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Abstract 2. Proof of the specification correctnes¥he specifica-
tion properties are formally verified, and/or informal
In the realization of agent-based applications the devel- testing of the MAS behavior is performed by means of

oper generally needs to use heterogeneous agent architec- a working prototype.
tures, so that each application component can optimally
perform its task. Languages that easily model the het-
erogeneity of agents’ architectures are very useful in the
early stages of the application development. This paper i LA ;
presentHEMASL, a simple meta-language used to spec- !n this way, the specification is given at th,acr'o—level it

ify heterogeneous agent architectures, and sketches howS ¢léarer and more modular and the application developer
HEMASL should be implemented in an object-oriented in not burdened with the modellr_1g of too many details. _
commercial programming language dava. Moreover, On the other hand, the services that an agent provides

the paper briefly discusses the benefits of adeHEyIASL are usually variegated and complex and_ generally i_nvolve
to CaseLP, a LP-based specification and prototyping en- management of heterogeneous information using different

vironment for multi-agent systems, in order to enhance its P€haviors.  In other words, an application needs to incorpo-
flexibility and usability. rate agents having heterogeneous architectures, so that each

application component can optimally perform its task [10].
For example, real-time control systems for industrial ma-
chineries could be implemented tBactiveagents, whereas
1. Introduction a long-term planner of the maintenance activity on all the
control systems by aleliberativeagent. These agents

Intelligent agents and multi-agent systems (MASs) are could t_>e_ _incorpora‘_[ed into an application that monitor all
more and more recognized as the “new” modeling tech- the actlvmesl of the |(;1dustry. hi ide th devel
niques to be used to engineer complex and distributed soft- In general, a good approach is to provide the MAS devel-

ware applications [12]. Agent-based software engineering Ep/erhwith a prk(‘a-defin(:]d library of archi'tectures fromt\)/v hiChl
is concerned with the realization of software applications e/she can choose the most appropriate ones. 0 VIously,
modeled as MASS. the architectures in the library must be specified, verified

A two-phases iterative approach can be followed for and tested before being employed. Specification at the

. . __micro-levelinvolves the description of internal components
agent-based software development, before implementing . :
. o of the agent and interactions among them.
the final application.

At the Computer Science Department of Genova Uni-
1. Specification of the MAS his phase concerns the de- versity, the Logic Progr_a_mn"_ning Group is wprking _since
scription of the services that each agent in the MAS 1997 onCaseLP, a specification and pr(_)totypmg environ-
provides, the modeling of agent-agent, agent-human ment for. MASs.CaselLP (Comp.lex Appl|cat|9n Specifica-
and agent-environment interactions, and the descrip- t|pn Environment based on Logic Programmjif, 7] pro-
tion of domain-dependent procedural knowledge, used wdgs a development method as well as tools and languages
by each agent to supply its services and to respond toWhich support the various steps of the method. Target of the

stimuli from the environment. 1For a survey on agent architectures, see [9].

Generally, the first phase does not explicitly take into ac-
count thearchitectureof each agent and profitably abstracts
from the internal organization and structure of single agents.




development is generally the realization of an executable The integration oHEMASL in CaseLP is currently un-
MAS prototype, implemented in a logic programming lan- der study and it is based on the translationrHEMASL
guage, encompassing all the main features of the final appli-specifications inta€,,s sets of clauses.£yy specifica-
cation and amenable to be animated and tested. Moreovertions can be tested and/or verified and refine€aselLP
CaseLP is also suitable for micro-level agent development. and finally translated intBrolog implementations to be in-
The declarative nature of logic programming languages cluded in theCaseLP library of agent architectures. For
makes them very suitable for interactive development and these reasons and for its closeness to widespread specifica-
testing of agent applications: they can be used to specifytion and implementation languagét=MASL can be seen
agents and MASs at the right level of abstraction, they can as an “intermediate” language for rapidly developing a li-
be executed thus providing a working prototype “for free”, brary of agents architectures to be integrated, executed and
and thanks to their well-founded semantics they can be usedtested inCaseLP, without requiring any confidence with
to formally verify properties of programs, which is fun- the logic programming paradigm.
damental when safety critical applications are developed. After the correctness oHEMASL specifications has
Nevertheless, for a widespread use of this technology, two been verified by means of their integratiorGaseLP, they
considerations have to be done: can be mapped into commercial programming languages, in
particular object oriented languages. This paper delineates
e Industries and programmers mostly use implementa- how HEMASL specifications can be translated intava

tion languages such & C++, Visual Basic or Java programs. We aim at building a library of already-tested
and specification languages (mainly non-executable) java architectures which can be used as building blocks to
such agJML or even less formal ones. implement agent-based applications.

. . ) In the following sections we expand some of the con-
* Logic languages which are most suitable for formal conts outlined above. Section 2 introduces the main fea-
verification of system properties, are definitely not a5 ofHEMASL and the hierarchy of abstraction levels.
user-fnendl_y. This makes their adoptlor_l even harder Section 3 deals with how developitEMASL specifica-
than adopting the “simple” and “user-friendlyro- tions. Section 4 outlines the mapping betwdtBMASL
log! andJava. Finally, Section 5 concludes the paper individu-

For these reasons one of the starting point in the design Ofatmg some future research directions.

CaseLP was the idea to have an environment able to ac-

commodate different specification languages, different im- 2. A flexible language for agent architectures

plementation languages and legacy software, in such a way

a MAS prototype can be built using a range of tools and ~ HEMASL is a simple and easy-to-use imperative meta-

techniques integrated into a common framework. language whose features make it suitable for specification
CaseLP has been designed to provide a library of agent of agent architectures.

architectures, implemented in a logic programming lan-

guage, that can be picked up and used for the implemen- ® Agent model. The agent model adopted BYEMASL

tation of the prototype. is an at_)strac_tion of many existing architectures. This
In our method the more formal and abstract specifica- makes it easier the development of heterogeneous ar-
tions can be given using the executable linear logic pro- chitecture specifications. ~Moreover, tEMASL
gramming languagéy, , ; [3], which provides constructs for agent model is the same we adopte@aseLP, so the
concurrency and state-updating. Evefijf,; has been suc- integration oHEMASL specifications int€aseLP is

cessfully adopted as specification language for both micro-  facilitated.

level [2] and macro-level [1] modeling, its use requires a
deep knowledge in the linear logic syntax and semantics [4]
and the language is definitely difficult to adopt.

In this paper we try to bridge the gap between the above
mentioned users’ habits and our tool for rapid prototyping.
We presenHEMASL [6], which can be seen as a simple
meta-language for specifying agent architectures (micro-
level) and which is much closer to widespread existing im- e Situatedness and social ability. HEMASL provides

e Hierarchy of abstraction levels. HEMASL provides
constructs for specifying an agent through four differ-
ent levels of abstraction that support a modular and
flexible representation based on the concepts of ab-
stract and concrete architecture, agent class and agent
instance.

plementation and specification language&MASL'’s im- an explicit model of the environment as well as primi-
perative setting, as well as the hierarchy of abstractions tives that can be used by agents to sense and modify it.
it supports, should make its adoption quite easy for those It also provides constructs for modeling the message

users familiar with traditional programming paradigms. exchange among agents.



e Semantics. HEMASL has an operational semantics their architectures. For this reason we introduce a hierarchy
[6] that describes the execution of an agent as a treecomposed by four abstraction levels (see Fig HEMASL

of “agent configurations”. This formal semantics can
be exploited to prove that the translationHEMASL
into &,y Or Java is correct.

In the following, we detail the first and second features,
whereas aspects BIEEMASL related to the third and fourth
items are not deepened in this paper.

2.1. Agent model

Since we want to model agents having different archi-
tectures, we need a simple abstraction able to encompass
most of the existing architectures. The agents we model
with HEMASL are characterized by:

e astate,
e aprogram and
e anengine.

We do not propose yet another definition of agent (see [5]),
but only a compact and simple characterization of an agent
architecture.

Thestateincludes data that may change during the exe-
cution of the agent. For example, the state of a BDI agent
[11] contains its beliefs, goals and intentions. Tnegram
contains that part of information that does not change dur-
ing the execution of the agent. The program of a BDI agent
is determined by its plans. Finally, tlemginecontrols the
execution of the agent. A typical BDI engine should be
characterized by percepting an event, individuating a set of
plans which can be used to manage the percepted event, se-
lecting one plan from the set, adding the selected plan to
the intention set, selecting one intention and finally execut-
ing one instruction of the selected intention.

The engine and the program are situated at different ab-
straction levels: the engine is a meta-interpreter for the pro-
gram and the data (state) on which the program operates.
The behavior of the agent is determined by the application
of the agent program on the agent state, by means of the
agent engine.

The architecture of an agent is characterized¢typo-
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Figure 1. Abstraction hierarchy.

provides primitives for specifying every abstraction level.

e Abstract architecture. The abstract architecture de-

fines the components in the architecture and the basic
structure of the engine. For any “macro-instruction”
(procedure) present in the engine, it is possible to
sketch how it should be realized, without necessarily
giving all the implementation details.

Concretearchitecture. A concrete architecture is de-
fined starting from an abstract architecture:

— each component is given a type chosen among
the ones thattEMASL provides;

— for each not completely defined macro-
instruction of the engine an implementation
is given.

Agent class. A class is defined by instantiating the
components in the concrete architecture which contain
the program of the agent.

Agent instance. Starting from an existing class, the
initialization of the architecture components contain-
ing the state individuates an agent instance.

nentswhich contain its state and program, and an engine Intuitively, an abstract architecture defines the components
operating on them. The content of the agent componentsand the engine that organize agent internal activities with-
will be expressed using some architecture dependent objecbut going into too many details. For example, in a BDI
language for which the engine provides an interpreter. In abstract architecture which kind of data structures are used
this paper we do not commit to any particular object lan- to implement beliefs, goals, intentions and plans, or how an
guage. intention to be executed is selected are irrelevant details at
this level.

An abstract architecture can originate several concrete
architectures. This level of abstraction defines the data

A specification language for heterogeneous agentsstructures used for architecture components, as well as the
should ensure modularity and flexibility in the definition of detailed functioning of the agent.

2.2. Abstraction hierarchy



abstract_architecture {bdi}{ architecture {bdil} isa {bdi}

components{
class planscomponent; components{
agent beliefs component; planscomponent: stack; belisfomponent: set;
agent goalscomponent goalscomponent: set; intentionomponent: queug;
agent intentionscomponent init_global _vars{
I o h
procedures procedures{
{ ...definition of the engine’s procedures .}.. perceptevent()
engine{
decl event; decl sender; decl el; decle?2;
while true do percept(e_1); event :=insgueue(event, el);
perceptevent(); getbeliet. component("sender”, !'sender);
plan.triggering(); receive(sender, £2); event :=insqueue(event, e2) };
plan.selection(); . 3h
upgradeintentionscomponent();
execintention() architecture {bdi2} isa {bdi}
endwhile
} components{
¥ planscomponent: set; belisfomponent: set;
goalscomponent: set; intentionomponent: stack;
Figure 2. BDI abstract architecture. 'n't'glfbal'vars{
procedures{
perceptevent()

The same concrete architecture can be employed for t decl €;
agents that work on various application domains. Domain percept(e); event :=insqueue(event, e)};
dependent behavioral patterns are given defining the agent ---}}
program, at the class level. ] ]

Finally, an agent behavior can be tested starting from dif- Figure 3. BDI concrete architectures.
ferent initial scenarios. This is captured by the presence, in
our hierarchy, of the agent instance level.

3. Using HEMASL crete architecturédil, planscomponenis assigned a type
st ack, beliefscomponenhas typeset , goalscomponent

To define an abstract architectureHEMASL, its com- has typeset andintentionscomponenhas a typgueue.

ponents, its engine and the engine procedures are declared. In the architecture bdi2, planscomponent be-
As an example, consider a BDI-like architecture. As pre- liefs.componentand goalscomponentare set's, while
viously described, it is characterized by four components: intentionscomponenis ast ack?.

one for beliefs, one for goals, one for intentions and one
for plans. The definition of an abstract BDI architecture
is depicted in Fig. 2. The keywordass means that the
planscomponentvill be instantiated during the definition

of the agent’s class, and thus that the data contained in it
represent therogram of the agent. The keyworédgent
states thabeliefscomponentgoalscomponentindinten-
tions.componenwill contain information representing the

Besides assigning different types to the components,
the two concrete architectures also implement the engine
“macro-instructions” in different ways. lixdi1 the percep-
tion of events consists in retrieving an event taking place
in the environment (procedure cakrcept(e_1)) and in re-
trieving a message coming frosender(procedure calte-
celve(sender, €2)). In bdi2, only events that occur in the
. environment are percepted and inserted in the event queue
agents state. event Thebdi2 concrete architecture is suitable for those

. The engine consists in awhﬂe Igop cor]tmuously execut- agents which do not possess social ability and are very reac-
ing a sequence of macro-instruction defined as procedure

lis. The body of d b | tiall . tive (for example, control systems), whildi1 can be used
calls. Thebody ot a procedure may be only partially SPEct- ¢, agents which combine reactivity to the environment with
fied in the abstract architecture.

L . interaction with other agents. Fig. 3 sketchésl andbdi2.
In the definition of a concrete architecture, all the com-

ponents are assigned a type, the global variables are initial-
ized and the definitions of partially specified procedures are
completed. To illustrate pOSSIble |mplementat|on choices, 2Probably, these types are not the most reasonable to assign to BDI

Cons_ider two concrete BDI arChiteCt_urdﬁiil and bdi2, components. They have been chosen just to demonstrate the language flex-
obtained from the abstract BDI architecture. In the con- ibility.




4. Towards an OO implementation of
HEMASL specifications

HEMASL specifications are hierarchies of abstraction
levels: for this reason their implementation in an object ori-
ented language is very appealing. In this section we outline
some ideas about hoWEMASL specifications should be
implemented idava.

Some considerations guide our mapping. Firstly, any
agent is an autonomously executing entity, with its own
thread of execution. This naturally leads to implement
agents as concurrently executifaya Thread A HEMASL

abstract architecture declares the architecture components,

the “macro-instructions” of the engine and eventually pro-
vides an implementation for some of them. An entity with

these features finds a natural mappingJaea abst r act

cl ass where some methods can be left undefined and
which extends th&hreadclass. As far as BEMASL con-

abstract class Bdi extends Thread{
abstract Hemasltype getplanscomponent();
abstract void setplanscomponent(Hemaslype plans);
abstract Hemasltype getbeliefs component();
abstract void setbeliefs component(Hemadlype plans);

...Auxiliary (abstract) methods...

abstract void perceptevent();
public void plantriggering()

{ ...implementation of the method};.
abstract void planselection();

public void run() {
while (true){
perceptevent();
plan-triggering();
planselection();
upgradeintentionscomponent();
execintention() }

crete architecture is concerned, it completes the information b

provided in the abstract architecture by defining those meth-
ods for which just the signature was given and by assign-
ing a type to the architecture components. THEMASL
entity can be naturally mapped intaJava cl ass which

ext ends the Java abstract architecture. Finally, in a
HEMASL agent instance both the program and the state
components are filled with the proper information. Such
an entity can be implemented adava object.

These considerations lead to following implementation of
HEMASL entities.

HEMASL basictypes. HEMASL provides the following
basic typesLlist, Queue, Set, StaendTuple We assume
the existence of dava class implementing eadhEMASL
type. All these classes inherit frollemasltype

Abstract architecture. An HEMASL abstract architec-
ture HAA can be implemented as Java abstract class
(JAA, Java Abstract Architectujethat extends the class
Thread The architecture components are implicitly de-
clared by means of the methods for reading and writing
them, which are declaredbst ract 3. Also the proce-
dures which are undefined in tHéAA are implemented
asabstract methods. The engine of thE AA can be
implemented by overriding the methoah of Thread Fig.

4 sketches the mapping froEMASL to Java of the ab-
stract BDI architecture depicted in Section 2.

Concrete architecture. A HEMASL concrete architec-
ture HC' A can be implemented asJava concrete class

3There are technical reasons for delaying the explicit declaration of the

Figure 4. BDI abstract architecture in Java.

class Bdil extends Bdi {
Stack planscomponent;
Set beliefscomponent;
Set goalscomponent;
Queue intentions£omponent;

public void perceptevent()
{ ...implementation of the method .};

public Bdil(
Stack plans, Set beliefs, Set goals, Queue intentions)
{ implementation of the constructgr

}

Figure 5. BDI concrete architecture in Java.

(JCA, Java Concrete Architectuyeextending theJAA
which implements the correspondi#fAA. In the JCA
each componentis explicitly declared and is given a precise
type among the ones supportedibyMASL. The construc-

tor for JC' A objects is also defined at this stage. It takes as
arguments the architecture components, thus allowing the
creation of an agent instance. In Fig. 5 the definition of the
concrete architecturelil is sketched.

Agent class. HEMASL classes have not a direct counter-
part in aJava entity. Their implementation idava is re-
alized by defining the differerlava objects which charac-
terize the program components of the different classes. The

components when implementing the concrete architecture. Here do noPfogram components of the agentinstances belonging to the

discuss these subtle implementative details.

same agent class will all point to the same objects, which are



Stack diagnosti@agentsclassplans =
new Stack@rguments characterizing
the diagnostic agent program

Stack robatagentsclassplans =
new Stack@rguments characterizing
the robot agent prograin

Figure 6. Programs for BDI diagnostic and
robot agents in Java.

Bdil diagnosticagentsinstancel =new Bdil(
diagnosticagentsclassplans,
new Set(..), new Set(..),new Queue(..));

Bdil diagnosticagentsinstance2 =new Bdil(
diagnosticagentsclassplans,
new Set(..),new Set(..), new Queue(..))

Bdil robotagentsinstancel =new Bdil(
robotagentsclassplans,
new Set(..),new Set(..), Queue(..));

Figure 7. Instances of BDI diagnhostic and
robot agents in Java.

defined once for all for any agent class. As an example, if
in HEMASL we have adil diagnostic_agent class and a
bdil robot_agent class, we need to define the proper plans
for both the classes, as depicted in Fig. 6. In this simple
example we have just one “program component”, namely
theplanscomponentin general, there should be more than
one, and we should define all of them at this stage.

Agentinstance. An HEMASL agentinstancél Al is ob-
tained from an agent clagé AC by filling the components
that corresponds to the agent state. In our mappidava
Agent InstanceJ AI, is an object whosprogramcompo-

nents are shared with all the agent instances of the same

class and whosstatecomponents are “individual”. In Fig.

7 two instances of diagnostic agents and one instance of al10l

robot agent are defined.

5. Conclusions

The paper describddEMASL, a simple meta-language

useful in many contexts. On the other hand, the integration
of HEMASL within CaseLP makes its use possible also
for those users which are not familiar with the logic pro-
gramming paradigm. Moreover, its mapping in theva
language represents a first step towards a real implementa-
tion of a system.

The future directions of our work are mainly involved
with completing the mapping betweblEMASL andJava,
which by now is just outlined, and evaluating the possibility
of mappingHEMASL in UML.
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