

A OO Framework for Multi-Agent Systems

S.Bandini, F. De Paoli, S. Manzoni C. Simone

DISCO - Università di Milano Bicocca
Via Bicocca degli Arcimboli 8, 20126, Milano

DI - Università di Torino
Corso Svizzera 185, 10149, Torino

{bandini, depaoli, manzoni}@disco.unimib.it simone@di.unito.it

Abstract
Multi-Agent Systems (MAS) are of great interest as

they can be used to model complex phenomena that
involve several actors that interact in various ways. This
paper describes a framework to support the development
of Multi-Agent Systems. The framework is based on the
Reaction Diffusion Machine (RDM) and defines the run-
time support for the L*MASS language. The language
formalizes the concepts of the framework to provide
designers with constructs that facilitate the development
of Multi-Agent Systems. The underlying RDM ensures
soundness to both language and framework. The work is
still in progress; therefore, what is presented in this paper
need to be further discussed and consolidated.

1 Introduction

Many different definitions have been given for Agent-
Based Systems. Usually all the definitions agree on the
fact that an agent is a real or virtual entity endowed with
autonomy, social ability, reactivity, and proactivity [1].
An agent can be thus described as an entity able to
perceive the surrounding environment through sensors,
and acting through actuators according to the perceptions.
Agents can be classified as cognitive or reactive [2].
Reactive agents are elementary agents without memory
and with a defined position in time and space. Cognitive
agents, instead, behave in a more complex way, and their
actions are based also on past experience. Whereas
cognitive agents, for every possible sequence of
perceptions, act to maximize a given utility function [3],
reactive agents perform their actions in consequence of
the perception of stimuli coming either from other agents
or from the environment. In this case, the motivation for
an action comes from outside, rather than from inside. As
a consequence, a Multi-Agent System (MAS) can be
composed of cognitive agents (generally a low number of
intelligent agents), each one with a specific knowledge
that determines its behavior and its interactions with other
agents and the environment. By contrast, there could be
MASs composed of reactive agents. This type of system is
based on the idea that it is not necessary to include
individually intelligent agents in the system to exhibit

complex (intelligent) behaviors. Moreover, systems of
reactive agents are usually more robust and fault tolerant
than other agent-based systems, e.g. the loss of an agent
does not have catastrophic effects for the whole system.
Other benefits include flexibility and adaptability in
contrast to the inflexibility of systems of cognitive agents.

Recently, the evolution of Multi-Agent Systems and
the growing interest in multi-agent development platforms
have leaded to some interesting tools for agent software
developers. AgentBuilder [4], JACK [5], JADE [6],
JAFMAS [7], Madkit [8] and Zeus [9] are some examples
of this type of tools. Globally platforms for development
of agents are widely heterogeneous. Although, some
platforms are grounded on well-known models, like BDI
model [10] for agent architecture or KQML [11] and
FIPA ACL [12] infrastructures for communication among
agents, they limit the development of MASs designed
according to these models. Some platforms cover only
some of the features of Multi-Agent Systems, like single
agent platform, mobile agent platform or interaction
infrastructures toolkit. In particular, few of them deliver a
complete development environment supporting users in
every development stage -analysis, design, development
and deployment- for the creation of Multi-Agent Systems.

The work presented in this paper is part of a larger
project aimed to develop a complete support for
designing, developing and running MASs. The project
purpose is to provide agent software developers with a
language and needed infrastructures for Multi-Agent
Systems development. The definition of the language,
L*MASS, is in progress. This paper describes the
framework that will support the execution of L*MASS.
For the design of the framework, an object-oriented
approach has been taken. The object-oriented paradigm is
suitable for agent implementations since it models the
world by independent entities, the objects, which
communicate with each other by means of messages.
Moreover, available object-oriented platforms allow
objects to be autonomous, and to be distributed over a
computer network. These properties facilitate the task of
developing agent systems [16].

L*MASS agents are characterized by spatial position
and internal state that determines whether and how they

react to perceptions. The L*MASS language has been
defined according to an agent conceptual model named
Reaction Diffusion Machine (RDM) model [13]. The
RDM model allows for the simulation of complex systems
in which entities react locally with each other and with the
environment, and the global system behavior emerges
from the local behavior of the composing entities. In the
RDM the control is fully distributed. The agent behavior
is determined by a local computation based on its position
and sensitivity to fields as well as on reaction and
diffusion patterns characterizing its type.

Agents defined according to L*MASS are based on a
perception-deliberation-action mechanism, rather than on
a simpler perception-action mechanism that impose for the
agent an automatic and predefined response to every
possible perception. Within this framework it is thus
possible to describe agents characterized by a set of
possible actions and a mechanism for the selection of the
action to be undertaken based on the internal state of the
agents. Agents described with L*MASS are situated, that
is, their actions are also influenced by their position in the
environment. The position in the space defines the
situation in which the agent is acting, where ‘situation’
refers to a potentially complex combination of internal
and external events and states. Reactive situated agents
are very sensitive to the spatial relationships that
determine constraints and capabilities for actions as well
as privileged cooperation relationships. The space where
agents are situated can reproduce a physical space, but it
is nevertheless possible to define a “virtual space” that
agents can roam and where they interact. Interactions take
place when two or more agents are brought into a dynamic
relationship through a set of reciprocal actions. Thus,
interactions develop from a series of actions, whose
consequences in turn have an influence on the future
behavior of the agents [14].

The natural domain for L*MASS is the Multi-Agent
Based Simulation (MABS). MABS is based on the idea
that it is possible to represent a phenomenon as the result
of the interactions of an assembly of agents with their own
operational autonomy. Sometimes the Multi-Agent based
approach to simulations is referred by the expression
individual-centered simulation to highlight its aspect in
studying and analyzing a complex problem as the effect of
interactions of an assembly of simple and autonomous
entities. Multi-Agent System can be used to simulate
many types of artificial worlds as well as natural
phenomena [14]. Agents could make the computer
became a virtual laboratory where the researcher could
modify experimental parameters to validate his model by
observing and evaluating the system evolution.

Although models and systems to simulate physical
phenomena originated the design of L*MASS, the
approach is general and can be applied to the development
of general-purpose MAS. A Multi-Agent System for the

simulation of the chemical extraction of substances in
washing phenomena occurring in percolation processes
[15] has been implemented using L*MASS and it is
currently in progress the design of a system for the
simulation of localisation dynamics of shopping centres in
extra-urban areas is in progress. Moreover, in order to
validate the approach outside the MABS domain, it has
already been applied to problems of awareness in CSCW
applications [16].

The next section presents the elements of the L*MASS
language. Section 3 discusses L*MASS action and
interaction mechanisms to address the development of the
framework for supporting the language. Section 4
discusses some implementation issues. Finally, section 5
concludes the papers with a description of the ongoing
activities.

2 L*MASS elements

L*MASS is a language for the development of systems
of situated agents. L*MASS defines a space, a set of sites
whose interconnection is defined by an adjacency relation.
The space of L*MASS is populated by a system of
situated, autonomous and reactive agents that is
characterized by dynamic evolution, and heterogeneity.
Each site can host at most one agent. External fields
propagating in the space influence the behavior of agents.
Moreover, agents influence each other by perceiving
presence and state of neighborhood.

Agents may execute specific actions (trigger, reaction,
transport and field emission) as a consequence of
interaction with other agents and of perception of fields.
The possibility to specify different types of agents allows
the definition of heterogeneous systems, where agents
with different features and capabilities can coexist and
interact.

In the following, each element of L*MASS is discussed
to outline the peculiarities that the framework needs to
address. For a more complete and detailed explanation of
the current definition of L*MASS language see [20]).

2.1 Agents
The space of L*MASS is populated by a set of

individuals called agents (Figure 1). A type defines each
agent by describing the state of the agent, its interaction
with the environment and the set of actions it can perform.
Behavior and abilities of an agent define whether and how
the agent changes its state and/or its position, how it
interacts with other agents, and how neighboring agents
can influence it.

According to the literature [3], L*MASS agents are
entities capable of interacting with their surroundings
(perceive the environment and act by executing actions),
after deliberating what to do. Deliberation is affected by

the perception of the environment, i.e., fields that are
present in the site where the agent is situated, presence of
neighboring agents, and their state. Deliberation identifies
which action, among a set of enabled actions, is to be
executed by the agent.

Figure 1. An agent of type ‘white’ situated on site p. It can
emit fields 1 and 2 and it is sensitive to fields 3 and 4.

The internal architecture of L*MASS agents is inspired
by Brooks’ subsumption architecture [19]. An agent is
composed of three modules dedicated to each of the tasks
the agent can perform (respectively perception,
deliberation, and execution). Perception is a function that
associates a set of influences with the set of possible
actions. Execution corresponds to the application of an
operator to produce an action based on the set of
operations that can be carried out by the agent (according
to its type, internal state and position). The phase between
perception and execution is called deliberation, that is, the
component of an agent responsible for its actual behavior.

The internal architecture of an agent is composed of an
engine, a knowledge base and a rule base. The engine
component implements the general behavior of any type
of agent. As described above, every agent perceives,
deliberates and executes. The knowledge base and the rule
base define the particular set of information and actions a
specific agent deals with. The knowledge base includes
information on fields’ values and status of neighboring
sites and agents, over information on the agent itself
(state, position, sensitivity to fields, and so on). The
knowledge base is updated either automatically any time
the environment changes, or by the agent itself as result of
performed actions. The rules are defined by preconditions
and actions to be performed. Deliberation consists in
evaluating preconditions for rules activation and selection
of the rule to be executed among those activated.
Deliberation process can be customized to give tailored
selection criteria. The default criterion is to select the rule
that has been activated by the more recent change
occurred in the agent knowledge base. This criterion has
been chosen in order to ensure immediate reaction to
changes in the surrounding environment.

2.2 The space
Agents are situated in environment that can be modeled

as centralized or decentralized [14]. In the former case,
the environment is described as a single block, while in
the latter it is as composed of a network of cells. In
centralized models agents can access a shared workspace
that represents the whole environment and serves as
interaction medium: an agent can leave messages for other
agents and collect messages addressed to it. On the other
hand, in decentralized environments each network node is
a sort of centralized microenvironment that simulates a
shared workspace to agents that exchange messages and
signals as they were in a centralized environment.

The L*MASS space is a decentralized environment that
is defined as a connected undirected graph, with an
adjacency relation defined for the nodes (see Figure 2).
Each node is a site hosting at most one agent. Fields
propagate along the edges of the graph and leave on sites
information about their presence. Sites are perceived as
passive entities that store knowledge about the hosted
agent, agents hosted by neighboring sites, and present
fields (if any). Agents perceive the environment only
locally through the sites that host them.

Figure 2. The L*MASS Space

2.3 Fields
Fields are the mean for agents to communicate

asynchronously with each other and for the environment
to affect the agents’ behavior. Fields are generated by
agents or by sources outside the space. In the latter case,
fields model the interaction between environment and
agents.

A field is characterized by a source value, a
distribution function specifying how it propagates in the
space, and by a signature allowing composing and
comparing its values. Edges connecting sites define
possible paths that fields can follow to propagate.

3 L*MASS Actions and Interactions

Agents can perform actions to change their state and
position, and to interact synchronously and

asynchronously with other agents. Agents’ activity deals
with perception of the environment, reaction with
neighboring agents, emission of fields, position change in
the space, and state update. Activities of agents are
defined by rules that take the form:

when condition do action

Condition is a Boolean expression that determines if
the action may occur. The condition expression may refer
to the internal state of the agent, values of the fields at the
site hosting the agent, to neighboring sites and agents.
Therefore, rules define three kinds of activities with
respect to the interaction needed to evaluate the condition
and subsequent action: Reaction that involves agent-to-
agent interaction (a n-to-m relation); Transport that
involves agent-to-site interaction (a one-to-one relation);
and the reflexive interactions field emission and state
updating.

In the following, the three kinds of activities are
examined and discussed, along with the perception of the
environment by agents.

3.1 Perception
An agent perceives the environment through the site

that hosts it. These information are necessary to let the
agent react to the environment and to make decisions on
what to do. Three kinds of information are available:
fields that are active on the site, the state of neighboring
sites, and the state of neighboring agents.

When the state of an agent changes, or when an agent
arrives at a site, the agent communicates its state to the
hosting site that in turn forwards the information to the
connected sites. In such a way, agents are constantly
updated on the status of neighboring agents: whenever
fresh information is needed, agents can ask the local site.
In the same way sites communicate with connected sites
about their status: free or occupied.

With respect to fields, two aspects need to be
considered: field diffusion and field perception. Field
diffusion specifies how the field propagates and composes
its values. As already said, a field is originated by an
agent in a site, and propagates over the space according to
a propagation function. This means that propagating along
a path, the intensity of the field change, and that agents
perceive the field as it is locally. Moreover, since a field
can propagate along different paths in the non-regular
spatial structure, it is necessary to specify how the
resulting different values have to be composed. Another
aspect deals with the presence of more fields of the same
type, even in this case field values need to be composed to
define a single value at a specific site.

Field perception depends on the capabilities of agents.
The agent type specifies sensitivity to fields defining
thresholds that fix lower bounds to perceive fields. This is

the very essence of the broadcast interaction pattern that
underlies the field diffusion: fields propagate by means of
messages that are not addressed to specific receivers but
potentially to all agents populating the space. The set of
potential receivers is determined first of all by the strength
of the propagated messages, which can be null beyond a
given distance from their source, according to the
propagation function. Receivers of a field are free to
decide whether and when deal with it.

3.2 Reaction
Reaction defines a synchronous interaction among a set

of adjacent agents (that is, agents situated on adjacent
sites connected by an edge). Agents react according to
their type and state. Reaction takes place according to a
state transition function and specifies how an agent can
influence and be influenced by neighboring agents, that
consequently might change their states. Reaction activity
is defined by a set of rules as specified above.

The reaction process can be split in two phases:
negotiation to agree on what to do and execution of what
agreed. That is, the condition of a reaction rule needs to
value true in order to execute the associated action. Since
the evaluation of the condition involves information on
the state of neighboring agents, synchronization
mechanisms need to be introduced to ensure atomicity to
the negotiation phase. In fact, during negotiation agents
need to assume that the environment does not change;
otherwise no decision can really be taken.

To avoid deadlock problems that may occur due to
distributed synchronization, conflict resolution criteria
need to be defined. It is well known that a general solution
is unaffordable; therefore the L*MASS approach is to
provide a default mechanism and let application designers
to implement tailored criteria for the specific domain they
deal with. The default mechanism is still under definition.
The candidate proposal is to assign well-known priorities
to agents to define who have the right of preempting
others in case of conflict. Priorities should change
dynamically to ensure fairness and avoid starvation
problems. The effectiveness of any solution strongly
depends on the nature of the application. For example, if
few agents that seldom interact, or that interact only one-
to-one, populate the space, it is likely that conflicts will
not arise. Instead, in a crowded space, populated by agents
that interact with every neighborhood, important conflicts
will arise. In this case, the best solution would be to
design ad-hoc criteria that take into account the nature of
the application.

3.3 Fields emission and state updating
Actions execution by agents may change their internal

state and cause the emission of a field. Field emission and

state updating are internal operations that anyway
influence the environment. In fact, neighboring agents
need to perceive these changes to define their behavior,
i.e., activate reactions. L*MASS specifies that agents
notify their hosting sites about state changes and field
emission, so that they can propagate the information to
connected sites.

Fields model asynchronous, long distance
communication achieved by the propagation of fields in
the space. In other words, these influences can be
interpreted as broadcast messages that reach the various
sites, possibly modulating their strength as specified by a
propagation function associated with the field, and can be
perceived by all the agents located in these sites,
according to their sensitivity, type and state. The
asynchronous interaction between agents is performed
through the combination of fields emission defined as
above with perception defining the effect of fields on
agents.

3.4 Transport
Transport defines the rules that make an agent change

its position in the space. In this case, the condition of a
transport rule deals with the state of the neighboring sites,
i.e., an agent may decide to move to empty sites only.
Even in this case conflicts on occupying a site may arise.
As for reaction, the approach is to provide a default
criterion for conflict resolution, and leave the possibility
of defining ad-hoc criteria when necessary.

The default mechanism is to serve the first agent that
requests to move on a site, i.e., if an agent is willing to
move to a site, it expresses this desire by asking the site
status, consequently the site is considered locked if free,
or unavailable if it is already occupied or it has already
been contacted by another agent. This solution prevents
from deadlock problems, but it may be inadequate for
complex applications. In this case L*MASS allows
designers to define more sophisticated policies. For
example, an application may require a set of agents
negotiate explicitly to designate who has the right of
moving to a certain site.

4 Implementation issues

The implementation of L*MASS is to provide the
language with a distributed environment to support the
execution. Since the major objective of L*MASS is to
define a simulation environment for complex systems,
efficiency and performance are crucial properties.
Nevertheless the development of a performing
environment should not disregard the good software
engineering principles.

An object-oriented approach has been chosen to keep
the implementation of the language and its environment

reflecting the L*MASS concepts even at run time.
Moreover, Java has been chosen as development language
since it provides a clean and comprehensive object-
oriented development environment that covers distinctive
aspects like distribution and code mobility. L*MASS
defines the following entities: sites -to model the space-,
agents -to model the active, mobile components-, and
fields -to model asynchronous communication-. The
L*MASS execution environment provides the language
with support for configuration, deployment and execution
of Multi-Agent Systems.

The system configuration is described by means of
specific constructs that support the definition of the
simulation space by interconnecting sites, the initialization
of agents by creating and situating them, and the
allocation of the fields on sites. In a simulation
environment is important to separate the configuration and
initialization phase from the actual system behavior for
two reasons: usability and performance. In fact,
configuration and initialization may change from time to
time to experiment different solutions, and they should be
executed only once without affecting the subsequent
system evolution.

An important issue is the physical location of a site.
Since L*MASS assumes a distributed environment, the
run-time support has to provide for location transparency
with respect to local or remote sites. In fact, any machine
may host a site; designers of L*MASS systems should not
be aware of that. At configuration time the environment
has to set up the system according to the requirements of
the current simulation run.

To support the execution of agents’ activities, the run-
time support needs to implement the interaction
mechanism described in the previous section. Transport is
the most critical activity, since it may require the move
from one machine to another in a distributed environment.
As for site location, the environment makes the distinction
between local and remote move transparent to application
designers. Field propagation is another critical issue. The
environment has to ensure that every time there is a
change in either the intensity or the location of a source,
the effect of that change is perceived by the agents.
Transport and reaction activities require synchronization.
The run-time support makes synchronization transparent
to agents by providing policies. As described above,
policies are system-wide and can be changed by designers
by replacing the default policies already embedded in the
run-time support.

5 Conclusions and future work

L*MASS is ongoing projects that will deliver a
language, and a framework that support its execution. This
paper dealt with the definition of the framework that

supports the execution of the language. The development
based on object-oriented paradigm should deliver a clean
and flexible framework that can be easily tailored to
accommodate several kinds of simulations to fit specific
domain requirements. Literature reports successful stories
about agent-based systems for scientific computing [18].
Anyway, the use of object-oriented platforms for scientific
simulation is still questionable, since the costs of the
infrastructure to support the execution of an object-
oriented system could be too costly in term of
performance. A future goal is to evaluate this aspect by
benchmarking the parallel implementation and the
distributed, object-oriented implementation of the tool.

The implementation is developed in Java to ensure
portability and open the possibility of different execution
patterns, ranging from concurrent execution on a single
virtual machine to a truly distributed execution over
networked computers. Preliminary versions of both single-
processor and multi-processor implementations of the run-
time environment for L*MASS are already available.

The future activity will deal with the completion of the
definition of the framework, and the definition of the
language constructs. Major issues that need to be
addressed deal with a cleaner definition of fields and their
propagation over the space, and the validation of the
default synchronization mechanisms.

References

[1] Jennings, N. and Wooldridge, M. Intelligent agents: Theory
and practice Knowledge Engineering Review, 10(2), 1995.

[2] Genesereth, M.R. and Nilsson, N.J. Logical Foundations of
Artificial Intelligence. Morgan Kaufmann, 1987.

[3] Russel, S. and Norvig, P. Artificial Intelligence: a Modern
Approach, Prentice Hall, NJ, 1995.

[4] Reticular Systems, Inc. AgentBuilder: an Integrated Tookit
for Constructing Intelligent Software Agents, February
1999, http://www.agentbuilder.com.

[5] Busetta P., Rnnquist, R., Hodgson A., Lucas A., JACK
Intelligent Agents -- Components for Intelligent Agents in
Java, http://www.agent-software.com.au/, 1999.

[6] Bellifemine, F., Rimassa, G., Poggi, A., JADE - A FIPA-
compliant Agent Framework. Proc. of the 4th International
Conference and Exhibition on The Practical Application of
Intelligent Agents and Multi-Agents, London, 1999.

[7] Chauhan, D. and Baker, A., JAFMAS: A multiagent
application development system. In Proceedings of the 2nd

International Conference on Autonomous Agents
(Agents'98), Minneapolis, ACM Press, May 1998.

[8] Gutknecht, O. and Ferber, J., Madkit: Organizing
heterogeneity with groups in a platform for multiple multi-
agent systems. Technical Report 97188, LIRMM, 161, rue
Ada - Montpellier - France, dec 1997.

[9] Nwana, H. S., Ndumu, D. T., Lee, L. C. and Collis, J. C.,
"ZEUS: A Toolkit for Building Distributed Multi-Agent
Systems", Applied Artificial Intelligence Journal 13 (1/2),
129-185, 1999.

[10] Rao, A., Georgeff, M., "BDI agents: from theory to
practice", Proceedings of the International Conference on
Multi-Agent Systems, ICMAS-95, 1995.

[11] Finin, T., Fritzson, R., McKay, D. and McEntire, R.,
KQML as an agent communication language. Proc. of the
3rd International Conference on Information and
Knowledge Management (CIKM'94), 1994.

[12] O'Brien, P. D., and Nicol, R., C. FIPA - towards a standard
for software agents. BT Technology Journal, Vol.16, no.3,
pp 51, July, 1998.

[13] Bandini, S. and Simone, C., Integrating Forms of
Interaction in a Distributed Coordination Model,
Fundamentae Informaticae, in press.

[14] Ferber, J. Multi-Agents Systems: An Introduction to
Distributed Artificial Intelligence Addison-Wesley, Harlow
(UK), 1999.

[15] Bandini, S., De Paoli, F., Manzoni, S., and Simone, C. OO
Reactive Agents for RDM-Based Simulations. Proc. of
AI*IA/TABOO Joint Workshop (WOA 2000), 2000.

[16] Bandini, S. and Simone, C. The reaction diffusion
metaphor for modeling cooperative work. Prestige Journal
of Management and Research, 1998.

[17] A. M. Uhrmacher, Concepts of Objects – and Agent
Oriented Simulation, Transactions on SCS, Vol. 14. No. 2,
59-67, 1997.

[18] R. Gustavsson, Networked Agents for Scientific
Computing, Communication of the ACM, Vol. 42, N. 3,
March 1999.

[19] Brooks, R.A. A Robust Layered Control System for a
Mobile Robot IEEE Journal of Robotics and Automation
2(1), 1986.

[20] Bandini, S., De Paoli, F., Manzoni, S., Pavesi, G., Simone,
C. L*MASS: a Language for Situated Multi-Agent Systems,
Internal Report University of Milano-Bicocca

