A Web Infrastructure for People and Agent I nteraction and Collaboration

Giacomo Cabri, LetiziaLeonardi, Franco Zamborelli
Dipartimento di Scienze dell’l ngegneria —Universita di Modena
Via Campi 213b — 41100Modena —ITALY
E-mail: {giacomo.cabri, letizia.leonardi, franco.zamborelli }@unimo.it

Abstract

Internet pervasive services call for flexble suppats to
enable a wide degree of collabaration. On the one hand
many people are omnreded to the Internet and surf the
Web na only to retrieveinformation, but also to carry out
seveal kinds of different tasks via the on-line services. On
the other hand the Internet is likdy to be soon populated
by software agents that will act in behaf of users,
“intelligent” enoughto achieve the better result withou
boring their users. In this paper we present a Web-based
moduar architedure that permits interaction and
collabaration among people and agents, leadingto amore
fruitful exploitation o the apalilities offered by the
Internet. A negatiation appication based on auwtions is
used to show the advantages of the proposed architedure.

Keywords: Agents, Collabarative Work, Web
Applications, Coordination, Auction

1 Introduction

A lot of applications is being developed to exploit the
positive fedures that charaderize the Internet [AIm95].
Due to the dharaderistics of openness heterogeneity and
unreliability of the Internet, these kinds of applications cal
not only for tools and methoddogies, but aso for
appropriate models and supparts to make the design of the
applications easier and to permit a fast spread of these
technologies.

In this context, developers must take into account that
the Internet world will be populated by heterogeneous
kinds of entities, in particular people and agents. Many
people discover how the use of the Web permits to save
time even in performing simple tasks. Moreover, the Web
give aworld-scade spedrum of paosgbiliti es among which
to choose the preferred one, letting people compare and
make the best dedsion. Agents are propcsing as other

entiti es that will populate the Internet. They are software
entities charaderized by the following main feaures:
autonamy, proactiveness reactivity and sociality
[Jenw9a8g]. While the first three feaures are related to the
development of ead single agent application (or of classes
of applications), the fourth one has a deep impad in the
development of Internet services. Moreover, we think that
a further important feaure for the agents is mohility, i.e.,
the caability of adively changing the hosting exeaution
environment in a network-aware fashion [KarT98].

Even if both people and agents exploit the same Internet
services and resources, the ways they do it can be very
different, becaise of the differences between the alopted
interfaces, the speeds of elaboration, the intelligence
degrees, and so on. This cdls for an adequate suppart to
permit heterogeneous interadions and collaborations on
the Web [BenHT97, Cia98]. In a previous work, we
identified the requirements of a flexible achitedure that
could suppart collaborative work on the Web, and we
developed PROOF [CabLZ99], a modular framework that
meds sich requirements. We now point out that such
architedure is adequate for a people-populated Web, but
has sveral limitations when it has to be eploited also in
an agent-populated environment. In this paper we propcse
a more general architedure, designed starting from the
previous one, which has been extended to suppat the
hosting of (possble mobile) agents and to be eriched by
high-level coordination cgpabilities. The resulting
architedure, cdled PROOF v2, is very flexible and can be
exploited by severa kinds of Internet applications. In
particular, in this paper we show the cncrete use of such
architedure in an auction-based Internet application,
considered as a case-study.

The paper is organized as follows. Sedion 2 introduces
the PROOF architedure and sketches its implementation.
Sedion 3 shows how the PROOF architedure can be
extended by adding mobile-agent and coordination
cgpahiliti es. Sedion 4 presents an example of applicaion

Thiswork was supported by the Italian National Research Council (CNR) in the framework of the project “Global Applicaionsin the Internet Area:

models and programming environments'.

that exploits the mllaboration cgpabiliti es of the extended
PROOF architedure v2. Sedion 5 reports the anclusions
and the open isaues.

2 Thebasic PROOF Architecure

The main am of PROOF [CabLZ99] is to provide a
mean to enrich the Web with computational capabiliti es for
CSCW (Computer Supparted Cooperative Work) without
requiring significant modificaions to current servers and
clients. In fad, PROOF relies on the wncept of proxy
server, which stands in the middle between servers and
clients. Whil e traditional proxy servers are mainly used to
provide cade functions, PROOF is much more flexible
and can embody severa different functionalities. Thus, a
such kind of proxy server intrinsicdly bewmmes a
workplace open to the Internet, where the operation
between clients can occur without forcing clients to exit
the workplace when accessng generic Web servers.
Within our PROOF proxy server, any kind of computation
can be enclosed, such as cading and dynamic production
of result HTML pages, as in the server-side gproach.
Synchronous interadions between the dients and the proxy
server can be enabled by letting PROOF insert spedfic
applets into the pages that it provides to clients (browsers),
thus enabling communicaion among people in the
workgroup viathe proxy server.

PROOF is based on a modular architedure, compaosed
by a framework and several applicaion modues (see
Figure 1). The framework provides the basic proxy
functionalities, such as the mnredions with the dient
browsers and with the Web servers, the user identification
and authenticaion; moreover it permits the anbodying of
different applicaion modules. Each module implements
the behavior of one spedfic goplicaion. The framework
can load one module atime.

PROOF is written in Java, to achieve portability. It
exploits the mechanisms of interfaces and refledion to
achieve modularity and an easy and dynamic install ation of
applicaion modules into the framework.

The PROOF architedure is very general and it is not
tightly bound to any spedfic goplicaion becaise it is
based on the implementation of a framework that offers
general-purpose gplicdion-independent functionaliti es.
Different applicaion modules can be implemented with a
limited coding effort and easily installed within the proxy-
framework.

3 Extending the basic PROOF

Architedure — PROOF v2

The previousy described implementation of the
PROOF architedure is stisfadory for the use in a Web

inhabited by people. But it could be more useful if it were
exploitable dso by software ajents. In this diredion, we
present the extensions made to the PROOF architedure in
order to be more open and better integrated in the Internet
environment. Such extensions have been implemented in
the second version of PROOF, PROOF v2. In particular,
the two most significant extensions are related to (i) the
cgpability of hosting mohile ayents and (ii) the integration
of an advanced coordination model to enable high-level
interadions and synchronization.

Flow of information
Client
Browser I actual
X A
- i virual
v
PROGF
(Proxy Ffan'nework)
H v |
Proxy | Application

server Module

]

.k

Figure 1. The application-dependent module
defines the proxy server behavior

3.1 Adding Mobile-Agent Capabilities

The first important extension to the old PROOF
architedure is the aldition of the caability of hosting
mobile ayents. They can significantly improve the design
and the development of Internet applications thanks to
their charaderistics. The agency feaure [JenW98] permits
them to exhibit a high degree of autonomy with regard to
the users. The mobility feaure [KarT98] takes svera
advantages in a wide and unreliable environment such as
the Internet. First, mobile aents can significantly save
bandwidth, by moving locdly to the resources they need
and by carying the mde to manage them. Moreover,
mobile gents can ded with non-continuous network
connedion and, as a mnsequence, they intrinsicaly suit
mobile mmputing systems.

Therefore, mobile ayents, on behalf of users, can install
spedfic modules to give the proxy server an application-
dependent behavior. Since gyents are aitonomous, the user
can gve them a possbly high-level task to carry out, and

they can proadively seach for the needed module(s),
perhaps by mean of negotiation with module providers;
once they have found the module(s), they can seach for
the most appropriate — also in terms of costs — proxy server
where to install the module(s). The user is then notified of
the proxy server (s)he have to use in order to exploit the
needed functionalities. As a further advantage, this
extension permits to give other entities — besides people —
the acces to collaborative Web applications. Users can
think of not participating diredly to an interadive
applicdion that requires repetitive adions; instead, they
can rely on one or more software ajents that ad in behalf
of them. For example, if a user is interested in buying a
good, (s)he can delegate to a software aent the tasks of
comparing the different offers, and of negotiating the fina
price In this context, the exploitation of mobile agents can
make the PROOF v2 architedure very open and flexible.
The presence of different kinds of entities involved in the
applicdions, introduces svera interadion and
synchronization isales, and cdls for the presence of
appropriate ordination models, detailed in the next
Subsedion.

3.2 Adding Advanced Coordination

Apart from hosting (possble mobile) agents, the
PROOF v2 architedure dso neals a sophisticaed
coordination model to permit interadions, collaborations,
negotiations and also competitions at a high level. Since
progranmable tuple spaces are recognized to be a
powerful coordination mean that well suits Internet
applicdions, in particular those where mohile agents are
involved [DenNO98], we have dedded to extend PROOF
with programmabl e tuple spaces.

The integration of coordination model based on
programmable tuple spaces can be exploited also to store
information about the proxy and the installed modules.
This has a number of advantages. First, the tuple spaceis
used as a shared repository where different entities can
store, retrieve and exchange information in a ssmple and
standard way. Seoond, the eploitation of programmeable
readivity increases flexibility and permits to add whatever
computation in the mordination media. For example, a
readion can be in charge of notifying a proxy module
about a change in the tuple space the proxy module, in its
turn, can dynamicdly update the Web pages on the users
browsers acordingly to the new information in the tuple
space(seeFigure 2).

The mncrete wordination system that we choose to be
integrated in PROOF v2 is MARS (Mobile Agent Readive
Space [CabLZ98], a mordination architedure based on an
enhanced Lindalike model [AhuCG86]. MARS defines
tuple spaces as ared repositories of information, used to
store and associatively retrieve messages in the form of

tuples (see Figure 2) [GelC92]. MARS was originaly
conceved for mobile aent applicaions, but it can be
fruitfully exploited also by non mobile aents. The MARS
architedure supposes that one tuple spaceis asociated to
ead node.

PROOF v2

Agents
read and write | proxy modules
ﬂ(operations

Tuplel Tuple3
Tuple space Tuplez

Meta-level
Tuple space
reactions ‘

Figure 2. The MARS Architecture integrated in
PROOF v2

MARS is JavaSpaces compliant and is written in pure
Java. MARS tuples are Java objeds that represent ordered
sets of typed fields. Tuple dasses must implement a
spedfic interface required for tuple management and
named Entry in JavaSpaces, or, in a simpler way, can sub-
classfrom the so cdled AbstractEntry class which provides
for a basic implementation of the Entry interface A spedfic
tuple field is defined as an instance variable of a tuple
class Eac field o the tuple refers to an objed that can
also represent primitive data. The MARS interface defines
five Linda-li ke operations to accessthe tuple space
e write, to put a tuple, supplied as parameter, in the
space

e read, toretrieve atuple from the space on the basis of
arequest tuple supplied as a parameter and to be used
as a pattern for the matching mechanism;

» take, which works as the read operation but extrads
the matching tuple from the space

e readAll, to retrieve dl matching tuples from the
space

« takeAll, to extrad all matching tuples from the space

MARS overcomes the limits of the static data-oriented
Linda model, by adding programmeble readivity, which
means that spedfic adions can be programmed in response
to the access performed by agents on the tuple space
[CabLZz0Q]. In fad, MARS implements a programmable
readive tuple space model in which the dfeds of the
operations on the tuple spaces can be dynamicdly
modified. Agents always access the tuple spaces with the
same basic set of Linda-like operations. A meta-level tuple
spaceis introduced in ead node to associatively manage
readions. A meta-level tuple in the form (Reaction_object, T,

0O, 1) asociates the readion implemented by Reaction_object
with the event of the operation O performed on the tuple T
by the agent with identity I. Writing a meta-level tuple in
the metalevel tuple space means instaling the
corresponding readion, while taking a meta-level tuple
means uninstalling the rresponding readion. Realings
on the meta-level tuple space ae performed by the system
to seach for a matching readion when an operation occurs
on the base-level tuple space Since T can be atemplate, a
single meta-level tuple can be used to asciate areadion
with the eventsrelated to all the tuples matchingwith T.

MARS can be eploited to implement agent-based
applicdions in different areas. For instance, information
retrieval, distributed management and mobile computing
are the mntext where the MARS feaures can be exploited
inamore dfedive way [CabLZ00c].

3.3 Implementation Issues

The two above-described extensions do not present hard
implementation problems, since PROOF was originally
designed taking into consideration modularity and
flexibility. Moreover, the MARS coordination architedure
has been designed to be very portable and uncoupled from
Javabased hosting environments (usualy, the agent
systems): this makes easier to embody MARS in PROOF.
However, some light modifications to the proxy framework
are needed in order to achieve the highest usability and to
exploit al feaures. In particular, the most significant one
is that PROOF v2 must keeg a reference to the locd
MARS tuple space and must provide it to the installed
modules; other more significant modifications to PROOF
are needed in order to accet mobile agent modules; the
main ones — detailed in the following of this edion — are
related to: multi-module cgability, and seaurity.

The first significant modification concerns the number
of modules that can be loaded concurrently. Whil e the first
version of PROOF alowed only one module & atime, the
new multi-modue @palility permits one singe proxy to
be exploited by severa clients (browsers or agents) for
different applications. Obviously, this cgpability introduces
more complexity in the handling of the incoming requests
and the related responses. To ded with more than one
module in the framework, an additional software level is
needed. Such level is in charge of demultiplexing the
incoming request to the gopropriate gplication module, so
that ead conneded browser has the @rred responses.
Moreover, we must take into acwount the posshle
coordination among different modules install ed in the same
proxy framework. Whil e the framework provides a smple
mean of communicaion in the form of a globa
environment, the use of the MARS tuple space is
encouraged to exploit al the alvantages of its uncoupled
and programmable oordination open aso to externa

mobile gyents.

The second asped requiring modifications is related to
seaurity. In fad, if agents are dlowed to install their own
modules, seaurity mechanisms and pdicies must be
provided to control such instalations, to avoid agents
installing malicious modules, which can compromise the
whole system by isaling, for example, a denial of service
attadk. The basic seaurity mechanisms must be provided by
the mobile aent system, in terms of identificaion and
authenticaion of the incoming agents. The information
about an agent permit to know whether it comes from a
trusted user/ste and to dedde whether to alow the
installation of an applicaion module or not. Anyway, we
choose to limit the vishility of the proxy interna
state/functions from the agents. Moreover, the accssto the
internal environment by the goplicaion modules must be
ruled with care, to avoid that a module has full power on
the proxy state that relates also to ather modules. So the
accessto the internal state of the proxy can occur only via
awell-defined set of methods, which limits the passhiliti es
of manipulate internal variables and information structures.

4 Application Example

An example of applicaion that can fruitfully exploit the
PROOF v2 architedure is an auction manager. Auctions
[Ago96 are interesting regotiation means where there ae
entities that make resources available and entities that are
interested in using such resources. The former ones are
usually cdled sellers, while the latter ones are cdled
bidders. Normally, there is an intermediate entity, cdled
auctionee, which adually performs the negotiation. The
price of the resources old by sellers via an auction is not
fixed, but it is dynamicdly determined by the interest of
the bidders. The seller can set areserveprice, i.e., a price
under which it does not want to sell the resource
Intelli gent agents can spend time to negotiate the desired
resources by using the auction mechanisms, which seem to
well fit dynamic and heterogeneous environments. In fad,
an auction has a high degree of adaptability, has not any a
priori fixed price ad alows dynamic atending by
participants. There ae severa different forms of auction,
depending on the number of participants, on the aiteria
with which the resources are assgned, and so on. We focus
on the auctions with one seller and multiple bidders at a
time, ruled by several mechanisms. for example, English,
Dutch, first-price and Vickery [Ago9§].

Currently, there ae several implementations of auctions
described in the literature. With regard to human people,
auction-based markets are rapidly spreading over the
Internet, exploiting the Web infrastructure to permit
interested people to interad [WWW298]. With regard to the
agent-based applicdions, auctions can be used bah to sell
goods and to ded with Web resources [SanHOQ]. In the

following of this sdion we show how the PROOF v2
architedure can be eploited to build an auction-based
applicaion, which permits both people and agents to
interad in an Internet environment.

4.1 Implementing Auctionswith PROOF

First of al, an appropriate auction proxy modue has to
be implemented and installed in PROOF v2 to ded with
the auctions. Appropriate MARS reactions are in charge of
exchanging information between the auction proxy module
and the tuple space redizing the interadions between
agents and people. On the one hand, people can participate
by using their usual browsers, which are set to use PROOF
v2 as the proxy server. On the other hand, agents can
attend the auctions exploiting the tuple space integrated
within PROOF v2, where they can find needed information
about the goods/resources on sale, such as the price, the
current highest bid, the timeout, and so on. Therefore, in
this context, the feaures of the MARS model integrated
within the proxy server can be useful exploited in the
implementation of the auction mechanisms:
¢ the Lindalike data-oriented approach permits to

access the selling/buying services in a simple and
uniform way;

e the programmability property alows to uncouple
auction medhanisms, implemented via readions, from
auction policies dedded by people or emboded in the
agents.

These agpeds make possble to rule the agent’s behavior

depending on the spedfic auction laws. This achieves the

same purpaoses of the socialy adopted conventions of the
traditional auctions [NorSR9§].

The adual implementation of Internet auctions by using
PROOF v2 works as follows. Let us suppacse the foll owing
case for explanation purpaose: the seller is represented by a
mohile aent, while the bidders are represented by both
human people axd mohile aents. The bidder people
participate by means of standard browsers configured to
use PROOF v2 as proxy server. At connedion time, they
choaose the auction module installed in PROOF.

At the negotiation site, the seller agent writes a tuple
that contains information about the goodresource it is
going to sell (step a in Figure 3). This writing triggers a
spedfic pre-installed readion that ads as the aictioneer,
i.e. it is in charge of managing the auction (step a' in
Figure 3). Such readion is aso in charge of notifying the
auction proxy module that an auction has darted (step a”
in Figure 3).

Once the proxy module and the bidder agents have read
the tuple representing the goodresource on sale, people
and agents can bid a price to buy the goodresource on
sae, respedively by using the gplet displayed in the
users browsers or by inserting tuples (step b in Figure 3).

In the people cae, the control applet communicaes the
new bid to the proxy module, which is in charge of
updating the information in the proxy server environment
by writing atuple in the tuple space

Seller agent
Bidder agents .
a
write read

PROOF \N Browser
Control
‘wpplet

Auction proxy
module

Human
Bidders
Browser

Control
‘applet

notifications

Auction
handler

Figure 3. A seller agent puts a good on sale (a),

the bidder agents put their bids (b), the auction

proxy module upd ates the users’ browsers via
the control applets (c)

In the awy case, the aictionee readion monitors the
bids from both agents and people, and notifies the
interested agents and the auction proxy module that a
change has occurred in the auction. The module is then in
charge of updating the information in the user browsers by
reading the value of the new bid from the tuple space ad
communicating it to the wntrol applets inserted in the
auction Web page (step c in Figure 3).

The winner Bidder agents PROOF v2 Browser
agent Ny g
Control
—-wpplet

Auction proxy
module

operal\ons

Human
Bidders

nnnnn

Browser
notifications

Auction
handler

Figure 4. The Auctioneer reaction decides the
winner and communicates it via a tuple

Control

‘app\el

When the auction is over, the aictionea readion
deddes the winner and creaes a tuple to inform al the
participants about it: people ae notified via the proxy
module, while aents can diredly real the tuple (see
Figure 4). A detailed description of the implementation of
auctions via readions can be found in [CabLZ00h.
Obvioudly, the auction implementation must make use of
seaurity cgpabiliti es provided by the system to authorize
only corred readings, takings and writi ngs of tuples.

PROOF v2 permits to handle auctions in which both
people and agents are involved, in a very flexible way. In
fad, thanks to the modularity of the achitedure and the

cgpability of programming the behavior of the tuple space
severa kinds of different medhanisms can be implemented
by changing (also at runtime) the readions installed in the
system. For example, if a good is on sde by English
auction rather than Dutch auction, the gpropriate readion
can be ingtall ed to rule the interadions among participants.

5 Conclusions

In this paper we have presented the PROOF v2
architedure. Our aim is to redize a genera-purpose
architedure that supparts the dynamicity, the heterogeneity
and the openness of the gplicaions in the Internet
scenario. PROOF v2 isamodular architedure that well fits
the Web environment, thanks to its “standing in the
midde” between browsers and servers that permit to use
existing Web components. The caability of deding with
mobile aents and the integration of an advanced
coordination model permit to better exploit al the Internet
fedures. On the one hand, the achitedure becomes more
open by letting also agents exploit its functionalities in
terms of installing/uninstalling modules and interading
with the installed modules. On the other hand, the
advanced coordination model based on programmable
tuple spaces makes easier the design and the development
of Internet applicdions, where ®llaboration,
synchronization and competition have to be properly
expressed and managed.

From the achitedure point of view, PROOF v2 can be
sea as a sophisticated interfaceto shared information. In
fad, the information represented by tuples gored in the
tuple space ca be accesd by means of Internet browsers,
which rely on an ad ha proxy module. In this way, the
module permits users to access and modify the content of
the tuple spacein an applicaion-dependent way. Different
modules can present a different vision of the information,
depending on the spedfic goplicaion padlicies. As a find
note, we point out that the presented new PROOF v2
architedure permit also to creae a federation of proxy
servers, which can be eploited in different ways. For
example, the presence of severa proxies with the same
functionalities permits to perform load balancing by
distributing the users towards the lessloaded servers.

References

[Ago96] Agorics, Inc., “Going, going, gone! A survey of auction
types’, http://www.agorics.com, 1996

[AhuCG86] S. Ahuja, N. Carriero, D. Gelernter, “Linda and
Friends’, |IEEE Computer, Vol. 19, No. 8, pp. 26-34,
August 1986

[AIM95] G. Almasi, A. Suvaida, |. Musea C. Cascava, T.
Davis, V. Jagannathan, “Web*: A Tecndogy to Make

Information Avail able on the Web”, Proceadings of the 4™
IEEE Workshop onEnabling Techndogy: Infrastructure for
Collaboretive Enterprises, pp. 147153 Berkley Springs
(WV), IEEE Computer Society Press 1995

[BenHT97] R. Bentley, T. Horstmann, J. Trevor, “The World
Wide Web as enabling techndogy for CSCW: The cae of
BSCW”, in Computer-Suppated Cooperative Work:
Spedd issle on CSCW and the Web, Vol. 6, Kluwer
Academic Press 1997.

[CabLZz98] G. Cabri, L. Leonardi, F. Zamborelli, “Readive
Tuple Spaces for Mobile Agent Coordination”, Procealings
of the 2™ Internationa Workshop on Mobile Agents,
Ledure Notes in Computer Science, No. 1477, Springer-
Verlag (D), September 1998

[CabLZ99] G. Cabri, L. Leonardi, F. Zamborelli, “A Proxy-
based Framework to Suppat Synchronows Cooperation on
the Web”, Software, Pradice and Experience Vol. 29,
No. 14, pp. 12411263 1999

[CabLZz00] G. Cabri, L. Leonardi, F. Zamborelli, “Mobil e-Agent
Coordination Models for Internet Applicaions’, IEEE
Computer Magazne, Vol. 33, No. 2, pp. 82-89, February
2000

[CabLz00bh G. Cabri, L. Leonardi, F. Zamborelli, “Auction-
based Agent Negotiation via Programmable Tuple Spaces’,
4™ |nternational Workshop on Cooperative Information
Agents, LNCS, Boston (USA), July 200Q to appea.

[CabLZz00c] G. Cabri, L. Leonardi, F. Zamborelli, “Mobhile
Agent Coordination for Distributed Network Management”,
Journal of Network and Systems Management, to appea.

[Cia98] P. Ciancaini, R. Tolksdorf, F. Vitdi, D. Rosd, A.
Knoche, “Coordinating Multi-Agents Applicaions on the
WWW: a Reference Architedure”, IEEE Transadions on
Software Engineeing, Vol. 24, No. 8, May 1998

[DenNO98] E. Denti, A. Natali, A. Omicini, “On the Expressve
Power of a Language for Programmable Coordination
Media”, Proceadings of the ACM Symposium on Applied
Computing, Atlanta (G), 1998

[GelC92] D. Gelernter, N. Carriero, “Coordination Languages
and Their Significance”, Communications of the ACM, Vol.
35, No. 2, pp. 96-107, February 1992

[Jenw98] N. R. Jennings, M. Woodldridge, editors, “Agent
Techndogy: Founditions, Applicaions, and Markets’,
Springer-Verlag, March 1998

[KaT98N. M. Karnik, A. R. Tripathi, “Design Iswes in
Mobile-Agent Programming Systems’, |IEEE Concurrency,
Vol. 6, No. 3, pp. 52-61, July-September 1998

[SanHOQ] T. Sandhdm and Q. Huai, “Nomad: Mohile Agent
System for an Internet-Based Auction House”, IEEE
Internet Computing, Spedal issue on Agent Techndogy and
the Internet, 200Q to appea.

[WWW9g] P. R. Wurman, M. P. Wellman, W. E. Walsh, “The
Michigan Internet AuctionBot: A Configurable Auction
Server for Human and Software Agents’, 2™ International
Conference on Autonaomous Agents, May 1998

