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Abstract

In the realization of agent-based applications the devel-
oper generally needs to use heterogeneous agent architec-
tures, so that each application component can optimally
perform its task. Languages that easily model the het-
erogeneity of agents’ architectures are very useful in the
early stages of the application development. This paper
presentsHEMASL, a simple meta-language used to spec-
ify heterogeneous agent architectures, and sketches how
HEMASL should be implemented in an object-oriented
commercial programming language asJava. Moreover,
the paper briefly discusses the benefits of addingHEMASL
to CaseLP, a LP-based specification and prototyping en-
vironment for multi-agent systems, in order to enhance its
flexibility and usability.

1. Introduction

Intelligent agents and multi-agent systems (MASs) are
more and more recognized as the “new” modeling tech-
niques to be used to engineer complex and distributed soft-
ware applications [12]. Agent-based software engineering
is concerned with the realization of software applications
modeled as MASs.

A two-phases iterative approach can be followed for
agent-based software development, before implementing
the final application.

1. Specification of the MAS. This phase concerns the de-
scription of the services that each agent in the MAS
provides, the modeling of agent-agent, agent-human
and agent-environment interactions, and the descrip-
tion of domain-dependent procedural knowledge, used
by each agent to supply its services and to respond to
stimuli from the environment.

2. Proof of the specification correctness. The specifica-
tion properties are formally verified, and/or informal
testing of the MAS behavior is performed by means of
a working prototype.

Generally, the first phase does not explicitly take into ac-
count thearchitectureof each agent and profitably abstracts
from the internal organization and structure of single agents.
In this way, the specification is given at themacro-level, it
is clearer and more modular and the application developer
in not burdened with the modeling of too many details.

On the other hand, the services that an agent provides
are usually variegated and complex and generally involve
management of heterogeneous information using different
behaviors. In other words, an application needs to incorpo-
rate agents having heterogeneous architectures, so that each
application component can optimally perform its task [10].
For example, real-time control systems for industrial ma-
chineries could be implemented byreactiveagents, whereas
a long-term planner of the maintenance activity on all the
control systems by adeliberativeagent1. These agents
could be incorporated into an application that monitor all
the activities of the industry.

In general, a good approach is to provide the MAS devel-
oper with a pre-defined library of architectures from which
he/she can choose the most appropriate ones. Obviously,
the architectures in the library must be specified, verified
and tested before being employed. Specification at the
micro-levelinvolves the description of internal components
of the agent and interactions among them.

At the Computer Science Department of Genova Uni-
versity, the Logic Programming Group is working since
1997 onCaseLP, a specification and prototyping environ-
ment for MASs.CaseLP (Complex Application Specifica-
tion Environment based on Logic Programming) [8, 7] pro-
vides a development method as well as tools and languages
which support the various steps of the method. Target of the

1For a survey on agent architectures, see [9].



development is generally the realization of an executable
MAS prototype, implemented in a logic programming lan-
guage, encompassing all the main features of the final appli-
cation and amenable to be animated and tested. Moreover,
CaseLP is also suitable for micro-level agent development.

The declarative nature of logic programming languages
makes them very suitable for interactive development and
testing of agent applications: they can be used to specify
agents and MASs at the right level of abstraction, they can
be executed thus providing a working prototype “for free”,
and thanks to their well-founded semantics they can be used
to formally verify properties of programs, which is fun-
damental when safety critical applications are developed.
Nevertheless, for a widespread use of this technology, two
considerations have to be done:

� Industries and programmers mostly use implementa-
tion languages such asC, C++, Visual Basic or Java
and specification languages (mainly non-executable)
such asUML or even less formal ones.

� Logic languages which are most suitable for formal
verification of system properties, are definitely not
user-friendly. This makes their adoption even harder
than adopting the “simple” and “user-friendly”Pro-
log!

For these reasons one of the starting point in the design of
CaseLP was the idea to have an environment able to ac-
commodate different specification languages, different im-
plementation languages and legacy software, in such a way
a MAS prototype can be built using a range of tools and
techniques integrated into a common framework.

CaseLP has been designed to provide a library of agent
architectures, implemented in a logic programming lan-
guage, that can be picked up and used for the implemen-
tation of the prototype.

In our method the more formal and abstract specifica-
tions can be given using the executable linear logic pro-
gramming languageEhhf [3], which provides constructs for
concurrency and state-updating. Even ifEhhf has been suc-
cessfully adopted as specification language for both micro-
level [2] and macro-level [1] modeling, its use requires a
deep knowledge in the linear logic syntax and semantics [4]
and the language is definitely difficult to adopt.

In this paper we try to bridge the gap between the above
mentioned users’ habits and our tool for rapid prototyping.
We presentHEMASL [6], which can be seen as a simple
meta-language for specifying agent architectures (micro-
level) and which is much closer to widespread existing im-
plementation and specification languages.HEMASL’s im-
perative setting, as well as the hierarchy of abstractions
it supports, should make its adoption quite easy for those
users familiar with traditional programming paradigms.

The integration ofHEMASL in CaseLP is currently un-
der study and it is based on the translation ofHEMASL
specifications intoEhhf sets of clauses.Ehhf specifica-
tions can be tested and/or verified and refined inCaseLP
and finally translated intoProlog implementations to be in-
cluded in theCaseLP library of agent architectures. For
these reasons and for its closeness to widespread specifica-
tion and implementation languages,HEMASL can be seen
as an “intermediate” language for rapidly developing a li-
brary of agents architectures to be integrated, executed and
tested inCaseLP, without requiring any confidence with
the logic programming paradigm.

After the correctness ofHEMASL specifications has
been verified by means of their integration inCaseLP, they
can be mapped into commercial programming languages, in
particular object oriented languages. This paper delineates
how HEMASL specifications can be translated intoJava
programs. We aim at building a library of already-tested
Java architectures which can be used as building blocks to
implement agent-based applications.

In the following sections we expand some of the con-
cepts outlined above. Section 2 introduces the main fea-
tures ofHEMASL and the hierarchy of abstraction levels.
Section 3 deals with how developingHEMASL specifica-
tions. Section 4 outlines the mapping betweenHEMASL
andJava. Finally, Section 5 concludes the paper individu-
ating some future research directions.

2. A flexible language for agent architectures

HEMASL is a simple and easy-to-use imperative meta-
language whose features make it suitable for specification
of agent architectures.

� Agent model. The agent model adopted byHEMASL
is an abstraction of many existing architectures. This
makes it easier the development of heterogeneous ar-
chitecture specifications. Moreover, theHEMASL
agent model is the same we adopted inCaseLP, so the
integration ofHEMASL specifications intoCaseLP is
facilitated.

� Hierarchy of abstraction levels. HEMASL provides
constructs for specifying an agent through four differ-
ent levels of abstraction that support a modular and
flexible representation based on the concepts of ab-
stract and concrete architecture, agent class and agent
instance.

� Situatedness and social ability. HEMASL provides
an explicit model of the environment as well as primi-
tives that can be used by agents to sense and modify it.
It also provides constructs for modeling the message
exchange among agents.



� Semantics. HEMASL has an operational semantics
[6] that describes the execution of an agent as a tree
of “agent configurations”. This formal semantics can
be exploited to prove that the translation ofHEMASL
into Ehhf or Java is correct.

In the following, we detail the first and second features,
whereas aspects ofHEMASL related to the third and fourth
items are not deepened in this paper.

2.1. Agent model

Since we want to model agents having different archi-
tectures, we need a simple abstraction able to encompass
most of the existing architectures. The agents we model
with HEMASL are characterized by:

� a state,

� aprogram and

� anengine.

We do not propose yet another definition of agent (see [5]),
but only a compact and simple characterization of an agent
architecture.

Thestateincludes data that may change during the exe-
cution of the agent. For example, the state of a BDI agent
[11] contains its beliefs, goals and intentions. Theprogram
contains that part of information that does not change dur-
ing the execution of the agent. The program of a BDI agent
is determined by its plans. Finally, theenginecontrols the
execution of the agent. A typical BDI engine should be
characterized by percepting an event, individuating a set of
plans which can be used to manage the percepted event, se-
lecting one plan from the set, adding the selected plan to
the intention set, selecting one intention and finally execut-
ing one instruction of the selected intention.

The engine and the program are situated at different ab-
straction levels: the engine is a meta-interpreter for the pro-
gram and the data (state) on which the program operates.
The behavior of the agent is determined by the application
of the agent program on the agent state, by means of the
agent engine.

The architecture of an agent is characterized bycompo-
nentswhich contain its state and program, and an engine
operating on them. The content of the agent components
will be expressed using some architecture dependent object
language for which the engine provides an interpreter. In
this paper we do not commit to any particular object lan-
guage.

2.2. Abstraction hierarchy

A specification language for heterogeneous agents
should ensure modularity and flexibility in the definition of

their architectures. For this reason we introduce a hierarchy
composed by four abstraction levels (see Fig. 1).HEMASL
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Figure 1. Abstraction hierarchy.

provides primitives for specifying every abstraction level.

� Abstract architecture. The abstract architecture de-
fines the components in the architecture and the basic
structure of the engine. For any “macro-instruction”
(procedure) present in the engine, it is possible to
sketch how it should be realized, without necessarily
giving all the implementation details.

� Concrete architecture. A concrete architecture is de-
fined starting from an abstract architecture:

– each component is given a type chosen among
the ones thatHEMASL provides;

– for each not completely defined macro-
instruction of the engine an implementation
is given.

� Agent class. A class is defined by instantiating the
components in the concrete architecture which contain
the program of the agent.

� Agent instance. Starting from an existing class, the
initialization of the architecture components contain-
ing the state individuates an agent instance.

Intuitively, an abstract architecture defines the components
and the engine that organize agent internal activities with-
out going into too many details. For example, in a BDI
abstract architecture which kind of data structures are used
to implement beliefs, goals, intentions and plans, or how an
intention to be executed is selected are irrelevant details at
this level.

An abstract architecture can originate several concrete
architectures. This level of abstraction defines the data
structures used for architecture components, as well as the
detailed functioning of the agent.



abstract architecture fbdigf
componentsf

class planscomponent;
agent beliefs component;
agent goalscomponent
agent intentionscomponent

g;
procedures

f . . . definition of the engine’s procedures . . .g
enginef

decl event;
while true do

perceptevent();
plan triggering();
plan selection();
upgradeintentionscomponent();
exec intention()

endwhile
g

g;

Figure 2. BDI abstract architecture.

The same concrete architecture can be employed for
agents that work on various application domains. Domain
dependent behavioral patterns are given defining the agent
program, at the class level.

Finally, an agent behavior can be tested starting from dif-
ferent initial scenarios. This is captured by the presence, in
our hierarchy, of the agent instance level.

3. Using HEMASL

To define an abstract architecture inHEMASL, its com-
ponents, its engine and the engine procedures are declared.
As an example, consider a BDI-like architecture. As pre-
viously described, it is characterized by four components:
one for beliefs, one for goals, one for intentions and one
for plans. The definition of an abstract BDI architecture
is depicted in Fig. 2. The keywordclass means that the
planscomponentwill be instantiated during the definition
of the agent’s class, and thus that the data contained in it
represent theprogram of the agent. The keywordagent
states thatbeliefscomponent, goalscomponentand inten-
tions componentwill contain information representing the
agent’s state.

The engine consists in a while loop continuously execut-
ing a sequence of macro-instruction defined as procedure
calls. The body of a procedure may be only partially speci-
fied in the abstract architecture.

In the definition of a concrete architecture, all the com-
ponents are assigned a type, the global variables are initial-
ized and the definitions of partially specified procedures are
completed. To illustrate possible implementation choices,
consider two concrete BDI architectures,bdi1 and bdi2,
obtained from the abstract BDI architecture. In the con-

architecture fbdi1g is a fbdig
f

componentsf
planscomponent: stack; beliefcomponent: set;
goalscomponent: set; intentioncomponent: queueg;

init global varsf
. . . ;g;

proceduresf
perceptevent()
f

decl sender; decl e 1; decl e 2;
percept(e 1); event :=insqueue(event, e1);
get belief component(”sender”, !sender);
receive(sender, e2); event :=insqueue(event, e2) g;

. . .gg;

architecture fbdi2g is a fbdig
f

componentsf
planscomponent: set; beliefcomponent: set;
goalscomponent: set; intentioncomponent: stackg;

init global varsf
. . . ;g;

proceduresf
perceptevent()
f

decl e;
percept(e); event :=insqueue(event, e)g;

. . .gg;

Figure 3. BDI concrete architectures.

crete architecturebdi1, planscomponentis assigned a type
stack, beliefscomponenthas typeset, goalscomponent
has typeset andintentionscomponenthas a typequeue.

In the architecture bdi2, planscomponent, be-
liefs componentand goalscomponentare sets, while
intentionscomponentis astack2.

Besides assigning different types to the components,
the two concrete architectures also implement the engine
“macro-instructions” in different ways. Inbdi1 the percep-
tion of events consists in retrieving an event taking place
in the environment (procedure callpercept(e 1)) and in re-
trieving a message coming fromsender(procedure callre-
ceive(sender, e2)). In bdi2, only events that occur in the
environment are percepted and inserted in the event queue
event. Thebdi2 concrete architecture is suitable for those
agents which do not possess social ability and are very reac-
tive (for example, control systems), whilebdi1 can be used
for agents which combine reactivity to the environment with
interaction with other agents. Fig. 3 sketchesbdi1 andbdi2.

2Probably, these types are not the most reasonable to assign to BDI
components. They have been chosen just to demonstrate the language flex-
ibility.



4. Towards an OO implementation of
HEMASL specifications

HEMASL specifications are hierarchies of abstraction
levels: for this reason their implementation in an object ori-
ented language is very appealing. In this section we outline
some ideas about howHEMASL specifications should be
implemented inJava.

Some considerations guide our mapping. Firstly, any
agent is an autonomously executing entity, with its own
thread of execution. This naturally leads to implement
agents as concurrently executingJava Thread. A HEMASL
abstract architecture declares the architecture components,
the “macro-instructions” of the engine and eventually pro-
vides an implementation for some of them. An entity with
these features finds a natural mapping in aJava abstract
class where some methods can be left undefined and
which extends theThreadclass. As far as aHEMASL con-
crete architecture is concerned, it completes the information
provided in the abstract architecture by defining those meth-
ods for which just the signature was given and by assign-
ing a type to the architecture components. ThisHEMASL
entity can be naturally mapped into aJava class which
extends the Java abstract architecture. Finally, in a
HEMASL agent instance both the program and the state
components are filled with the proper information. Such
an entity can be implemented as aJava object.
These considerations lead to following implementation of
HEMASL entities.

HEMASL basic types. HEMASL provides the following
basic types:List, Queue, Set, StackandTuple. We assume
the existence of aJava class implementing eachHEMASL
type. All these classes inherit fromHemasltype.

Abstract architecture. An HEMASL abstract architec-
ture HAA can be implemented as aJava abstract class
(JAA, Java Abstract Architecture) that extends the class
Thread. The architecture components are implicitly de-
clared by means of the methods for reading and writing
them, which are declaredabstract3. Also the proce-
dures which are undefined in theHAA are implemented
asabstract methods. The engine of theHAA can be
implemented by overriding the methodrun of Thread. Fig.
4 sketches the mapping fromHEMASL to Java of the ab-
stract BDI architecture depicted in Section 2.

Concrete architecture. A HEMASL concrete architec-
tureHCA can be implemented as aJava concrete class

3There are technical reasons for delaying the explicit declaration of the
components when implementing the concrete architecture. Here do not
discuss these subtle implementative details.

abstract class Bdi extends Threadf
abstract Hemasltype getplanscomponent();
abstract void setplanscomponent(Hemasltype plans);
abstract Hemasltype getbeliefs component();
abstract void setbeliefs component(Hemasltype plans);
...

...Auxiliary (abstract) methods...;

abstract void perceptevent();
public void plan triggering()

f ...implementation of the method...g;
abstract void plan selection();
. . . ;

public void run()f
while (true)f

perceptevent();
plan triggering();
plan selection();
upgradeintentionscomponent();
exec intention()g

g

g;

Figure 4. BDI abstract architecture in Java.

class Bdi1 extends Bdi f
Stack planscomponent;
Set beliefscomponent;
Set goalscomponent;
Queue intentionscomponent;

public void perceptevent()
f . . . implementation of the method . . .g;

. . . ;

public Bdi1(
Stack plans, Set beliefs, Set goals, Queue intentions)
f implementation of the constructorg;

g

Figure 5. BDI concrete architecture in Java.

(JCA, Java Concrete Architecture) extending theJAA
which implements the correspondingHAA. In theJCA
each component is explicitly declared and is given a precise
type among the ones supported byHEMASL. The construc-
tor for JCA objects is also defined at this stage. It takes as
arguments the architecture components, thus allowing the
creation of an agent instance. In Fig. 5 the definition of the
concrete architecturebdi1 is sketched.

Agent class. HEMASL classes have not a direct counter-
part in aJava entity. Their implementation inJava is re-
alized by defining the differentJava objects which charac-
terize the program components of the different classes. The
program components of the agent instances belonging to the
same agent class will all point to the same objects, which are



Stack diagnosticagentsclassplans =
new Stack(arguments characterizing
the diagnostic agent program);

Stack robotagentsclassplans =
new Stack(arguments characterizing
the robot agent program);

Figure 6. Programs for BDI diagnostic and
robot agents in Java.

Bdi1 diagnosticagentsinstance1 =new Bdi1(
diagnosticagentsclassplans,
new Set(. . . ),new Set(. . . ),new Queue(. . . ));

Bdi1 diagnosticagentsinstance2 =new Bdi1(
diagnosticagentsclassplans,
new Set(. . . ),new Set(. . . ),new Queue(. . . ))

Bdi1 robot agentsinstance1 =new Bdi1(
robot agentsclassplans,
new Set(. . . ),new Set(. . . ),Queue(. . . ));

Figure 7. Instances of BDI diagnostic and
robot agents in Java.

defined once for all for any agent class. As an example, if
in HEMASL we have abdi1 diagnostic agent class and a
bdi1 robot agent class, we need to define the proper plans
for both the classes, as depicted in Fig. 6. In this simple
example we have just one “program component”, namely
theplanscomponent. In general, there should be more than
one, and we should define all of them at this stage.

Agent instance. An HEMASL agent instanceHAI is ob-
tained from an agent classHAC by filling the components
that corresponds to the agent state. In our mapping aJava
Agent Instance, JAI , is an object whoseprogramcompo-
nents are shared with all the agent instances of the same
class and whosestatecomponents are “individual”. In Fig.
7 two instances of diagnostic agents and one instance of a
robot agent are defined.

5. Conclusions

The paper describedHEMASL, a simple meta-language
for specifying heterogeneous agent architectures. There are
two main motivations behind our work. On the one hand,
many existing specification languages for agents commit to
a particular architecture, thus making it difficult their adop-
tion when very different agents, ranging from reactive to ra-
tionale ones, are involved. A more flexible language, coping
with the heterogeneity of agents’ architectures, can prove

useful in many contexts. On the other hand, the integration
of HEMASL within CaseLP makes its use possible also
for those users which are not familiar with the logic pro-
gramming paradigm. Moreover, its mapping in theJava
language represents a first step towards a real implementa-
tion of a system.

The future directions of our work are mainly involved
with completing the mapping betweenHEMASL andJava,
which by now is just outlined, and evaluating the possibility
of mappingHEMASL in UML.
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