
A Web Infrastructure for People and Agent Interaction and Collaboration1

Giacomo Cabri, Letizia Leonardi, Franco Zambonelli
Dipartimento di Scienze dell ’I ngegneria – Università di Modena

Via Campi 213/b – 41100 Modena – ITALY
E-mail : {giacomo.cabri, letizia.leonardi, franco.zambonelli }@unimo.it

1 This work was supported by the Italian National Research Council (CNR) in the framework of the project “Global Applications in the Internet Area:

models and programming environments".

Abstract
 Internet pervasive services call for flexible supports to

enable a wide degree of collaboration. On the one hand,
many people are connected to the Internet and surf the
Web not only to retrieve information, but also to carry out
several kinds of different tasks via the on-line services. On
the other hand, the Internet is likely to be soon populated
by software agents that will act in behalf of users,
“ intelli gent” enough to achieve the better result without
boring their users. In this paper we present a Web-based
modular architecture that permits interaction and
collaboration among people and agents, leading to a more
fruitful exploitation of the capabiliti es offered by the
Internet. A negotiation application based on auctions is
used to show the advantages of the proposed architecture.

Keywords: Agents, Collaborative Work, Web
Applications, Coordination, Auction

1 Introduction

A lot of applications is being developed to exploit the
positive features that characterize the Internet [Alm95].
Due to the characteristics of openness, heterogeneity and
unreliabilit y of the Internet, these kinds of applications call
not only for tools and methodologies, but also for
appropriate models and supports to make the design of the
applications easier and to permit a fast spread of these
technologies.

In this context, developers must take into account that
the Internet world will be populated by heterogeneous
kinds of entities, in particular people and agents. Many
people discover how the use of the Web permits to save
time even in performing simple tasks. Moreover, the Web
give a world-scale spectrum of possibiliti es among which
to choose the preferred one, letting people compare and
make the best decision. Agents are proposing as other

entities that will populate the Internet. They are software
entities characterized by the following main features:
autonomy, proactiveness, reactivity and sociality
[JenW98]. While the first three features are related to the
development of each single agent application (or of classes
of applications), the fourth one has a deep impact in the
development of Internet services. Moreover, we think that
a further important feature for the agents is mobilit y, i.e.,
the capabilit y of actively changing the hosting execution
environment in a network-aware fashion [KarT98].

Even if both people and agents exploit the same Internet
services and resources, the ways they do it can be very
different, because of the differences between the adopted
interfaces, the speeds of elaboration, the intelli gence
degrees, and so on. This calls for an adequate support to
permit heterogeneous interactions and collaborations on
the Web [BenHT97, Cia98]. In a previous work, we
identified the requirements of a flexible architecture that
could support collaborative work on the Web, and we
developed PROOF [CabLZ99], a modular framework that
meets such requirements. We now point out that such
architecture is adequate for a people-populated Web, but
has several limitations when it has to be exploited also in
an agent-populated environment. In this paper we propose
a more general architecture, designed starting from the
previous one, which has been extended to support the
hosting of (possible mobile) agents and to be enriched by
high-level coordination capabiliti es. The resulting
architecture, called PROOF v2, is very flexible and can be
exploited by several kinds of Internet applications. In
particular, in this paper we show the concrete use of such
architecture in an auction-based Internet application,
considered as a case-study.

The paper is organized as follows. Section 2 introduces
the PROOF architecture and sketches its implementation.
Section 3 shows how the PROOF architecture can be
extended by adding mobile-agent and coordination
capabiliti es. Section 4 presents an example of application

that exploits the collaboration capabiliti es of the extended
PROOF architecture v2. Section 5 reports the conclusions
and the open issues.

2 The basic PROOF Architecture

The main aim of PROOF [CabLZ99] is to provide a
mean to enrich the Web with computational capabiliti es for
CSCW (Computer Supported Cooperative Work) without
requiring significant modifications to current servers and
clients. In fact, PROOF relies on the concept of proxy
server, which stands in the middle between servers and
clients. While traditional proxy servers are mainly used to
provide cache functions, PROOF is much more flexible
and can embody several different functionaliti es. Thus, a
such kind of proxy server intrinsically becomes a
workplace open to the Internet, where the cooperation
between clients can occur without forcing clients to exit
the workplace when accessing generic Web servers.
Within our PROOF proxy server, any kind of computation
can be enclosed, such as caching and dynamic production
of result HTML pages, as in the server-side approach.
Synchronous interactions between the clients and the proxy
server can be enabled by letting PROOF insert specific
applets into the pages that it provides to clients (browsers),
thus enabling communication among people in the
workgroup via the proxy server.

PROOF is based on a modular architecture, composed
by a framework and several application modules (see
Figure 1). The framework provides the basic proxy
functionaliti es, such as the connections with the client
browsers and with the Web servers, the user identification
and authentication; moreover it permits the embodying of
different application modules. Each module implements
the behavior of one specific application. The framework
can load one module a time.

PROOF is written in Java, to achieve portabilit y. It
exploits the mechanisms of interfaces and reflection to
achieve modularity and an easy and dynamic installation of
application modules into the framework.

The PROOF architecture is very general and it is not
tightly bound to any specific application because it is
based on the implementation of a framework that offers
general-purpose application-independent functionaliti es.
Different application modules can be implemented with a
limited coding effort and easily installed within the proxy-
framework.

3 Extending the basic PROOF
Architecture – PROOF v2

The previously described implementation of the
PROOF architecture is satisfactory for the use in a Web

inhabited by people. But it could be more useful i f it were
exploitable also by software agents. In this direction, we
present the extensions made to the PROOF architecture in
order to be more open and better integrated in the Internet
environment. Such extensions have been implemented in
the second version of PROOF, PROOF v2. In particular,
the two most significant extensions are related to (i) the
capabilit y of hosting mobile agents and (ii) the integration
of an advanced coordination model to enable high-level
interactions and synchronization.

PROOF
(Proxy Framework)

Application
Module

Browser

Client

Proxy
server

Internet

Flow of information

actual

virtual

Figure 1. The application-dependent modu le
defines the proxy se rver behavior

3.1 Adding Mobile-Agent Capabili ties

The first important extension to the old PROOF
architecture is the addition of the capabilit y of hosting
mobile agents. They can significantly improve the design
and the development of Internet applications thanks to
their characteristics. The agency feature [JenW98] permits
them to exhibit a high degree of autonomy with regard to
the users. The mobilit y feature [KarT98] takes several
advantages in a wide and unreliable environment such as
the Internet. First, mobile agents can significantly save
bandwidth, by moving locally to the resources they need
and by carrying the code to manage them. Moreover,
mobile agents can deal with non-continuous network
connection and, as a consequence, they intrinsically suit
mobile computing systems.

Therefore, mobile agents, on behalf of users, can install
specific modules to give the proxy server an application-
dependent behavior. Since agents are autonomous, the user
can give them a possibly high-level task to carry out, and

they can proactively search for the needed module(s),
perhaps by mean of negotiation with module providers;
once they have found the module(s), they can search for
the most appropriate – also in terms of costs – proxy server
where to install the module(s). The user is then notified of
the proxy server (s)he have to use in order to exploit the
needed functionaliti es. As a further advantage, this
extension permits to give other entities – besides people –
the access to collaborative Web applications. Users can
think of not participating directly to an interactive
application that requires repetitive actions; instead, they
can rely on one or more software agents that act in behalf
of them. For example, if a user is interested in buying a
good, (s)he can delegate to a software agent the tasks of
comparing the different offers, and of negotiating the final
price. In this context, the exploitation of mobile agents can
make the PROOF v2 architecture very open and flexible.
The presence of different kinds of entities involved in the
applications, introduces several interaction and
synchronization issues, and calls for the presence of
appropriate coordination models, detailed in the next
Subsection.

3.2 Adding Advanced Coordination

Apart from hosting (possible mobile) agents, the
PROOF v2 architecture also needs a sophisticated
coordination model to permit interactions, collaborations,
negotiations and also competitions at a high level. Since
programmable tuple spaces are recognized to be a
powerful coordination mean that well suits Internet
applications, in particular those where mobile agents are
involved [DenNO98], we have decided to extend PROOF
with programmable tuple spaces.

The integration of coordination model based on
programmable tuple spaces can be exploited also to store
information about the proxy and the installed modules.
This has a number of advantages. First, the tuple space is
used as a shared repository where different entities can
store, retrieve and exchange information in a simple and
standard way. Second, the exploitation of programmable
reactivity increases flexibilit y and permits to add whatever
computation in the coordination media. For example, a
reaction can be in charge of notifying a proxy module
about a change in the tuple space; the proxy module, in its
turn, can dynamically update the Web pages on the users’
browsers accordingly to the new information in the tuple
space (see Figure 2).

The concrete coordination system that we choose to be
integrated in PROOF v2 is MARS (Mobile Agent Reactive
Space) [CabLZ98], a coordination architecture based on an
enhanced Linda-like model [AhuCG86]. MARS defines
tuple spaces as shared repositories of information, used to
store and associatively retrieve messages in the form of

tuples (see Figure 2) [GelC92]. MARS was originally
conceived for mobile agent applications, but it can be
fruitfully exploited also by non mobile agents. The MARS
architecture supposes that one tuple space is associated to
each node.

Meta-level
Tuple space

 Tuple space

Tuple1

reactions

proxy modules

PROOF v2

read and write
operations

Tuple3

Tuple2
Tuple4

Agents

Figure 2. The MARS Architecture integrated in
PROOF v2

MARS is JavaSpaces compliant and is written in pure
Java. MARS tuples are Java objects that represent ordered
sets of typed fields. Tuple classes must implement a
specific interface required for tuple management and
named Entry in JavaSpaces, or, in a simpler way, can sub-
class from the so called AbstractEntry class, which provides
for a basic implementation of the Entry interface. A specific
tuple field is defined as an instance variable of a tuple
class. Each field of the tuple refers to an object that can
also represent primitive data. The MARS interface defines
five Linda-like operations to access the tuple space:
• wr ite, to put a tuple, supplied as parameter, in the

space;
• read, to retrieve a tuple from the space, on the basis of

a request tuple supplied as a parameter and to be used
as a pattern for the matching mechanism;

• take, which works as the read operation but extracts
the matching tuple from the space;

• readAll , to retrieve all matching tuples from the
space;

• takeAll , to extract all matching tuples from the space.
MARS overcomes the limits of the static data-oriented

Linda model, by adding programmable reactivity, which
means that specific actions can be programmed in response
to the accesses performed by agents on the tuple space
[CabLZ00]. In fact, MARS implements a programmable
reactive tuple space model in which the effects of the
operations on the tuple spaces can be dynamically
modified. Agents always access the tuple spaces with the
same basic set of Linda-like operations. A meta-level tuple
space is introduced in each node to associatively manage
reactions. A meta-level tuple in the form (Reaction_object, T,

O, I) associates the reaction implemented by Reaction_object

with the event of the operation O performed on the tuple T
by the agent with identity I. Writing a meta-level tuple in
the meta-level tuple space means installi ng the
corresponding reaction, while taking a meta-level tuple
means uninstalli ng the corresponding reaction. Readings
on the meta-level tuple space are performed by the system
to search for a matching reaction when an operation occurs
on the base-level tuple space. Since T can be a template, a
single meta-level tuple can be used to associate a reaction
with the events related to all the tuples matching with T.

MARS can be exploited to implement agent-based
applications in different areas. For instance, information
retrieval, distributed management and mobile computing
are the context where the MARS features can be exploited
in a more effective way [CabLZ00c].

3.3 Implementation Issues

The two above-described extensions do not present hard
implementation problems, since PROOF was originally
designed taking into consideration modularity and
flexibilit y. Moreover, the MARS coordination architecture
has been designed to be very portable and uncoupled from
Java-based hosting environments (usually, the agent
systems): this makes easier to embody MARS in PROOF.
However, some light modifications to the proxy framework
are needed in order to achieve the highest usabilit y and to
exploit all features. In particular, the most significant one
is that PROOF v2 must keep a reference to the local
MARS tuple space, and must provide it to the installed
modules; other more significant modifications to PROOF
are needed in order to accept mobile agent modules; the
main ones – detailed in the following of this section – are
related to: multi -module capabilit y, and security.

The first significant modification concerns the number
of modules that can be loaded concurrently. While the first
version of PROOF allowed only one module at a time, the
new multi -module capabilit y permits one single proxy to
be exploited by several clients (browsers or agents) for
different applications. Obviously, this capabilit y introduces
more complexity in the handling of the incoming requests
and the related responses. To deal with more than one
module in the framework, an additional software level is
needed. Such level is in charge of demultiplexing the
incoming request to the appropriate application module, so
that each connected browser has the correct responses.
Moreover, we must take into account the possible
coordination among different modules installed in the same
proxy framework. While the framework provides a simple
mean of communication in the form of a global
environment, the use of the MARS tuple space is
encouraged to exploit all the advantages of its uncoupled
and programmable coordination open also to external

mobile agents.
The second aspect requiring modifications is related to

security. In fact, if agents are allowed to install their own
modules, security mechanisms and policies must be
provided to control such installations, to avoid agents
installi ng malicious modules, which can compromise the
whole system by issuing, for example, a denial of service
attack. The basic security mechanisms must be provided by
the mobile agent system, in terms of identification and
authentication of the incoming agents. The information
about an agent permit to know whether it comes from a
trusted user/site and to decide whether to allow the
installation of an application module or not. Anyway, we
choose to limit the visibilit y of the proxy internal
state/functions from the agents. Moreover, the access to the
internal environment by the application modules must be
ruled with care, to avoid that a module has full power on
the proxy state that relates also to other modules. So the
access to the internal state of the proxy can occur only via
a well -defined set of methods, which limits the possibiliti es
of manipulate internal variables and information structures.

4 Application Example

An example of application that can fruitfully exploit the
PROOF v2 architecture is an auction manager. Auctions
[Ago96] are interesting negotiation means where there are
entities that make resources available and entities that are
interested in using such resources. The former ones are
usually called sellers, while the latter ones are called
bidders. Normally, there is an intermediate entity, called
auctioneer, which actually performs the negotiation. The
price of the resources sold by sellers via an auction is not
fixed, but it is dynamically determined by the interest of
the bidders. The seller can set a reserve price, i.e., a price
under which it does not want to sell the resource.
Intelli gent agents can spend time to negotiate the desired
resources by using the auction mechanisms, which seem to
well fit dynamic and heterogeneous environments. In fact,
an auction has a high degree of adaptabilit y, has not any a
priori fixed price and allows dynamic attending by
participants. There are several different forms of auction,
depending on the number of participants, on the criteria
with which the resources are assigned, and so on. We focus
on the auctions with one seller and multiple bidders at a
time, ruled by several mechanisms: for example, English,
Dutch, first-price and Vickery [Ago96].

Currently, there are several implementations of auctions
described in the literature. With regard to human people,
auction-based markets are rapidly spreading over the
Internet, exploiting the Web infrastructure to permit
interested people to interact [WWW98]. With regard to the
agent-based applications, auctions can be used both to sell
goods and to deal with Web resources [SanH00]. In the

following of this section we show how the PROOF v2
architecture can be exploited to build an auction-based
application, which permits both people and agents to
interact in an Internet environment.

4.1 Implementing Auctions with PROOF

First of all , an appropriate auction proxy module has to
be implemented and installed in PROOF v2 to deal with
the auctions. Appropriate MARS reactions are in charge of
exchanging information between the auction proxy module
and the tuple space, realizing the interactions between
agents and people. On the one hand, people can participate
by using their usual browsers, which are set to use PROOF
v2 as the proxy server. On the other hand, agents can
attend the auctions exploiting the tuple space integrated
within PROOF v2, where they can find needed information
about the goods/resources on sale, such as the price, the
current highest bid, the timeout, and so on. Therefore, in
this context, the features of the MARS model integrated
within the proxy server can be useful exploited in the
implementation of the auction mechanisms:
• the Linda-like data-oriented approach permits to

access the selli ng/buying services in a simple and
uniform way;

• the programmabilit y property allows to uncouple
auction mechanisms, implemented via reactions, from
auction policies decided by people or embodied in the
agents.

These aspects make possible to rule the agent’s behavior
depending on the specific auction laws. This achieves the
same purposes of the socially adopted conventions of the
traditional auctions [NorSR98].

The actual implementation of Internet auctions by using
PROOF v2 works as follows. Let us suppose the following
case for explanation purpose: the seller is represented by a
mobile agent, while the bidders are represented by both
human people and mobile agents. The bidder people
participate by means of standard browsers configured to
use PROOF v2 as proxy server. At connection time, they
choose the auction module installed in PROOF.

At the negotiation site, the seller agent writes a tuple
that contains information about the good/resource it is
going to sell (step a in Figure 3). This writing triggers a
specific pre-installed reaction that acts as the auctioneer,
i.e. it is in charge of managing the auction (step a’ in
Figure 3). Such reaction is also in charge of notifying the
auction proxy module that an auction has started (step a’’
in Figure 3).

Once the proxy module and the bidder agents have read
the tuple representing the good/resource on sale, people
and agents can bid a price to buy the good/resource on
sale, respectively by using the applet displayed in the
users’ browsers or by inserting tuples (step b in Figure 3).

In the people case, the control applet communicates the
new bid to the proxy module, which is in charge of
updating the information in the proxy server environment
by writing a tuple in the tuple space.

Meta-level
Tuple space

 Tuple space
Bid

Bidder agents

write
operation

Auction
handler

Auction proxy
module

PROOF v2 Browser

Control
applet

notifications

read
operation

Browser

Control
applet

Seller agent

MyOffer

a

b
c

Human
Bidders

a’ a’’

Figure 3. A seller agent puts a good on sale (a),
the bidder agents put their bids (b), the auction
proxy modu le upd ates the users’ browsers v ia

the control app lets (c)

In the any case, the auctioneer reaction monitors the
bids from both agents and people, and notifies the
interested agents and the auction proxy module that a
change has occurred in the auction. The module is then in
charge of updating the information in the user browsers by
reading the value of the new bid from the tuple space and
communicating it to the control applets inserted in the
auction Web page (step c in Figure 3).

Meta-level
Tuple space

 Tuple space

Auction
handler

Auction proxy
module

PROOF v2 Browser

Control
applet

notifications

read
operations

Browser

Control
applet

Human
Bidders

Winner

Seller agent

Bidder agentsThe winner
agent

Figure 4. The Auctioneer reaction d ecides the
winner and communicates it via a tup le

When the auction is over, the auctioneer reaction
decides the winner and creates a tuple to inform all the
participants about it: people are notified via the proxy
module, while agents can directly read the tuple (see
Figure 4). A detailed description of the implementation of
auctions via reactions can be found in [CabLZ00b].
Obviously, the auction implementation must make use of
security capabiliti es provided by the system to authorize
only correct readings, takings and writings of tuples.

PROOF v2 permits to handle auctions in which both
people and agents are involved, in a very flexible way. In
fact, thanks to the modularity of the architecture and the

capabilit y of programming the behavior of the tuple space,
several kinds of different mechanisms can be implemented
by changing (also at run time) the reactions installed in the
system. For example, if a good is on sale by English
auction rather than Dutch auction, the appropriate reaction
can be installed to rule the interactions among participants.

5 Conclusions

In this paper we have presented the PROOF v2
architecture. Our aim is to realize a general-purpose
architecture that supports the dynamicity, the heterogeneity
and the openness of the applications in the Internet
scenario. PROOF v2 is a modular architecture that well fits
the Web environment, thanks to its “standing in the
middle” between browsers and servers that permit to use
existing Web components. The capabilit y of dealing with
mobile agents and the integration of an advanced
coordination model permit to better exploit all the Internet
features. On the one hand, the architecture becomes more
open by letting also agents exploit its functionaliti es in
terms of installi ng/uninstalli ng modules and interacting
with the installed modules. On the other hand, the
advanced coordination model based on programmable
tuple spaces makes easier the design and the development
of Internet applications, where collaboration,
synchronization and competition have to be properly
expressed and managed.

From the architecture point of view, PROOF v2 can be
seen as a sophisticated interface to shared information. In
fact, the information represented by tuples stored in the
tuple space can be accessed by means of Internet browsers,
which rely on an ad hoc proxy module. In this way, the
module permits users to access and modify the content of
the tuple space in an application-dependent way. Different
modules can present a different vision of the information,
depending on the specific application policies. As a final
note, we point out that the presented new PROOF v2
architecture permit also to create a federation of proxy
servers, which can be exploited in different ways. For
example, the presence of several proxies with the same
functionaliti es permits to perform load balancing by
distributing the users towards the less loaded servers.

References

[Ago96] Agorics, Inc., “Going, going, gone! A survey of auction
types” , http://www.agorics.com, 1996

[AhuCG86] S. Ahuja, N. Carriero, D. Gelernter, “Linda and
Friends” , IEEE Computer, Vol. 19, No. 8, pp. 26-34,
August 1986.

[Alm95] G. Almasi, A. Suvaiala, I. Muslea, C. Cascaval, T.
Davis, V. Jagannathan, “Web*: A Technology to Make

Information Available on the Web”, Proceedings of the 4th

IEEE Workshop on Enabling Technology: Infrastructure for
Collaborative Enterprises, pp. 147-153, Berkley Springs
(WV), IEEE Computer Society Press, 1995.

[BenHT97] R. Bentley, T. Horstmann, J. Trevor, “The World
Wide Web as enabling technology for CSCW: The case of
BSCW”, in Computer-Supported Cooperative Work:
Special issue on CSCW and the Web, Vol. 6, Kluwer
Academic Press, 1997.

[CabLZ98] G. Cabri, L. Leonardi, F. Zambonelli , “Reactive
Tuple Spaces for Mobile Agent Coordination” , Proceedings
of the 2nd International Workshop on Mobile Agents,
Lecture Notes in Computer Science, No. 1477, Springer-
Verlag (D), September 1998.

[CabLZ99] G. Cabri, L. Leonardi, F. Zambonelli , “A Proxy-
based Framework to Support Synchronous Cooperation on
the Web”, Software, Practice and Experience, Vol. 29,
No. 14, pp. 1241-1263, 1999.

[CabLZ00] G. Cabri, L. Leonardi, F. Zambonelli , “Mobile-Agent
Coordination Models for Internet Applications” , IEEE
Computer Magazine, Vol. 33, No. 2, pp. 82-89, February
2000.

[CabLZ00b] G. Cabri, L. Leonardi, F. Zambonelli , “Auction-
based Agent Negotiation via Programmable Tuple Spaces” ,
4th International Workshop on Cooperative Information
Agents, LNCS, Boston (USA), July 2000, to appear.

[CabLZ00c] G. Cabri, L. Leonardi, F. Zambonelli , “Mobile
Agent Coordination for Distributed Network Management” ,
Journal of Network and Systems Management, to appear.

[Cia98] P. Ciancarini, R. Tolksdorf, F. Vitali , D. Rossi, A.
Knoche, “Coordinating Multi -Agents Applications on the
WWW: a Reference Architecture”, IEEE Transactions on
Software Engineering, Vol. 24, No. 8, May 1998.

[DenNO98] E. Denti, A. Natali , A. Omicini, “On the Expressive
Power of a Language for Programmable Coordination
Media”, Proceedings of the ACM Symposium on Applied
Computing, Atlanta (G), 1998.

[GelC92] D. Gelernter, N. Carriero, “Coordination Languages
and Their Significance”, Communications of the ACM, Vol.
35, No. 2, pp. 96-107, February 1992.

[JenW98] N. R. Jennings, M. Wooldridge, editors, “Agent
Technology: Foundations, Applications, and Markets” ,
Springer-Verlag, March 1998.

[KarT98] N. M. Karnik, A. R. Tripathi, “Design Issues in
Mobile-Agent Programming Systems”, IEEE Concurrency,
Vol. 6, No. 3, pp. 52-61, July-September 1998.

[SanH00] T. Sandholm and Q. Huai, “Nomad: Mobile Agent
System for an Internet-Based Auction House”, IEEE
Internet Computing, Special issue on Agent Technology and
the Internet, 2000, to appear.

[WWW98] P. R. Wurman, M. P. Wellman, W. E. Walsh, “The
Michigan Internet AuctionBot: A Configurable Auction
Server for Human and Software Agents” , 2nd International
Conference on Autonomous Agents, May 1998.

