
Coordinating Mobile Agents by means of Communicators

Antonella Di Stefano, Corrado Santoro
University of Catania - Engineering Faculty - Dipartimento di Ingegneria Informatica e delle Telecomunicazioni

Viale A. Doria, 6 - 95125 - Catania (ITALY) - Tel. +39 095 7382364/5 - Fax. +39 095 7382397

{adistefa, csanto}@diit.unict.it

Abstract

This paper proposes a coordination model, for both
static and mobile agents, based on abstract structures
called Communicators, entities which handle agent dia-
logue performed through ACL speech act exchanging. Such
structures are designed based on a need to model agent di-
alogue in a human-like style, offering a set of coordination
primitives of general validity, able to provide both a direct
and indirect interaction model. Since a Communicator han-
dles messages exchanged within a well-defined multi-agent
application, it is fully programmable, i.e. it is possible to
specify what messages can be exchanged and how these
message have to be handled. In detail, a Communicator
performs a syntactic and semantic routing, allowing the ex-
change and forwarding of a message according to the pro-
grammed coordination laws.

1 Introduction

In multi-agent applications, a key characteristic of soft-
ware agents is the social behaviour [14, 5]. Agents ex-
change information in order to achieve the global goal of
the application to be performed. To model agent inter-
actions, research proposes two approaches: (1) the adop-
tion of agent communication languages (ACLs) [10, 7, 8],
which are based on agent-to-agent direct interactions, and
(2) the use of coordination infrastructures [3] which offer
a support to indirect interactions based on shared spaces
(e.g. blackboards, tuple spaces, etc.) through which agents
interact by placing and retrieving information. Each pro-
posal presents several advantages, but, in the authors’ opin-
ion, none of these provide a complete framework able to
meet all the requirements of a generic multi-agent applica-
tion. Since agents are software entities exhibiting a sort of
human-like behaviour [9], any agent needs to handle well-
formed speech acts and, in the majority of cases, to for-
ward the speech act directly to another agent. In other cases,
agents need to share information, also using a proper speech

act1, but rather adopting an indirect interaction model able
to handle knowledge spreading [6]. In order to provide
a coordination infrastructure for agent interaction as com-
plete as possible, we should combine in a single coordi-
nation framework both direct and indirect interaction, with
the aim to offer a human-like model of agent interaction
based on speech act exchange. We must not forget that
an agent dialogue occurs in the context of a well-defined
multi-agent application which has also a well-defined set
of interaction protocols designed during application engi-
neering [13]. These protocols establish the rules of each
agent dialogue and can be used to derive the coordination
laws for the infrastructure which handles agent interaction
for that application. To this aim, this paper proposes a coor-
dination model, for both static and mobile agents [4], based
on abstract structures called Communicators, which repre-
sent entities to handle agent dialogue performed through
ACL speech act exchange. A Communicator is fully pro-
grammable, i.e. it is possible to specify what messages can
be exchanged and how these messages have to be handled.
Since each message exchanged passes through a Communi-
cator, the latter performs a syntactic and semantic routing,
allowing the exchange and forwarding of a message accord-
ing to the programmed coordination laws. These laws are
established by providing interaction classes, i.e. a speci-
fication of the allowed interaction in terms of the roles of
the agents involved, speech act types and handling modes.
Communicators can also be composed to permit a flexible
specification from coarse to fine-grained.

2 Abstract Model of Agent Interaction

In designing a coordination framework of general valid-
ity, we have to analyze the main characteristics of an agent
interaction and provide an abstract model of it. In the rest of
this paper, we will use the term agent interaction to refer to
the exchange of a single message between two (one-to-one)
or more (one-to-many) agents.

1e.g. a tell or inform message without specifying the receiver
agent.

According to the methodology described in [13], the first
step in designing a multi-agent application is the definition
of the role model and the interaction model, from which in-
teraction protocols are derived and the behaviour of agents
in the context of the defined protocols. Given this, we can
derive the first property of an agent interaction:

Def. 1. Any agent interaction between two or
more agents participating in the same multi-agent
application can take place if (and only if) the role
and interaction models of that application allow
it.

More specifically, we can say that a multi-agent application
A defines a set of interaction protocols P , say A = fPg,
and each protocol defines a set of allowed interactions I , say
P = fIg; thus we can formalize Def. 1 with the following
first-order-logic expression:

I 0 can occur inA, A = fPg ^ 9P 0 2 fPg ^ I 0 2 P 0

(1)
Now, in practise, let us model an agent interaction by start-
ing from a standard ACL message. This is our starting point
as such a message is a good model of the information ex-
changed in a human interaction. Let us model an ACL mes-
sage with the tuple:

m :=< �m; �m; nm;
m; �m; �m > (2)

where �m and �m identify respectively the sender and re-
ceiver agent, nm is the name of the speech act,
m is the
ontology, �m the content language and �m the message
content2. Such a message model is not complete for repre-
senting human-like behaviour. A human interaction can be
not only one-to-one, but also one-to-many, and the receivers
can be reached by the message in an explicit or implicit way;
for example, in a room where there are some people, if a
single person talks explicitly to his/her friends, the conver-
sation could be (implicitly) listened to by the other people.
This means that we have to consider the agents to which the
message is explicitly addressed and the agents which are al-
lowed to “listen to” a message exchanged, even if it is not
directed to them. These issues can be modeled by introduc-
ing the receiver set and the scope. They define what we
call real and virtual receivers. Real receivers are the agents
to which the message is explicitly destined, and virtual re-
ceivers are all the agents which can share the messages. Ac-
cording to this model, we characterize agent message and
interaction with the tuples:

m0
:=< �m; f�mg; nm;
m; �m; �m; �m >

bI :=< m0; fvmg >
(3)

2Additional parameters (such as, for a KQML message, reply-
with, in-reply-to, etc.) do not need to be specified since they are
not relevant in our model.

With respect to 2, these formulas introduce the possibility
of specifying a set of real receivers, f�mg, instead of a sin-
gle one. Virtual receivers fvmg cannot be under the control
of the sender agent: the latter (like a human character) can
specify the message to send, who it is, the agents it is speak-
ing to, etc., but the scope of the interaction is determined by
the application context in which the interaction occurs. For
this reason we modelled interactions with bI by specifying
the association between a message m0 with the relevant vir-
tual receivers. This association depends on the applicaton
requirements and thus by the semantics of that interaction in
the context of the given application. In order to allow a flex-
ible specification of such associations, we group all interac-
tions with a same behaviour in interaction classes by gener-
alizing each field in bI . While nm,
m, �m are still general-
ized, the same cannot be said for agent names and message
content: names become roles, according to the interaction
model of [13], and the content is generalized by using a
message template. The result is an interaction class I repre-
sented by the tuple < f�g; f�g; fvg; fNg; f
g; f�g;K >

where f�g are the roles of the sender agent, f�g the roles
of real receivers, fvg the roles of virtual receivers, fNg the
performative names which can be exchanged, f
g the al-
lowed ontologies, f�g the allowed content languages and
K a predicate for the content field (e.g. a regular expres-
sion) representing the message template. Given this, we can
assert that a message m0, modeled as 3, belongs to a class I
if all the fields of the message match with the relevant fields
defining the interaction:

belongs(m0; I) (V alidRole(�m; f�g)^
^SV alidRole(f�mg; f�g)^
^nm 2 fNg ^
m 2 f
g^
^�m 2 f�g ^K(�m)

(4)

V alidRole(r; P)(9r0 2 P ^ Role(r) = r0 (5)

SV alidRole(R;P)(8r 2 R ^Role(r) 2 P (6)

Here, the function Role(�) returns the role of the given
agent, the predicate V alidRole(r; P) returns true if the
role of agent r is defined in set P , and the predicate
SV alidRole(R;P) is true if the role of each agent in set
R is defined in the set P . Now, by combining the interac-
tion class definition with the concepts expressed in Def. 1
and relation 1, we can model an interaction protocol as a set
of interactions with a well-defined behaviour between agent
roles, that is interaction classes I , say P = fIg. Relation 1
thus becomes:

m0 can occur inA (A = fPg ^ 9P 0 2 fPg^
^9I 2 P 0 ^ belongs(m0; I)

(7)
Virtual receiver set fvmg refers explicitly to message de-
livery, instead of the simple message exchange occurrence.
Thus, to give a stronger formulation of our model, we in-
troduce the predicates “can be sent” and “can be received”
with the following semantics:

m0 can be sent by � inA (m0 can occur inA

^V alidRole(�; f�g)
(8)

m0 can be recvd by � inA (m0 can occur inA

^((V alidRole(�; f�g)^
^� 2 f�mg)_
V alidRole(�; fvg))

(9)

3 Communicators

To provide a coordination infrastructure according to the
interaction model of Section 2, we introduce coordination
entities called Communicators. Let us start with Simple
Communicators, SK, which are entities represented by the
triple SK :=< I; fmg; f�g >: I is an interaction class as
defined in Section 2, fmg is a set of ACL messages (as 2)
temporarily stored in SK and f�g is the set of agents which
have joined to SK. A set of primitives provides the opera-
tions which can be made on SK, allowing an agent to join
or leave the SK and to read or write a message. Agent com-
munication is performed by exchanging messages through
SK, the aim of which is to check that the message belongs
to the interaction class I and then to act as a semantic router
by forwarding the message to the agent(s), according to the
interaction class definition. The basic primitives of SK an
agent can use are joinSK , leaveSK , putSK and getSK .
The first one has to be issued by an agent before perform-
ing any communicative action (sending or retrieving a mes-
sage); joinSK adds an agent a to the joined agent set f�g
only if the role of a is defined (as sender or receiver) in
the interaction class I . Subsequently, an agent can send
or retrieve a message by using respectively the putSK and
getSK primitives: the former inserts the message in the
message set fmg only if the agent belongs to the joined
set f�g and the message belongs to I . getSK , on the other
hand, returns a message m0 from fmg, only if the agent a
belongs to the joined set f�g, the role of a is defined as real
receiver (the message is extracted from fmg) or as a virtual
receiver (the message is read but not deleted from fmg) in
I . To add flexibility to our model, we also introduced the

predicative-get, p_getSK , which behaves like getSK but re-
turns a message meeting a given predicate. Finally, an agent
can leave the Communicator by issuing the leaveSK prim-
itive. The behaviour of these primitives is summarized in
Figure 1.

A Simple Communicator is able to model the behaviour
of an interaction class as defined by 4. The complete in-
teraction framework expressed by 7, 8 and 9 can be mod-
eled by grouping together several Simple Communicators,
each one representing a different interaction class defined
by the protocols of the application A. To this aim, we in-
troduce Composite Communicators, CK (or simply Com-
municators) as entities composed of a set of SK, CK :=

fSK1; SK2; :::; SKng. A CK provides the same primi-
tives of an SK, but they behave a little bit differently; in
detail, joinCK joins the agent to each SKi the interac-
tion class of which defines the role of the agent as sender
or receiver; putCK inserts the message in each SKi which
makes true the predicate of putSKi

(see Figure 1); getCK
(p_getCK) retrieves a message from an SKi which makes
true the predicate of getSKi

(p_getSKi
); finally, leaveCK

removes the agents from each joined SK i.
A so-formed (Composite) Communicator is able to

model relation 7, 8 and 9, and thus to provide the coordi-
nation infrastructure for a given application defining the in-
teraction classes implemented in the CK. This means that,
once a multi-agent application is designed and the interac-
tion classes are defined, we can build the Communicator
able to support the desired message exchange in the context
of that application. Since the created Communicator repre-
sents the entity entailed to handle coordination for a given
application, each agent, before participating in the applica-
tion, has to join the relevant Communicator; subsequently, it
can communicate with the other (joined) agents by sending
and receiving messages through that Communicator.

The presented model is able to realize both direct and
indirect communication. The former is obtained by speci-
fying explicitly the addressed agent(s); the latter model is
obtained by specifying all as real or virtual receivers: ac-
cording to the composition of the sent message, it will be
placed in the relevant SK and can be read subsequently by
any agent belonging to the real or virtual receiver set defined
in that SK.

3.1 Example: an Electronic Auction

Let us present an example of an electronic auction appli-
cation for which we will derive the interaction framework
modeled according to the principles introduced in the pre-
vious section. In this kind of application, we consider three
roles: the auctioneer (A), the bidder (B) and the (passive)
participant (P). The main interactions are characterized by
the following rules:

Join joinSK(a) := V alidRole(a; f�g [f�g [fvg) ^ f�g = f�g [a

Leave leaveSK(a) := a 2 f�g ^ f�g = f�g � a

Put
putSK(a;m

0
) := a 2 f�g ^ belongs(m0; I) ^ V alidRole(a; f�g)^

^�m 2 f�g ^ fmg = fmg [m0

Get
getSK(a) := (a 2 f�g ^ 9m0 2 fmg ^ V alidRole(a; f�g)^

^fmg = fmg �m0 ^ return m0
) _ (a 2 f�g^

^9m0 2 fmg ^ V alidRole(a; fvg)^ return m0
)

Predicative Get
p_getSK(a; P) := (a 2 f�g ^ 9m0 2 fmg ^ V alidRole(a; f�g)^ P (m)^

^fmg = fmg �m0 ^ return m0
) _ (a 2 f�g^

^9m0 2 fmg ^ V alidRole(a; fvg)^ P (m) ^ return m0
)

Insert insertCK(SK�) := 9SK 2 CK = fSK1; :::; SKng ^ spec(SK�; SK) ^ CK = CK [SK�

Extract extractCK(SK�) := 9SK� 2 CK = fSK1; :::; SKng ^ CK = CK � SK�

Figure 1. Basic Communicator Primitives and Behaviour

1. For any speech act sent from the auctioneer to the bid-
ders, the real receivers are the bidders, but the virtual
ones are both the bidders and the participants.

2. For any speech act sent from a bidder to the auctioneer
(a bid), the real receiver is the auctioneer but the virtual
set is composed of bidders and participants.

3. A participant cannot make a bid (unless it becomes a
bidder).

4. Communication between a bidder and the auctioneer
has to be performed using LISP as content language.

5. Communication between a bidder and the auctioneer
is subject to the rules of the auction protocol used in
the application.

6. Private communication between a bidder or participant
and the auctioneer is not allowed.

7. Communication (of any type) between bidders and
participants is allowed.

On the basis of the cited rules, we can derive the following
interaction classes:

� I1 =< A;Bs; fA;Bs; Psg; �; �; LISP; � > (rules 1
and 4)

� I2 =< B;A; fA;Bs; Psg; �; �; LISP; � > (rules 2
and 4)

� I3 =< fBs; Psg; fBs; Psg; �; �; �; �; �> (rule 7)

Please note the use of singular (B) and plural (Bs) in role
names to indicate a specific agent or a set of agents (I2
specifies a message sent by a single bidder while I1 spec-
ifies a message sent to all the bidders). Finally, we can
build the Communicator for the interactions for the elec-
tronic auction application by grouping together the Simple

Communicator defined by I1, I2 and I3. A thus-defined
Communicator also satisfies rules 3 and 6, since a message
of class < A;B;B; �; �; �; � >, < B;A;A; �; �; �; � > or
< P;A;A; �; �; �; � >is not included3.

3.2 Design Time and Run Time Interactions

The derived coordination framework is able to handle in-
teractions defined during the analysis and design phase of an
agent-based application. However, at run time, in order to
perform activities which are collateral, or for the support of
the main task of the application, agents can cooperate by ex-
changing messages which have not been explicitly defined
at design time. For example, in the electronic auction appli-
cation a private interaction between two bidders, Alice and
Bob, outside of the context of the auction protocol, could
also be possibile: this is a run time interaction which, even
if it falls into class I3 of the Sect. 3.1, it will not be routed
correctly since the virtual receiver set of I3 is any and each
message could be picked by any agent. What we need is the
possibility to define, run-time, an interaction class of the
type IP =< falice; bobg; falice; bobg; nil; �; �; �; �> and
to add it to the Communicator of our auction application.
This example states that our model must provide the follow-
ing additional characteristics: (1) the possibility to specify
agent names (e.g. Alice, Bob) in addition to roles, and (2)
the support of a run time reconfiguration of Communicators.
The former requirement can be met by allowing the specifi-
cation of both roles and names in the sets f�g, f�g and fvg,
and by modifying the predicate V alidRole defined by 5 as
follows:

V alidRole(r; P) ((isRole(r) ^ 9r0 2 P ^ isRole(r0)

^Role(r) = r0) _ (:isRole(r) ^

^9r0 2 P ^ :isRole(r0) ^ r = r0)

3Rule 5 is related to the evolution of the protocol, which is not dealt
with by the Communicator model.

The latter requirement needs a new primitive able to
add, run time, a new Simple Communicator SK� =<

I�; fmg; f�g > to an existing CK. This primitive does
not have to perform a simple union operation but, in order
not to violate the semantics of Communicators, it also has
to check that I� is allowed in our application, i.e.

9I 2 CK : 8m0 ^ belongs(m0; I�)) belongs(m0; I)

(10)
In other words, the new interaction class I� must be a sub-
class or a specialization of another class still defined by
a Simple Communicator of CK. Given this, let us define
the specialization predicate for both interaction classes and
Simple Communicators4:

spec(I�; I) (8m0 ^ belongs(m0; I�)^
^belongs(m0; I) ^ 9m00^

^belongs(m00; I)^
^:belongs(m00; I�)

(11)

spec(SK�; SK) (SK� =< I�; fmg�; f�g� > ^
^SK =< I; fmg; f�g > ^
^spec(I�; I)

(12)
Now we are able to introduce two primitives, insertCK and
extractCK , which allow respectively the insertion of a spe-
cialized SK� into an existing Communicator, and the ex-
traction of an existingSK from a Communicator (Figure 1).
Inserting a newSK� requires the latter to be a specialization
of an SK 2 CK, otherwise the coordination rules defined
at application design time will be violated. Even if required,
this has a collateral effect: since relation 12 is true, an in-
coming message, to be placed into SK�, would be placed
also in SK, and this is in contrast with the semantics of the
interaction in which the message is exchanged. In fact, let
us refer to the auction example: there, interaction class IP
is a specialization of I3, thus if a private message between
Alice and Bob is placed also in the SK of I3, it could be
picked by any other bidder or participant agent. To avoid
this problem, we have to modify the behaviour of putCK by
using the following rule: if a message m 0 belongs to several
interaction classes and these classes are in a specialization
relationship, then the message must be placed in the SK of
the most specialized class.

With the introduction of these modifications, the model
of Communicators now provides a great flexibility allow-
ing agents to perform interactions according to their re-
quirements, also preserving the semantics of both applica-
tion design-time interactions and message exchanging in the
context of that application.

4The predicate is read as “I� is a specialization of I”.

4 Related Work

Our work on Communicators is derived from the con-
cept of message sharing provided by the ARCA mobile
agent framework [6]. Here, an agent can share its mes-
sages (stored in the incoming message queue), matching a
given regular expression, with one or more co-located (mo-
bile) agents, thus emulating the concept of real and virtual
receivers. The Communicator model generalizes this con-
cept by extending the sharing also to non co-located agents,
providing also a more fine-grained programming of the co-
ordination infrastructure.

A large number of coordination models for agents de-
rives from the re-adaptation of the Linda coordination lan-
guage to a distributed multi-agent environment [2, 1], in or-
der to support the different behaviour of agents with respect
to standard processes5. They offer some advantages such
as the spatial and temporal uncoupling, and also provide a
good model for knowledge sharing. Even if they are de-
signed to meet agent requirements, the operations provided
– reading and writing tuples through in and out primitives
and other variants – do not fit a human-like interaction of
the agent model. Agents need to handle agents names (or
addresses) rather than tuple space names, and to forward a
message, encoded in a speech act, directly to another agent,
a set of pre-defined agents, the entire agent community, etc.
Anyway, Communicators can emulate Linda-based models
but, since they are designed on the basis of the analysis
of agent requirements, they are able to better support the
human-like behaviour of agent coordination.

An approach similar to the Communicator model is
given in [11], where Minsky et al. propose the concept of
Law Governed Interactions to support “coordination poli-
cies” in distributed systems. Here, coordination is medi-
ated by controllers which embed the rules and the actions
to be performed when a message of a given type is sent
or delivered. With respect to Communicators, controllers
have states and the behaviour is programmed through a sort
of finite state machine. Although the proposed approach
is valid, in our opinion it greatly reduces the autonomous
character of agents, which are really the responsible parties
of the evolution of the coordination. In any case, a con-
troller can be emulated, in our model, using a brokering
agent which embeds the coordination policies to be met.

Another interesting work which has been considered is
that proposed in [12], where the coordination language
MANIFOLD is introduced, which provides a control-driven
coordination model. In MANIFOLD, agents communicate
through streams and events, upon which agents have the
complete control (creating/destroying streams, modifying
streams and behaviour events , etc.). The language is power-
ful, but the coordinables are more similar to processes rather

5Linda was initially designed to coordinate processes.

than agents, thus it does not fit the human-like behaviour of
agents.

5 Conclusions

This paper has presented a coordination model for agents
based on an infrastructure with characteristics that directly
derive from the agent model and from coordination require-
ments in a multi-agent application. The basic component,
the Communicator, is designed to provide primitives and
behaviours which fit as closely as possible the human-like
character of agents. The paper has also shown how the pro-
posed model is able to provide both direct and indirect com-
munication. The authors are currently working on imple-
mentation of a prototype of the model, in order to evalu-
ate the effectiveness and the overhead introduced in a dis-
tributed multi-agent application.

References

[1] G. Cabri, L. Leonardi, and F. Zambonelli. Mobile-Agent
Coordination Models for Internet Applications. IEEE Com-
puter, 33(2), February 2000.

[2] N. Carriero and D. Gelernter. Linda in Context. Comm.
ACM, 32 - No. 4, April 1989.

[3] P. Ciancarini, R. Tolksdorf, F. Vitali, D. Rossi, and
A. Knoche. Coordinating Multiagent Applications on the
WWW: A Reference Architecture. IEEE Transaction on
Software Engineering, 24(5), 1998.

[4] A. Di Stefano, L. Lo Bello, and C. Santoro. Naming and Lo-
cating Mobile Agents in an Internet Environment. In EDOC
’99 IEEE Intl. Conference. Mannheim, Sept 27-30 1999.

[5] A. Di Stefano and C. Santoro. NETCHASER: Agent Sup-
port for Personal Mobility. IEEE Internet Computing, 4(2),
March/April 2000.

[6] A. Di Stefano and C. Santoro. The Coordination Infrastruc-
ture of the ARCA framework. In 4

th Intl. Conference on
Autonomous Agents. Barcelona, Spain, June 3-7 2000.

[7] T. Finin and Y. Labour. A Proposal for a New KQML Speci-
fication. Technical Report TR-CS-97-03, Computer Science
and Electrical Engineering Dept., Univ. of Maryland., 1997.

[8] Foundation for Intelligent Physical Agents. FIPA-ACL
Specification, available at http://www.fipa.org.

[9] J. Bradshaw et al., editor. Software Agents. AAAI Press,
Cambrigde, Mass., 1997.

[10] Y. Labrou, T. Finin, and Y. Peng. Agent Communication
Languages: the Current Landscape. IEEE Intelligent Sys-
tems, March-April 1999.

[11] N. H. Minsky. The Imposition of Protocols over Open Dis-
tributed Systems. IEEE Trans. on Software Engineering,
February 1991.

[12] E. Rutten, F. Arbab, and I. Herman. Formal Specification of
Manifold: a preliminary study. Technical Report CS-R9215,
CWI, Amsterdam, 1992.

[13] M. Wooldridge, N. Jennings, and D. Kinny. The Gaia
Methodology for Agent-Oriented Analysis and Design.
Journal of Autonomous Agents and Multi-Agent Systems,
3(3), 2000.

[14] M. J. Wooldridge. Multiagent Systems. G. Weiss, editor. The
MIT Press, April 1999.

