
A Knowledge Modeling Tool for Rule – Based Agents

Marco Repetto, Christian Vecchiola, Antonio Boccalatte
LIDO Lab – Department of Communication, Computer and System Sciences (DIST)

University of Genova
Via Opera Pia 13, 16145, Genova - Italy

{kapsule, nino}@dist.unige.it

Abstract

Different approaches to improve business process
have been proposed. One of the most common
techniques is based on software agents and workflow
technology. A software agent can be adopted to
implement and to manage workflow, and to give to an
enterprise new functionalities such as job automation
and integration among levels.

This paper describes Agent Developer Studio, a tool
for modeling and implementing rule-based agents
database-oriented. The particular context addressed in
this work is the workflow management, and a special
focus is kept for agents acting in an environment mainly
based on a Relational Database Management System
(RDBMS).

The system architecture, the underlying model, and
the possible fields of applications of such a tool, will be
discussed. An example of a particular application will
be also presented.

1. Introduction

The main requirements that a modern manufacturing
information system should satisfy are [1]: enterprise
integration, distributed organization, interoperability,
open and dynamic structure, cooperation, human
integration with software and hardware, agility,
scalability and fault tolerance. In order to deal with the
need for rapid, continuous change, computer science is
challenged to develop new interrelated information and
communication technologies, able to satisfy the social
needs of co-operating user groups, as well as the
management requirements of formal organizations [2].
Workflow systems are among the most advertised
technologies addressing this trend. Workflow can be
defined as the computerized facilitation or automation
of a business process in whole or part, and the
workflow management system as a system that
completely defines, manages, and executes "workflows"
through the execution of software whose order of
execution is driven by a computer representation of the
workflow logic [3]. Due to their ability to integrate
different information systems, for instance plant and

business information, workflow management is one of
the major applications of software agents in
manufacturing.

Technology based on software agents, can be used to
implement and to manage workflow, and to give to
enterprises new functionality such as jobs automation
and levels integration. Software agent, a new paradigm
of Artificial Intelligence (AI), can be defined as a
computational system that is situated in a specific
environment, and that is capable of autonomous actions
in this environment in order to meet its design
objectives [4].

There are two basic ideas of agent-based architecture
applied to workflow management [5-6]. The first is
from the ADEPT (Advanced Decision Environment for
Process Tasks) project by British Telecom labs [7]. The
software agents take full responsibility for business
process provisioning, enactment, and compensation,
where each agent is managing and controlling a given
task or a set of tasks. In the second agent-based
architecture, called agent-enhanced workflow, agents
provide an additional layer to an existing commercial
workflow management system. The agent layer takes
full responsibility for both provisioning and
compensation phases of business process [5].

Conventional programming languages are designed
and optimized for the procedural manipulation of data
but they are not well suited to solve complex problems
where humans usually use abstract and symbolic
approach. Although abstract information can be
modeled using conventional programming languages, a
considerable programming effort is required to turn
information into a format suitable for a procedural
programming paradigm. One of the results in the area of
AI has been the development of techniques that allows
the modeling of information at higher levels of
abstraction. These techniques are embedded in
languages or tools, which allow to build programs
resembling human logic. These programs, which
emulate human expertise in well-defined problem
domains, are called expert systems.

In particular, CLIPS (C Language Integrated
Production System) [8] is language to generate expert
systems, developed by the Software Technology Branch
(STB) in 1984-’86, and it is designed to make easier the
development of software to model human knowledge

and expertise. CLIPS supports different programming
models and has been designed for full integration with
other languages such as C and ADA. Procedural code
can be defined as external functions and called from
CLIPS: in this way, all the tasks needed in order to
define a workflow are performed. Traditional features of
expert system, such as problem solving and modeling
complex scenarios, are potential advantages if applied
to workflow implementation.

The followings sections will illustrate how the
features of CLIPS can be used to implement agent-
based architectures applied to workflow management.

2. Agent Developer Studio

Agent Developer Studio (ADS) is a tool made to
develop agents graphically and to implement them as
expert systems. Agents are made-up of blocks that are
automatically translated into rules: these constitute the
knowledge-base of the agent. ADS provides also a
platform to run the generated expert systems, the CLIPS
enhanced Shell.

ADS consists of:
• a Graphical User Interface (GUI) for

designing, editing, configuring and verifying a
knowledge model

• enhanced CLIPS shell, improved with new
functionalities (e.g., RDBMS query, office
automation features)

Current implementation is based on the C++
language, ADO (Active Data Objects) and MAPI (Mail
Application Program Interface) libraries.

CLIPS source code is available in C language, so can
be executed on different platforms (Windows, Mac,
Unix).

ADS agents interact with RDBMS and their
knowledge is modeled in order to operate on tables, to
access to database and to evaluate stored data and
decisions taken according to its knowledge-model.

For this reason the CLIPS shell and also the GUI
must communicate with the RDBMS: for the GUI it is
necessary to know the schema of tables, for the shell the
system needs to access to the data stored into the tables.
The Figure 1 shows how the different parts of the
system interact: the arrows represent how the
communication among the entities takes place. The GUI
deals with design and modeling, and the shell with
execution. The GUI looks for schema on the RDBMS,
produces files that will be run on the shell, and this one
interacts with the database when the agent runs.

In the ADS environment a design session begins with
a schema definition: a knowledge model schema is a
diagram in which the blocks are atomic elements
necessary for WFMS agents; then the blocks are
connected to assert logic dependencies among them.

The user can set block parameters in order to
configure every agent’s rule: input data-types, data
constraints and actions the agent performs. With these

operations, human reasoning is directly mapped to
CLIPS behavior, without forcing the user to write the
CLIPS code.

(KIWTG �� 5[UVGO CTEJKVGEVWTG

Each block receives from the previous block, that is,
the parent, all the data types plus its output type (if the
parent is a select query block). This is needed because a
select operation imports data in the CLIPS environment.

The next step is to compile the schema in order to
obtain a translation into CLIPS language. After
checking schema and data correctness, ADS performs
the translation and put its results in four text files, which
will be loaded into CLIPS environment for initializing
expert system knowledge-base.

3. Formal Model

In order to illustrate the model, it is necessary to
distinguish two environments: the GUI and the CLIPS
shell. The goal of the model is to maintain a strong link
between these two environments and to allow an easy
mapping of objects defined. In this way the process of
translation from the agent schema to the expert system
that implements the agent, becomes an automatic task.

The model deals with data representation,
knowledge-base representation and the process of
translation.

3.1 Data representation

In ADS environment, data can have different
meanings: records into tables and messages in a queue.
These elements are all mapped into facts in the expert
system that implements the agent. For this reason in the
GUI space is provided a generic class called
CFactModel mapping a fact in the Shell environment.
The inheritance mechanism allows a specialization of
the fact definition and it allows building some particular
data-types. The actual implementation of the model
provides data-types called CRowModel that represents
a row on a specific table in a RDBMS.

In the CLIPS system data are represented with
deftemplates construct that are record types.
Deftemplates have fields that represent the properties of
data, and constraint on these fields can be established in
order to perform pattern matching of the rules.

Each data-type in the GUI has a corresponding
deftemplate in the shell space, so the mapping is 1:1 and
the translation from one space to another can be
automatic and simple.

3.2 Knowledge-base representation

A knowledge base is a set of rules describing
relations between elements in the domain of knowledge
[9]. A knowledge base is represented in the GUI space
through blocks and connection between them. Each
block is mapped to a rule in the shell environment.

Blocks are the fundamental elements in the GUI. A
block can be considered as a unit of process that has
some input data, it changes the status of the system
according to particular constraints on data, and,
depending on the nature of the block, it produces some
output.

This structure allows direct rule-based programming,
because blocks directly map to rules. Rules are used to
represent heuristics, or "rules of thumb," which specify
a set of actions to be performed for a given situation. A
rule is composed of an IF clause and a THEN clause.
The IF clause of a rule represents a series of patterns
which specify the facts (or data), causing the rule to be
applicable. The THEN clause of a rule represents the set
of actions to be executed when the rule is applicable.

Constraint on input data of the block are directly
mapped to the pattern of the rule associated to that
block, and actions in the THEN clause are a
representation of the actions that change the status of
the system and produce some output. Also, this process
can be performed automatically.

3.3 Translation process

The translation phase puts in the shell the CLIPS
files that implement the agent schema defined in the
GUI context. This activity can be divided into three
steps:

• definition of the deftemplates corresponding to
the data types in the GUI space

• definition of the rules associated to each block in
the schema following the order starting from the
first block

• building of the file in which data types and rule
are loaded into CLIPS shell

The second step is the most time-consuming, because
for each rule several tasks have to be performed. First of
all there is a check for consistency of constraints on
input data of the block, then constraints are translated
into pattern. These two operations build the IF clause of
the rule. The sequence of action are characteristic of

each block and actually, the build of the THEN clause
involves some standard operations performed in order
to allow the expert system to evolve in the proper way.
The sequence of actions working on input data,
producing some output data can be various and the
translation of this part is left to each block.

3.4 Execution flow

Agents are executed in the CLIPS shell by the
inference engine, which automatically matches facts
against patterns and determines which rules are
applicable. Actions of applicable rules are executed
when the inference engine is instructed to begin
execution. The inference engine selects a rule and then
the actions of the selected rule are executed (which may
affect the list of applicable rules by adding or removing
facts). The inference engine then selects another rule
and executes its actions. This process continues until
there are no applicable rules.

Agent behavior is defined as a sequence of actions
performed according to conditions defined on data. It is
necessary to guarantee that a sequence of actions that
processes a particular instance of data is executed in the
right order and it is completed, before the agent starts to
process other instances.

CLIPS provides an environment in which the
execution is driven by the pattern matching on facts. For
this reason some rules can be fired in parallel mode if
they have the same pattern. There is the problem of
maintaining the right sequence of actions performed by
the agent. This aspect has been solved with the insertion
of a hidden field that stores the status of execution in
each instance of data type in the shell. This field is
properly updated by the rules, and this task is the result
of the “standard operations” addressed before. A
particular rule provides a starting point for the execution
and that rule is the one associated to the start block that
must necessarily be included in our schema.

4. Order Manager : a practical Example

A simple example will be used to cover all the
aspects of the process, starting from the design of the
agent’s schema, its realization and the files produced.

The example is an order manager that looks for new
orders stored in a database, it checks for each order if it
can be changed into an accepted order, evaluating the
content of the order and RDBMS status. For each
accepted order, the agent sends an order notification to
the customer and updates the tables, moving the order
from the original table to another. If an order can be
satisfied, the agent sends a notification to the customer.

The structure of the database is composed of four
tables: INCOMINGORDERS, STORES,
CUSTOMERS, ACCEPTEDORDERS:

• INCOMINGORDERS
ORDERCODE integer, primary key

PRODUCTCODE integer
CUSTOMERCODE integer
QUANTITY integer

• STORES
PRODUCTCODE integer
QUANTITY integer

• CUSTOMERS
CUSTOMERCODE integer, primary key
NAME varchar
SURNAME varchar
EMAIL varchar
COMPANY varchar

• ACCEPTEDORDERS
ORDERCODE integer, primary key
PRODUCTCODE integer
CUSTOMERCODE integer
QUANTITY integer

This database has been built using SQL Server 7.0 and
Access 2000 in order to test the system on different
DBMS.

4.1 Project set-up

The first step to do to make an agent schema is to
open a new project in which the project name and the
project folder have to be defined. ADS system then
defines four CLIPS files that constitute the expert
system’s source code that will be run in the CLIPS shell.
These files are:

• projectname_Def.clp : stores data definition of
objects handled by the agent

• projectname_Rule.clp : stores the knowledge-
base of the agent in the form of rules

• projectname_Main.clp : this file loads in the
CLIPS shell the previous files and implements
an infinite loop that allow the agent to stay alive

• projectname_Pack.clp : stores the code of all the
previous files in the order in which they appear
(this is not necessary to the execution of the
agent but can be useful having all the code in
one single file)

It is necessary to define connection parameters, such
as database source, with user login information if
requested. Then the application automatically retrieves
data from database tables. The agent schema is defined
dragging and dropping blocks from the blocks toolbar.

4.2 Schema design

Every agent needs a starting point so the ADS
application provides a start-block that performs a select-
query on a specified table. The agent has to look for
new orders so the INCOMINGORDERS table is the one
that has to be queried. The start-block performs a select
without constraints, but this is not a problem because in
this example all the orders have to be handled.

To check if an order can be satisfied a conditional
block is placed on the schema. The condition

implemented by this block is Boolean: the block
performs a select query on a specified table with filters,
and if the query returns at least one row, the condition is
satisfied. Once the block is positioned on the schema, it
is necessary to connect it to the previous block with a
wire. This operation must be performed for each block
added. After connection has been established the
properties of each block have to be set starting from the
start-block and setting first the input parameters, then
the preconditions and finally the action. Preconditions
are a filter on data that the agent already knows because
they work on input parameters, action is used to perform
some operation or to instantiate new data in the
environment optionally using some filters. For the
conditional block particular preconditions don’t have to
be set because all the output of the start block has to be
checked. The constraints of the select-query established
in the action parameters are used to check if an
incoming order can be satisfied. This is an example of
the query performed when the agent is running.

SELECT * FROM CUSTOMER
 WHERE

PRODUCTCODE =
 <!INCOMINGORDERS#PRODUCTCODE!>
AND
QUANTITY >=
<!INCOMINGORDERS#QUANTITY!>

tags in the form <!tablename#fieldname!> mean that
those particular texts are placeholder for values caught
in the input parameters. After the conditional block, the
data flow is split into two branches, one for orders that
can be satisfied and one for others that cannot be
satisfied.

In the first case are necessary five blocks to
implement the following operations:

• insert the order into EXECUTIVEORDERS
table (insert-block)

• delete the order from INCOMINGORDERS
table (delete-block)

• update the STORES table with new value of
quantity for the ordered product (update-
block)

• select customer data from CUSTOMERS table
(select-block)

• send a e-mail to the selected customer to notify
him (mail-block)

As presented in Figure 2, the path followed by the
orders that do not satisfy the condition, is made-up only
with the last two previous blocks, because a notification
of the order status is sent to the customer.

4.3 CLIPS code generation and Agent running

When the schema is completed, the code generation
can be performed. After some preliminary operations of
topologic and logic checking of the schema, the CLIPS
files addressed before are generated. The files are ready
to be loaded in the shell following this order:

projectname_Def.clp
projectname_Rule.clp
The CLIPS shell is a single process that runs till the

exit command, and the main loop activates the inference
engine of CLIPS periodically when no rule fires
anymore. In this way, the agent continuously queries to
the database in order to satisfy new orders, and when
one of them can be promoted to a accepted order
updates tables, and waits for new orders.

(KIWTG �� # MPQYNGFIG UEJGOC KP #&5 ITCRJKE
WUGT KPVGTHCEG

Using some settings of the CLIPS shell the agent’s
execution flow can be monitored during the running,
selecting whether to watch facts, rule-firings or both.
These options are also a check to verify that the agent’s
behavior is correctly implemented.

5. Analysis

The model and the application discussed is only a
small part of the ongoing project. In fact there are other
built-in functionalities that can be added to the GUI, to
the shell and, in minimum part, to the model.

Different start blocks can be provided in order to
instantiate different data-types in the agent environment,
also different condition blocks can be provided in order
to perform more complex checks. The impact of these
add-ons does not involve refactoring, because the model
remain still the same or there are at least slight changes.
A new change instead is the blocks’ behavior and the
rule generated but new data-types and new behaviors
are obtained via sub-classing.

Variation-points are features in the system that can
be implemented with different strategies to provide the
same functionality. In this case variation points are
related to the different strategies used to represent data
in the CLIPS shell. Using CLIPS Object Oriented
Language (COOL) probably would provide a more
efficient knowledge-base model, but the automatic

translation would become more complex. Another
aspect that has to be taken into account is that the
translation process actually checks for the schema’s
consistence and puts into rules blocks adding some
hidden stuff to maintain the right sequence of firing. To
have a more elaborate and efficient behavior, the
algorithm that implements this process can be changed
without affecting the overall structure of the model. This
is an important aspect and could be a working point in
the following releases.

6. Conclusions

The development of a Multi Agent System (MAS)
requests not only skills in the particular problem to
solve, but it is necessary to know techniques and tools
to build it. So there are two areas, leading to two
different professional roles: the expert of the problem,
and the software developer. The main goal of the
discussed approach is to make possible this decoupling
of roles, but it is also necessary to guarantee all the
requested support to the workflow manager in realizing
his project. These two features have to be provided
hiding the agent’s implementation.

The approach followed has some vantages: the
CLIPS shell is available on different platforms; work
time is reduced because the agent’s code generation
follows immediately the design phase; the possibility to
add new features with a low impact on framework is
practically infinite; the model used is easy to understand
and extendable.

Although expert systems are efficient strategies to
solve problems where there is no imperative model, they
often need good skills to use. For this reason an
interface able to model the agent’s knowledge without
paying attention to expert system features, but focusing
only on the agent’s behavior can be a powerful tool.

References

[1] Shen W., Norrie D. H.. Agent Based System for Intelligent
Manufacturing: A State of the Art Survey. Knowledge and
Information Systems 1999; 129:156

[2] Schäl T.. Workflow Management Systems for Process
Organization. Lecture Notes in Computer Science, Vol. 1096.
Springer-Verlag, Berlin Heidelberg New York, (1996).

[3] Workflow Management Coalition, “The Workflow
Reference Model”, Available at
http://www.wmfc.org/wh2002.htm, 1995.

[4] Wooldridge, M.: Intelligent Agents. Multiagent Systems,
G. Weiss editor. The MIT Press, April 1999, 27-77.
[5] Odgers, B.R., Thompson, S.G., Shepherdson, J.W., Cui,
Z., Judge, D.W., O’Brien, P.D.: Technologies for Intelligent
Workflows: Experiences and Lessons. Proceedings of Agent-
Based Systems in the Business Context, AAAI 1999
Workshop, 19 July 1999.

[6] O’Brien, P.D., Wiegand, M.E.: Agent based process
management: applying agents to workflow. Knowledge
Engineering Review, Vol. 13:2, September 1998.

[7] Jennings, N.R., Faratin, P., Norman, T. J., O’Brien, P.,
Wiegand, M.E., Voudoris, C., Alty, J.L., Miah, T., Mamdani,
E.H.: ADEPT: Managing Business Processes using Intelligent

Agents. Proc. DCS Expert Systems 96 conference (ISIP
Track), Cambridge, UK 5-23, 1996.

[8] Riley, G.: CLIPS: A Tool for Building Expert Systems.
Available at http://www.ghg.net/clips/CLIPS.html (1999).

[9] M D, Fisher, “Expert systems and anthropological
analysis” BICA Issue nr. 4, March 1986

