the in-
terface for the remote application and at the same time
the documentation for that interface. Hence even a
novice or occasional user fells at one’s easy.

2. the web interface is universal, it is well-known by most
people and it is independent of the local operating sys-
tem.

3. the web interface is light, since all the logic (and the
code) of the application runs remotely on the server.
Hence almost all the maintenance of the application is
on the server side and the expensive maintenance on
client side is minimum.

Thanks to those advantages web-based applications are
evolving and becoming more complex. In particular the
logic tier of web application are becoming larger and ma-
jor vendors propose object oriented frameworks which sup-
port the design and the development of the application logic.

Unluckily the HTML format is not an object oriented lan-
guage and it is not suitable for an object oriented architec-
ture. Actually some efforts toward object-oriented mapping
of HTML are standing out; the most studied problem is how
to hide the CGI-BIN protocol behind a object oriented layer.
A real effective tool is a framework developed by CapeCon-
nect [4]. This framework translates a HTML form request
to a remote method invocation . The remote method is ex-
ported by a CORBA compliant server which implements
the application logic. Moreover the framework converts the
remote call result to a result web page according to a page
template. Hence the web interface appears to the applica-
tion logic as a CORBA client.

Although this product, as other frameworks, can’t model
the web interface as a remote server. As consequence the
application logic can’t use the web as a remote component
and it can’t use online services. If this abstraction were
available, agents which browse an internet site, could be
easily developed. They could be fast interfaces to legacy
web applications (e.g. search engine or SMS sender sites) or
they could collect and organize information from the Inter-
net.

3 The document representation

In order to model a web service as a remote component,
an object oriented representation of HTML documents is
needed. At the moment we don’t take into consideration
XML documents because we need an access to existing web
services which normally provide a HTML interface. Any-
way XML support appears to be a simple extension.

A natural object based representation for HTML docu-
ment is the DOM model. This model describes a web page
as a tree whose nodes are the tags and the attributes of the
documents. A DOM tree is a complete representation of the
document because it contains both the content and its struc-
ture; in fact it is quite easy to retrieve the original document
from the DOM tree. Unluckily all those information can be
excessive for our aim.

The problem we are facing is how to envelope a web ser-
vice inside a component. Actually we are not interested
in all the information inside the page but only to some
substrings which contain relevant data: images and static
text are useless information. For example if our applica-
tion needs to use a web service to retrieve a list of recipes,
we could model the query as a method invocation and the
search result as an object. The object content should be just
the recipes and not the layout information.

Hence we need a technique to extract relevant informa-
tion from a document. Modern web sites create dynamic
pages by mixing static HTML code with scripting code

<html>
<body bgcolor=”green”>

This page has been seen 432 times
reload
<form action="/search.asp">
<option type="text" name="keys">
<option type="submit">

</form>
</body>

</html>

Figure 1. Simple HTML document

<html>
<body bgcolor=<%=bgcolor type="String"%> >

This page has been seen <%=counter type="Integer"%>
times
</body>

</html>

Figure 2. Simple HTML template

(e.g. ASP or PHP pages). In a similar fashion we propose
a HTML template. This template contains normal HTML
code and some new special tags which we call xtags. The
xtags resemble the ASP or PHP languages sintax:

<%=attribute_name type="attribute_class">
where the field attribute_name is a string identifier re-

lated to the relevant data and the attribute_class is the data
type. If no type is present, the String type is assumed.

In the template the HTML code denotes useless data
while special tags are placed where in normal documents
dynamic information are placed. By a comparison between
a HTML document and a related template, relevant sub-
string can be extracted. Figure 1 shows a simple HTML
document and Figure 2 shows a possible related template.
From the comparison between the two documents the fol-
lowing data can be extracted:

identifier type value

bgcolor String green
counter Integer 432

In order to make the comparison algorithm simple some
constraints are required: a special tag can stands either in-
side the text between two tags (as for the counter identifier)
or in place of a tag attribute value.

Sometimes a HTML document contains a collection of
similar items whose number is unknown in advance. For ex-
ample quite all search engines return a set of data contained
in the same layout (often a table row). Since the number

<html>
<body>

<h1>Foreign songs</h1>
<table>
<tr>

<td>Author</td>
<td>Title</td>

</tr>
<tr>

<td>Beatles</td>
<td>Let it be</td>

</tr>
<tr>

<td>Cat Stevens</td>
<td>Father and son</td>

</tr>
<tr>

<td>Pink Floyd</td1>
<td>Another brick in the wall</td>

</tr>
</table>

</body>
</html>

Figure 3. Simple document with repetitions

of items is unknown the template can’t contain appropriate
xtags.

Hence we need a different sintax to manage possible rep-
etition in HTML documents. A valid solution could be the
following notation:

<%loop%> html code <%/loop%>

The two special tags enclose the code which can repeat
many times. Of course the enclosed code can contain many
xtags. Figure 3 and 4 shows a simple example and its tem-
plate; the following table represent the relevant information
from comparison:

identifier repetition value

title no Foreign songs
author 1 Beatles
song 1 Let it be

author 2 Cat Stevens
song 2 Father and son

author 3 Pink Floyd
song 3 Another brick in the wall

<html>
<body>

<h1><%=title%></h1>
Home
<form action="/search.asp">
<option type="text" name="keys">
<option type="submit">

</form>
<table>
<tr>

<td>Author</td>
<td>Title</td>

</tr>
<%loop%>
<tr>

<td><%=author%></td>
<td><%=song%></td>

</tr>
<%/loop%>

</table>
</body>

</html>

Figure 4. Simple template with loops

4 The object-based wrapper

Once a valid technique to extract information from a
HTML document, is available, the task of store it in a
component is quite simple. Each HTML document corre-
sponds to a single object while each template corresponds
to a class. The information that the comparison process cre-
ates, is stored inside the public attributes of the object. The
attribute identifier and its type can be those that each xtag
provides. Figure 5 shows a Java class for the “songs” tem-
plate. The title xtag corresponds to a public attribute with a
anonymous identifier and type equal to String. Instead the
author and song attributes have a type equal to Collection
because their xtags are inside a loop block and so they refer
multiple values.

In order to define the class, the only requirement is the
document template. Instead when an object is created, the
document is mandatory. In fact only the comparison be-
tween HTML document and its template produces the in-
formation which attributes contain.

A web document doesn’t contain only useful data but
also it owns references to other pages. Two kinds of ref-
erences are possible; HTML form and HTML link. The
former, denoted by the <form> tag, is a parametric refer-
ence; in fact when a user submits a form, he specifies some
values which affect the response. The latter, denoted by the

public class Simple extend HtmlObject {
public String title;
public Collection author;
public Collection song;
public Simple(String url);
public HtmlObject mainHtml() {...}
public HtmlObject searchAsp(String keys) {...}

}

Figure 5. Java classes

<a> tag, is a reference with no parameters.
In both cases when the browser follows a reference, it

downloads a different HTML document. Since in our model
a HTML document corresponds to an object, we need a con-
struct that supports some parameters and that returns an ob-
ject. This construct is just a method invocation: hence for
each form or link that is present in a template, the class must
own a different method. If this method maps a HTML link,
it doesn’t require any parameters. Otherwise, i.e. when it
maps a form, its signature defines some parameters which
corresponds to the form parameters. Figure 5 shows the
two methods mainHtml and searchAsp. In the original doc-
ument they correspond exactly to the HTML link whose ref-
erence is "main.html" and to the HTML form whose action
is "search.asp".

The creation of a Java class beginning from a HTML
document, requires some effort. In our work we developed
some useful tools to make this task easier:

� htmlObject class. It is the base class for each compo-
nent. It implements the algorithm which compares a
downloaded page with a template.

� htmlbin compiler. It is a tool which generates a Java
class from a document template. This class follows the
rules that we described in the previous section: it owns
the appropriate attributes and methods. Since the class
extends HtmlObject, it is able to download a web page
and to compare it with the correct template. The class
implements a load method that saves the comparison
result in the attributes. Finally the class provides a

� html registry. It is an external text file which join each
URL to a template and to a class able to process it.

Thanks to those tools the human action is minimal. Figure
6 shows the four simple steps so that a web service can be
enveloped in a object:

1. The developer downloads a document from the web
site that he wants to envelope

Figure 6. The developer envelopes a web document in a Java object

2. He identifies repeated blocks in the document struc-
ture and he replaces them with the loop special tag.
He replaces also all dynamic information (i.e. infor-
mation that depends on user actions) with xtags. This
task must be achieved by hand using a text editor. A
graphical tool could be convenient in future.

3. He processes the template by the binhtml compiler. He
gets a Java class which envelopes a web service.

4. He inserts the site URL, the template location and the
class name into the html registry.

Therefore the developer can access to the registered on-
line web service in his application. In fact the HtmlObject
class provides a static method call which create web objects
beginning from a URL. Other modules can call this method
passing as parameter the URL where the service is located.
As figure 7 shows the method retrieves the Java class that
can process that URL from the html registry and then it
calls the class constructor. The class constructor downloads

a web page according to the specified URL and it retrieves
from the html registry the related template. Then it compare
the two documents and it stores the comparison result in its
attributes. Once the constructor terminates, the instantiated
object contains the information from the web page and other
modules in the application have access to this information.
Then the static method returns the object to its caller. For
convenience the object is returned with a type equal to Htm-
lObject, the parent of each class which the binhtml compiler
generates. Hence the caller module must cast the object ac-
cording to its real type before it can read its attributes.

5 Conclusion

This article describes a object oriented mapping and a
Java tool which simplify the building of object container
for web services. Thanks to this technique web developers
can easily improve component reuse in their application.

The actual prototype proved to work correctly with sim-

Figure 7. The creation of a wrapper object

ple web services but showed some problems with more
complex ones. This happens both because current web sites
uses enhanced HTML extensions (e.g Javascript) which our
tool doesn’t recognize, and because many HTML pages
contain sintax errors. Moreover the comparison algo-
rithm showed some instability when it must locate repeated
blocks; actually it can be proved that the algorithm is not
deterministic in case of particular documents and we are
looking for some improvement. Anyway in our experience
these harmful documents are quite rare.

Finally we are evaluating the opportunity to add support
for XML. Nowadays XML is used principally as content
language inside web server but it is not yet a diffused lan-
guage for web sites because only few browsers manage it.
Probably XML will be a better choice for embedded devices
or services which don’t require a browser. In this case an
extension of our work can simplify the interaction between
XML documents and the object oriented paradigm.

Acknowledgements

The authors would like to thank Nicola Zingirian for the
fruitful discussions. This work has been done under the sup-
port of the MURST 60% project.

References

[1] J. Nielsen, Hypertext and Hypermedia. Academic Press , San
Diego, CA, 1990

[2] P. Fraternali, Tools and Approaches for Developing Data-
Intensive Web Application: A Survey. ACM Computing Sur-
veys 31, 3 (Sep. 1999), 227-263

[3] P. Perrone, V. Chaganti. Building Java Enterprise Systems
with J2EE. SAMS Publishing, 2000

[4] Cape Clear Software, CapeConnect Technical Overview.
http://www.capeclear.com/products/
whitepapers/capeconnect_techoverview.pdf

[5] Metadata, Javacc Documentation.
http://www.webgain.com/products/
code_analyzer/documentation.html

