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Abstract 
Multi-Agent Systems (MAS) are of great interest as 

they can be used to model complex phenomena that 
involve several actors that interact in various ways. This 
paper describes a framework to support the development 
of Multi-Agent Systems. The framework is based on the 
Reaction Diffusion Machine (RDM) and defines the run-
time support for the L*MASS language. The language 
formalizes the concepts of the framework to provide 
designers with constructs that facilitate the development 
of Multi-Agent Systems. The underlying RDM ensures 
soundness to both language and framework. The work is 
still in progress; therefore, what is presented in this paper 
need to be further discussed and consolidated. 

1 Introduction 

Many different definitions have been given for Agent-
Based Systems. Usually all the definitions agree on the 
fact that an agent is a real or virtual entity endowed with 
autonomy, social ability, reactivity, and proactivity [1]. 
An agent can be thus described as an entity able to 
perceive the surrounding environment through sensors, 
and acting through actuators according to the perceptions. 
Agents can be classified as cognitive or reactive [2]. 
Reactive agents are elementary agents without memory 
and with a defined position in time and space. Cognitive 
agents, instead, behave in a more complex way, and their 
actions are based also on past experience. Whereas 
cognitive agents, for every possible sequence of 
perceptions, act to maximize a given utility function [3], 
reactive agents perform their actions in consequence of 
the perception of stimuli coming either from other agents 
or from the environment. In this case, the motivation for 
an action comes from outside, rather than from inside. As 
a consequence, a Multi-Agent System (MAS) can be 
composed of cognitive agents (generally a low number of 
intelligent agents), each one with a specific knowledge 
that determines its behavior and its interactions with other 
agents and the environment. By contrast, there could be 
MASs composed of reactive agents. This type of system is 
based on the idea that it is not necessary to include 
individually intelligent agents in the system to exhibit 

complex (intelligent) behaviors. Moreover, systems of 
reactive agents are usually more robust and fault tolerant 
than other agent-based systems, e.g. the loss of an agent 
does not have catastrophic effects for the whole system. 
Other benefits include flexibility and adaptability in 
contrast to the inflexibility of systems of cognitive agents. 

Recently, the evolution of Multi-Agent Systems and 
the growing interest in multi-agent development platforms 
have leaded to some interesting tools for agent software 
developers. AgentBuilder [4], JACK [5], JADE [6], 
JAFMAS [7], Madkit [8] and Zeus [9] are some examples 
of this type of tools. Globally platforms for development 
of agents are widely heterogeneous. Although, some 
platforms are grounded on well-known models, like BDI 
model [10] for agent architecture or KQML [11] and 
FIPA ACL [12] infrastructures for communication among 
agents, they limit the development of MASs designed 
according to these models. Some platforms cover only 
some of the features of Multi-Agent Systems, like single 
agent platform, mobile agent platform or interaction 
infrastructures toolkit. In particular, few of them deliver a 
complete development environment supporting users in 
every development stage -analysis, design, development 
and deployment- for the creation of Multi-Agent Systems. 

The work presented in this paper is part of a larger 
project aimed to develop a complete support for 
designing, developing and running MASs. The project 
purpose is to provide agent software developers with a 
language and needed infrastructures for Multi-Agent 
Systems development. The definition of the language, 
L*MASS, is in progress. This paper describes the 
framework that will support the execution of L*MASS. 
For the design of the framework, an object-oriented 
approach has been taken. The object-oriented paradigm is 
suitable for agent implementations since it models the 
world by independent entities, the objects, which 
communicate with each other by means of messages. 
Moreover, available object-oriented platforms allow 
objects to be autonomous, and to be distributed over a 
computer network. These properties facilitate the task of 
developing agent systems [16]. 

L*MASS agents are characterized by spatial position 
and internal state that determines whether and how they 



react to perceptions. The L*MASS language has been 
defined according to an agent conceptual model named 
Reaction Diffusion Machine (RDM) model [13]. The 
RDM model allows for the simulation of complex systems 
in which entities react locally with each other and with the 
environment, and the global system behavior emerges 
from the local behavior of the composing entities. In the 
RDM the control is fully distributed. The agent behavior 
is determined by a local computation based on its position 
and sensitivity to fields as well as on reaction and 
diffusion patterns characterizing its type. 

Agents defined according to L*MASS are based on a 
perception-deliberation-action mechanism, rather than on 
a simpler perception-action mechanism that impose for the 
agent an automatic and predefined response to every 
possible perception. Within this framework it is thus 
possible to describe agents characterized by a set of 
possible actions and a mechanism for the selection of the 
action to be undertaken based on the internal state of the 
agents. Agents described with L*MASS are situated, that 
is, their actions are also influenced by their position in the 
environment. The position in the space defines the 
situation in which the agent is acting, where ‘situation’ 
refers to a potentially complex combination of internal 
and external events and states. Reactive situated agents 
are very sensitive to the spatial relationships that 
determine constraints and capabilities for actions as well 
as privileged cooperation relationships. The space where 
agents are situated can reproduce a physical space, but it 
is nevertheless possible to define a “virtual space” that 
agents can roam and where they interact. Interactions take 
place when two or more agents are brought into a dynamic 
relationship through a set of reciprocal actions. Thus, 
interactions develop from a series of actions, whose 
consequences in turn have an influence on the future 
behavior of the agents [14].  

The natural domain for L*MASS is the Multi-Agent 
Based Simulation (MABS). MABS is based on the idea 
that it is possible to represent a phenomenon as the result 
of the interactions of an assembly of agents with their own 
operational autonomy. Sometimes the Multi-Agent based 
approach to simulations is referred by the expression 
individual-centered simulation to highlight its aspect in 
studying and analyzing a complex problem as the effect of 
interactions of an assembly of simple and autonomous 
entities. Multi-Agent System can be used to simulate 
many types of artificial worlds as well as natural 
phenomena [14]. Agents could make the computer 
became a virtual laboratory where the researcher could 
modify experimental parameters to validate his model by 
observing and evaluating the system evolution.  

Although models and systems to simulate physical 
phenomena originated the design of L*MASS, the 
approach is general and can be applied to the development 
of general-purpose MAS. A Multi-Agent System for the 

simulation of the chemical extraction of substances in 
washing phenomena occurring in percolation processes 
[15] has been implemented using L*MASS and it is 
currently in progress the design of a system for the 
simulation of localisation dynamics of shopping centres in 
extra-urban areas is in progress. Moreover, in order to 
validate the approach outside the MABS domain, it has 
already been applied to problems of awareness in CSCW 
applications [16].  

The next section presents the elements of the L*MASS 
language. Section 3 discusses L*MASS action and 
interaction mechanisms to address the development of the 
framework for supporting the language. Section 4 
discusses some implementation issues. Finally, section 5 
concludes the papers with a description of the ongoing 
activities. 

2 L*MASS elements 

L*MASS is a language for the development of systems 
of situated agents. L*MASS defines a space, a set of sites 
whose interconnection is defined by an adjacency relation. 
The space of L*MASS is populated by a system of 
situated, autonomous and reactive agents that is 
characterized by dynamic evolution, and heterogeneity. 
Each site can host at most one agent. External fields 
propagating in the space influence the behavior of agents. 
Moreover, agents influence each other by perceiving 
presence and state of neighborhood.  

Agents may execute specific actions (trigger, reaction, 
transport and field emission) as a consequence of 
interaction with other agents and of perception of fields. 
The possibility to specify different types of agents allows 
the definition of heterogeneous systems, where agents 
with different features and capabilities can coexist and 
interact. 

In the following, each element of L*MASS is discussed 
to outline the peculiarities that the framework needs to 
address. For a more complete and detailed explanation of 
the current definition of L*MASS language see [20]). 

2.1 Agents 
The space of L*MASS is populated by a set of 

individuals called agents (Figure 1). A type defines each 
agent by describing the state of the agent, its interaction 
with the environment and the set of actions it can perform. 
Behavior and abilities of an agent define whether and how 
the agent changes its state and/or its position, how it 
interacts with other agents, and how neighboring agents 
can influence it. 

According to the literature [3], L*MASS agents are 
entities capable of interacting with their surroundings 
(perceive the environment and act by executing actions), 
after deliberating what to do. Deliberation is affected by 



the perception of the environment, i.e., fields that are 
present in the site where the agent is situated, presence of 
neighboring agents, and their state. Deliberation identifies 
which action, among a set of enabled actions, is to be 
executed by the agent. 

  
Figure 1. An agent of type ‘white’ situated on site p. It can 
emit fields 1 and 2 and it is sensitive to fields 3 and 4. 

The internal architecture of L*MASS agents is inspired 
by Brooks’ subsumption architecture [19]. An agent is 
composed of three modules dedicated to each of the tasks 
the agent can perform (respectively perception, 
deliberation, and execution). Perception is a function that 
associates a set of influences with the set of possible 
actions. Execution corresponds to the application of an 
operator to produce an action based on the set of 
operations that can be carried out by the agent (according 
to its type, internal state and position). The phase between 
perception and execution is called deliberation, that is, the 
component of an agent responsible for its actual behavior. 

The internal architecture of an agent is composed of an 
engine, a knowledge base and a rule base. The engine 
component implements the general behavior of any type 
of agent. As described above, every agent perceives, 
deliberates and executes. The knowledge base and the rule 
base define the particular set of information and actions a 
specific agent deals with. The knowledge base includes 
information on fields’ values and status of neighboring 
sites and agents, over information on the agent itself 
(state, position, sensitivity to fields, and so on). The 
knowledge base is updated either automatically any time 
the environment changes, or by the agent itself as result of 
performed actions. The rules are defined by preconditions 
and actions to be performed. Deliberation consists in 
evaluating preconditions for rules activation and selection 
of the rule to be executed among those activated. 
Deliberation process can be customized to give tailored 
selection criteria. The default criterion is to select the rule 
that has been activated by the more recent change 
occurred in the agent knowledge base. This criterion has 
been chosen in order to ensure immediate reaction to 
changes in the surrounding environment.  

2.2 The space 
Agents are situated in environment that can be modeled 

as centralized or decentralized [14]. In the former case, 
the environment is described as a single block, while in 
the latter it is as composed of a network of cells. In 
centralized models agents can access a shared workspace 
that represents the whole environment and serves as 
interaction medium: an agent can leave messages for other 
agents and collect messages addressed to it. On the other 
hand, in decentralized environments each network node is 
a sort of centralized microenvironment that simulates a 
shared workspace to agents that exchange messages and 
signals as they were in a centralized environment. 

The L*MASS space is a decentralized environment that 
is defined as a connected undirected graph, with an 
adjacency relation defined for the nodes (see Figure 2). 
Each node is a site hosting at most one agent. Fields 
propagate along the edges of the graph and leave on sites 
information about their presence. Sites are perceived as 
passive entities that store knowledge about the hosted 
agent, agents hosted by neighboring sites, and present 
fields (if any). Agents perceive the environment only 
locally through the sites that host them.  

 
Figure 2. The L*MASS Space 

2.3 Fields 
Fields are the mean for agents to communicate 

asynchronously with each other and for the environment 
to affect the agents’ behavior. Fields are generated by 
agents or by sources outside the space. In the latter case, 
fields model the interaction between environment and 
agents.  

A field is characterized by a source value, a 
distribution function specifying how it propagates in the 
space, and by a signature allowing composing and 
comparing its values. Edges connecting sites define 
possible paths that fields can follow to propagate. 

3 L*MASS Actions and Interactions 

Agents can perform actions to change their state and 
position, and to interact synchronously and 



asynchronously with other agents. Agents’ activity deals 
with perception of the environment, reaction with 
neighboring agents, emission of fields, position change in 
the space, and state update. Activities of agents are 
defined by rules that take the form: 

when condition do action 

Condition is a Boolean expression that determines if 
the action may occur. The condition expression may refer 
to the internal state of the agent, values of the fields at the 
site hosting the agent, to neighboring sites and agents. 
Therefore, rules define three kinds of activities with 
respect to the interaction needed to evaluate the condition 
and subsequent action: Reaction that involves agent-to-
agent interaction (a n-to-m relation); Transport that 
involves agent-to-site interaction (a one-to-one relation); 
and the reflexive interactions field emission and state 
updating. 

In the following, the three kinds of activities are 
examined and discussed, along with the perception of the 
environment by agents. 

3.1 Perception 
An agent perceives the environment through the site 

that hosts it. These information are necessary to let the 
agent react to the environment and to make decisions on 
what to do. Three kinds of information are available: 
fields that are active on the site, the state of neighboring 
sites, and the state of neighboring agents. 

When the state of an agent changes, or when an agent 
arrives at a site, the agent communicates its state to the 
hosting site that in turn forwards the information to the 
connected sites. In such a way, agents are constantly 
updated on the status of neighboring agents: whenever 
fresh information is needed, agents can ask the local site. 
In the same way sites communicate with connected sites 
about their status: free or occupied.  

With respect to fields, two aspects need to be 
considered: field diffusion and field perception. Field 
diffusion specifies how the field propagates and composes 
its values. As already said, a field is originated by an 
agent in a site, and propagates over the space according to 
a propagation function. This means that propagating along 
a path, the intensity of the field change, and that agents 
perceive the field as it is locally. Moreover, since a field 
can propagate along different paths in the non-regular 
spatial structure, it is necessary to specify how the 
resulting different values have to be composed. Another 
aspect deals with the presence of more fields of the same 
type, even in this case field values need to be composed to 
define a single value at a specific site.  

Field perception depends on the capabilities of agents. 
The agent type specifies sensitivity to fields defining 
thresholds that fix lower bounds to perceive fields. This is 

the very essence of the broadcast interaction pattern that 
underlies the field diffusion: fields propagate by means of 
messages that are not addressed to specific receivers but 
potentially to all agents populating the space. The set of 
potential receivers is determined first of all by the strength 
of the propagated messages, which can be null beyond a 
given distance from their source, according to the 
propagation function. Receivers of a field are free to 
decide whether and when deal with it. 

3.2 Reaction 
Reaction defines a synchronous interaction among a set 

of adjacent agents (that is, agents situated on adjacent 
sites connected by an edge). Agents react according to 
their type and state. Reaction takes place according to a 
state transition function and specifies how an agent can 
influence and be influenced by neighboring agents, that 
consequently might change their states. Reaction activity 
is defined by a set of rules as specified above. 

The reaction process can be split in two phases: 
negotiation to agree on what to do and execution of what 
agreed. That is, the condition of a reaction rule needs to 
value true in order to execute the associated action. Since 
the evaluation of the condition involves information on 
the state of neighboring agents, synchronization 
mechanisms need to be introduced to ensure atomicity to 
the negotiation phase. In fact, during negotiation agents 
need to assume that the environment does not change; 
otherwise no decision can really be taken.  

To avoid deadlock problems that may occur due to 
distributed synchronization, conflict resolution criteria 
need to be defined. It is well known that a general solution 
is unaffordable; therefore the L*MASS approach is to 
provide a default mechanism and let application designers 
to implement tailored criteria for the specific domain they 
deal with. The default mechanism is still under definition. 
The candidate proposal is to assign well-known priorities 
to agents to define who have the right of preempting 
others in case of conflict. Priorities should change 
dynamically to ensure fairness and avoid starvation 
problems. The effectiveness of any solution strongly 
depends on the nature of the application. For example, if 
few agents that seldom interact, or that interact only one-
to-one, populate the space, it is likely that conflicts will 
not arise. Instead, in a crowded space, populated by agents 
that interact with every neighborhood, important conflicts 
will arise. In this case, the best solution would be to 
design ad-hoc criteria that take into account the nature of 
the application. 

3.3 Fields emission and state updating 
Actions execution by agents may change their internal 

state and cause the emission of a field. Field emission and 



state updating are internal operations that anyway 
influence the environment. In fact, neighboring agents 
need to perceive these changes to define their behavior, 
i.e., activate reactions. L*MASS specifies that agents 
notify their hosting sites about state changes and field 
emission, so that they can propagate the information to 
connected sites.  

Fields model asynchronous, long distance 
communication achieved by the propagation of fields in 
the space. In other words, these influences can be 
interpreted as broadcast messages that reach the various 
sites, possibly modulating their strength as specified by a 
propagation function associated with the field, and can be 
perceived by all the agents located in these sites, 
according to their sensitivity, type and state. The 
asynchronous interaction between agents is performed 
through the combination of fields emission defined as 
above with perception defining the effect of fields on 
agents.  

3.4 Transport 
Transport defines the rules that make an agent change 

its position in the space. In this case, the condition of a 
transport rule deals with the state of the neighboring sites, 
i.e., an agent may decide to move to empty sites only. 
Even in this case conflicts on occupying a site may arise. 
As for reaction, the approach is to provide a default 
criterion for conflict resolution, and leave the possibility 
of defining ad-hoc criteria when necessary. 

The default mechanism is to serve the first agent that 
requests to move on a site, i.e., if an agent is willing to 
move to a site, it expresses this desire by asking the site 
status, consequently the site is considered locked if free, 
or unavailable if it is already occupied or it has already 
been contacted by another agent. This solution prevents 
from deadlock problems, but it may be inadequate for 
complex applications. In this case L*MASS allows 
designers to define more sophisticated policies. For 
example, an application may require a set of agents 
negotiate explicitly to designate who has the right of 
moving to a certain site.  

4 Implementation issues 

The implementation of L*MASS is to provide the 
language with a distributed environment to support the 
execution. Since the major objective of L*MASS is to 
define a simulation environment for complex systems, 
efficiency and performance are crucial properties. 
Nevertheless the development of a performing 
environment should not disregard the good software 
engineering principles. 

An object-oriented approach has been chosen to keep 
the implementation of the language and its environment 

reflecting the L*MASS concepts even at run time. 
Moreover, Java has been chosen as development language 
since it provides a clean and comprehensive object-
oriented development environment that covers distinctive 
aspects like distribution and code mobility. L*MASS 
defines the following entities: sites -to model the space-, 
agents -to model the active, mobile components-, and 
fields -to model asynchronous communication-. The 
L*MASS execution environment provides the language 
with support for configuration, deployment and execution 
of Multi-Agent Systems. 

The system configuration is described by means of 
specific constructs that support the definition of the 
simulation space by interconnecting sites, the initialization 
of agents by creating and situating them, and the 
allocation of the fields on sites. In a simulation 
environment is important to separate the configuration and 
initialization phase from the actual system behavior for 
two reasons: usability and performance. In fact, 
configuration and initialization may change from time to 
time to experiment different solutions, and they should be 
executed only once without affecting the subsequent 
system evolution. 

An important issue is the physical location of a site. 
Since L*MASS assumes a distributed environment, the 
run-time support has to provide for location transparency 
with respect to local or remote sites. In fact, any machine 
may host a site; designers of L*MASS systems should not 
be aware of that. At configuration time the environment 
has to set up the system according to the requirements of 
the current simulation run. 

To support the execution of agents’ activities, the run-
time support needs to implement the interaction 
mechanism described in the previous section. Transport is 
the most critical activity, since it may require the move 
from one machine to another in a distributed environment. 
As for site location, the environment makes the distinction 
between local and remote move transparent to application 
designers. Field propagation is another critical issue. The 
environment has to ensure that every time there is a 
change in either the intensity or the location of a source, 
the effect of that change is perceived by the agents. 
Transport and reaction activities require synchronization. 
The run-time support makes synchronization transparent 
to agents by providing policies. As described above, 
policies are system-wide and can be changed by designers 
by replacing the default policies already embedded in the 
run-time support.  

5 Conclusions and future work 

L*MASS is ongoing projects that will deliver a 
language, and a framework that support its execution. This 
paper dealt with the definition of the framework that 



supports the execution of the language. The development 
based on object-oriented paradigm should deliver a clean 
and flexible framework that can be easily tailored to 
accommodate several kinds of simulations to fit specific 
domain requirements. Literature reports successful stories 
about agent-based systems for scientific computing [18]. 
Anyway, the use of object-oriented platforms for scientific 
simulation is still questionable, since the costs of the 
infrastructure to support the execution of an object-
oriented system could be too costly in term of 
performance. A future goal is to evaluate this aspect by 
benchmarking the parallel implementation and the 
distributed, object-oriented implementation of the tool. 

The implementation is developed in Java to ensure 
portability and open the possibility of different execution 
patterns, ranging from concurrent execution on a single 
virtual machine to a truly distributed execution over 
networked computers. Preliminary versions of both single-
processor and multi-processor implementations of the run-
time environment for L*MASS are already available. 

The future activity will deal with the completion of the 
definition of the framework, and the definition of the 
language constructs. Major issues that need to be 
addressed deal with a cleaner definition of fields and their 
propagation over the space, and the validation of the 
default synchronization mechanisms.  
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