
Towards Interoperable Mechanized Reasoning Systems:
the Logic Broker Architecture�

Alessandro Armando
Mechanized Reasoning Group

DIST, University of Genoa, Italy
armando@dist.unige.it

Daniele Zini
Mechanized Reasoning Group

DIST, University of Genoa, Italy
danielez@dist.unige.it

Abstract

There is a growing interest in the integration of mech-
anized reasoning systems such as automated theorem
provers, computer algebra systems, and model checkers.
State-of-the-art reasoning systems are the result of many
man-years of careful development and engineering, and
usually they provide a high degree of sophistication in their
respective domain. Yet they often perform poorly when
applied outside the domain they have been designed for.
The problem of integrating mechanized reasoning systems
is therefore being perceived as an important issue in auto-
mated reasoning. In this paper we present the Logic Bro-
ker Architecture, a framework which provides the needed
infrastructure for making mechanized reasoning systems
interoperate. The architecture provides location trans-
parency, a way to forward requests for logical services
to appropriate reasoning systems via a simple registra-
tion/subscription mechanism, and a translation mechanism
which ensures the transparent and provably sound exchange
of logical services.

1 Introduction

There is a growing interest in the integration of mech-
anized reasoning systems such as automated theorem
provers, computer algebra systems, and model checkers.
State-of-the-art reasoning systems are the result of many
man-years of careful development and engineering, and
usually they provide a high degree of sophistication in their
respective domain. Yet they often perform poorly when ap-
plied outside the domain they have been designed for. For
instance, computer algebra systems are usually good in per-
forming heavy computation whereas theorem provers are
not suited for such tasks; on the other hand theorem provers

�We are grateful to Silvio Ranise for useful feedback on an earlier draft
of this paper.

usually provide the user with more expressive languages
than computer algebra systems’ and this is a crucial feature
in many practical applications.

The problem of integrating mechanized reasoning sys-
tems is therefore being perceived as an important issue in
automated reasoning. Unfortunately this is not an easy task.
The main difficulty is that most of the existing reasoning
systems are conceived and built as stand-alone systems to
be used by human users. Moreover, if the logical services
provided by the component reasoning systems are not in-
terfaced in a proper way, then the logical services provided
by the compound systems may be unsound. This makes the
composite systems unusable in all the application domains
where the correctness is of paramount importance as, e.g.,
in the formal verification of safety or security critical sys-
tems.

In the last few years a number of prototype integrations
have been proposed [2, 4, 5, 6, 7, 11, 16, 17, 18]. How-
ever all the existing attempts are ad-hoc solutions, geared
to the characteristics of the specific systems considered.
Moreover, in most cases solutions and techniques available
in mature or emerging areas such as Software Engineering
or Artificial Intelligence (as, for instance, CORBA or the
Agent-Oriented Programming paradigm [13]) have been ne-
glected.

In this paper we present theLogic Broker Architecture,
a framework which provides the needed infrastructure for
making mechanized reasoning systems interoperate. The
architecture provides location transparency, a way to for-
ward requests for logical services to appropriate reasoning
systems via a simple registration/subscription mechanism,
and a translation mechanism which ensures the transparent
and provably sound exchange of logical services.

The paper is organized in the following way. In the next
section we discuss the problem of interfacing reasoning sys-
tems in a sound way and outline a general solution to the
problem via a worked out example. In Section 3 we intro-
duce the Logic Broker Architecture and illustrate its basic
functionalities. In Section 4 we present our running pro-



totype of the Logic Broker Architecture based on CORBA
and the OPENMATH standard [9]. In Section 5 we discuss
the related work. Finally in Section 6 we draw some con-
cluding remarks.

2 Interfacing Mechanized Reasoning Sys-
tems

By mechanized reasoning systems (reasoning systems
for short) we mean software systems capable of providing
a set of deductive reasoning capabilities such as the abil-
ity of simplifying expressions, (dis)proving formulae, and
solving sets of constraints. All such activities—which we
call logical services—are relative to a given logic and the
critical part of interfacing logical services is to ensure the
‘compatibility’ of the associated logics. Indeed if a reason-
ing system C (short forclient) uses logical services of a
reasoning system S (short forserver) and if the logic of S
is not ‘compatible’ with that of C, then C may end up with
claiming the validity of invalid facts thereby compromising
the soundness of the logical services it provides.

We model the logic mechanized by a reasoning system
by means of aconsequence relation [3], i.e. a pair of the
form(L;`)whereL is a set of sentences and`� P(L)�L1

is a binary relation enjoying the following properties:

1. (Inclusion) if � 2 �, then� ` �;

2. (Monotonicity) if � ` �, then� [� ` �;

3. (Cut) if � ` � and� [ f�g ` �, then� [� ` �;

for all �;� 2 P(L) and�; � 2 L. Most of the logical
services provided by reasoning systems can be specified in
terms of the associated consequence relation, say(L;`).
For instance, the logical serviceprove(�; �) which es-
tablishes whether a set of formulae� entails a formula�
can be specified to return a positive answer if and only if
� ` � holds. Similarly, the fact that the activity of simpli-
fying � w.r.t. the information stored in� returns a formula
�, in symbolssimplify(�; �) = �, can be specified by
� ` (� $ �) where$ is the logical connective for equiv-
alence.

Given two consequence relations(L1;`1) and(L2;`2),
a morphism from (L1;`1) into (L2;`2) is a function� :
L1 ! L2 such that� `1 � implies�(�) `2 �(�) for all
� 2 P(L) and� 2 L.2

Let (Lc;`c) and(Ls;`s) be the consequence relations
modeling the logics of two reasoning systems (theclient
and theserver, respectively). It readily follows from the
definition that if there exists a morphism� from (Ls;`s)
into (Lc;`c) then a problem of the form�c `c �c for some

1P(L) denotes the power set ofL.
2�(�) abbreviatesf�(
) : 
 2 �g.

(Reflexivity) x0 � x0

(Antisymmetry) (x0 � y0 ^ y0 � x0)) x0 = y0

(Transitivity) (x0 � y0 ^ y0 � z0)) x0 � z0

Figure 1. An axiomatization for partial order-
ings

�c 2 P(Lc) and�c 2 Lc arising at theclient side can
always be reduced to asking the server whether�s `s �s

for any�s 2 P(Ls) and�s 2 Ls such that�(�s) = �c

and�(�s) = �c. The notion of morphism between con-
sequence relations therefore gives us a rigorous account of
the notion of compatibility between logics we mentioned
above.

Example. To illustrate, let us consider aclient reasoning
system with consequence relation(Lc;`c) whereLc is a
quantifier free first order language built out of an enumer-
able set of individual constantsa; b; c; : : :, an enumerable
set of variablesx; y; z; : : :, the binary function symbols\
and[ denoting set union and intersection respectively, and
the binary predicate symbol� denoting set inclusion;̀ c is
such that� `c � if and only if Tc [ � j= � wherej= de-
notes entailment in classical first order logic, andTc is any
suitable axiomatization for set theory (see, e.g., in [20]).

Let us consider also aserver reasoning system with con-
sequence relation(Ls;`s) whereLs is a quantifier free first
order language built out of an enumerable set of individ-
ual constantsa0; b0; c0; : : :, an enumerable set of variables
x0; y0; z0; : : :, and the binary predicate symbol� denoting
a partial ordering;̀ s is such that� `s � if and only if
Ts [ � j= � whereTs is a suitable axiomatization for par-
tial orderings as that in Figure 1. Notice that this theory
is decidable and thus we assume that theserver can decide
whether� `s � for for any� 2 P(Ls) and� 2 Ls.

Let us consider the situation in which theclient must es-
tablish whether

fa � b; b � cg `c (a \ c) [ c = c (1)

using the following facts as conditional rewrite rules

x � y ) x \ y = x (2)

x � y ) x [ y = y (3)

The conclusion of (2) allows us to reduce (1) to

fa � b; b � cg `c a [ c = c (4)

but in order to enable this rewriting step the conditiona � c

must be shown to be a consequence offa � b; b � cg i.e.
that:

fa � b; b � cg `c a � c (5)
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Figure 2. The Logic Broker Architecture

Let us now assume that theclient fails to establish (5). Here
is where theserver comes into play. Let(�)� be a bijective
function from the terms ofLc to those ofLs and let� :
Lc ! Ls be such that�(a � b) = a� � b�. It is easy to
show that��1 is a morphism. Therefore by applying� (5)
can be reduced to

fa� � b�; b� � c�g `s a
�
� c� (6)

Since theserver is a decision procedure forTs, then (6)
can be easily solved by theserver side. By the defining
properties of morphisms of consequence relations, (5) must
necessarily hold. This enables the application of (2) at the
client side. The application of (3) to the (4) goes along the
same lines and concludes the problem. Thus, the original
problem (1) is easily solved at theclient side by thisclient-
server combination.

Remark. Notice that if we regard the reasoning systems as
agents knowledgeable in their respective domain, then the
compatibility problem becomes the ontology problem for
the agents; furthermore, the morphism becomes a function
which translates the ontology of the server into that of the
client thereby making the agents capable of meaningful in-
teraction. We will come back on this issue later in Section
4.

3 The Logic Broker Architecture

The basic schema of the Logic Broker Architecture is
depicted in Figure 2, where aclient reasoning system C gets
access to the services provided by aserver S via the Logic
Broker LB. The rôle of the LB is threefold:

1. the LB provides location transparency for the rea-
soning systems by routing messages to systems with-
out requiring senders to know the locations of the re-
ceivers,

2. the LB facilitates interoperation by providing a way for
systems to discover which servers can handle which re-

quests using a simple registration/subscription mecha-
nism, and

3. the LB automatically translates the requests for logi-
cal services issued by theclient into corresponding re-
quests for the server.

Since location transparency is a domain-independent fea-
ture which can be readily obtained by using general purpose
and well established frameworks such as CORBA, here we
focus last two (domain specific) issues.

3.1 The registration/subscription mechanism

A reasoning system S can register to the LB as aserver
by sending the LB a message of the formregister(LSs),
where LSs is a specification of the logical service it is
able and willing to provide (e.g.prove, simplify, : : :);
notice that the specification of a logical service comes
equipped with the specification of the associated conse-
quence relation. When LB receives such a message it stores
the pairhS; LSsi in a database of registered logical services
for later use.

Dually, a reasoning system can subscribe to the LB
as a client by issuing the LB a message of the form
subscribe(LSc), whereLSc is a specification of the re-
quested service. Upon receipt of such a message, the
LB searches the database of registered services for a pair
hS; LSsi such that the specification of the logical service
LSs has the same interface of the required one, and checks if
there exists a morphism� from (Ls;`s) into (Lc;`c). This
last task is carried out by a specialized reasoning module
called theLogical Service Matcher (LS Matcher for short).3

If both steps terminate successfully then the LB estab-
lishes a connection between theclient and theserver.

3.2 The translation mechanism

Let � be the morphism determined by the LS Matcher
as explained in Section 3.1. The LB defines a function� :
Lc ! Ls which translates a formula�c of theclient into a
formula�s of the server such that�(�s) = �c if �c is in
the range of� and it is undefined otherwise.

Whenever theclient issues a message of the form
prove(�; �), then the LB transparently carries out the fol-
lowing steps:

1. � and� are translated into�(�) and�(�) respectively,

2. the messageprove(�(�),�(�)) is delivered to the se-
lectedserver, and

3Notice that the problem of finding a morphism between two conse-
quence relations is not decidable in the general case and therefore user
intervention may be necessary here.
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Figure 3. The hierarchy of the OPENMATH Ob-
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3. the answer returned by theserver is delivered back to
theclient.

It readily follows from the definition of morphism that
whenever theclient gets a positive answer in reply to a mes-
sage of the formprove(�; �), then� `c � holds. This is
an important result which ensures the logical soundness of
the interaction between theclient and theserver.

4 A Prototype Implementation of the Logic
Broker Architecture

We have built a first running prototype of the Logic Bro-
ker Architecture using CORBA. CORBA is the candidate of
choice for many reasons. First of all CORBA greatly sim-
plifies the activity of combining reasoning systems since it
is specifically designed to reduce to a minimum the bur-
den associated with the activity of interfacing software sys-
tems. Secondly, CORBA gives us location transparency for
free. Last but not least, CORBA is an industrial standard
and many ORB implementations (both free and commer-
cial) are publicly available.

We recall from the previous sections that the main diffi-
culty in matching logical services is that of finding a mor-
phism between the associated consequence relations. Un-
fortunately this problem is undecidable and therefore a so-
lution which is both general and fully automatic is not pos-
sible. The solution we adopted is based on the an emerging
standard for representing mathematical knowledge called
OPENMATH [9]. In particular we exploited the following
features of the OPENMATH standard:

� OPENMATH provides a common representation for
mathematical expressions via OPENMATH objects. An
OPENMATH object is a mathematical expression built
out of primitive constructs for atomic entities (such as
symbols, variables, and numbers) and constructs for
compound objects such as applications, bindings, and
attributions (i.e. annotations) as illustrated in Figure
3. The OPENMATH representation for the formula
8x:9y:P (x; y) is depicted in Figure 4.

� OPENMATH provides a standard ontology for mathe-
matical domains based on the notion ofcontent dic-

Application

P x y

forall x

Binding

Binding

exists y

Tree representation of OPENMATH object represent-
ing the formula8x:9y:P (x; y). “forall” and “exists”
are OPENMATH Symbols defined in the Content Dic-
tionary “quant1” while “x” and “y’ are OPENMATH

variables. See [21] for the details.

Figure 4. Example of OPENMATH Object

Name:plus

Description:An nary commutative function plus.

Commented Mathematical property (CMP):a + b = b + a

Formal Mathematical property (FMP):

forall [ a b ] . (eq (plus (a, b), plus (b, a)))

Figure 5. The definition of the OPENMATH

Symbol plus in the Content Dictionary
arith1

tionary (CD for short). CDs specify the semantic of
OPENMATH symbols by providing the following in-
formation:

– thename of the symbol

– thedescription in natural language

– anexample

– a signature

– a commented mathematical property (CMP for
short)

– a formal mathematical property (FMP for short)

The first two items are strings of characters whereas
the last four are OPENMATH objects. While both the
example and the CMP specify the semantic at an in-
formal level, thesignature and the FMP provide the
formal semantics. The entry of the OPENMATH CD
arith1 for the OPENMATH Symbolplus is given
in Figure 5.



The choice of the OPENMATH standard4 simplified con-
siderably the development of our prototype. The main im-
plementation effort amounted to the definition of the in-
terfaces for OPENMATH objects, the Logical Services, the
Reasoning Systems (bothclient andserver), the Logic Bro-
ker and the LS Matcher using the OMG Interface Definition
Language (IDL for short).

In order to connect to reasoning systems via our pro-
totype implementation of the Logic Broker Architecture,
the reasoning systems are required to translate mathemati-
cal statements expressed in their respective logical language
into/from equivalent OPENMATH objects so to preserve the
semantics encoded in the content dictionaries. In practice
this means that the reasoning system must be encapsulated
by a wrapper in charge of the translation. As in the gen-
eral case, the big advantage of using a standard communi-
cation language is that a single translation for each private
language to the standard is necessary as opposed to the gen-
eral case in which a translation for each pair of private lan-
guages is needed.

5 Related Work

A number of approaches aiming at the smooth and/or
effective combination of mechanized reasoning systems is
available in the literature. TeamWork [10] is an approach
for the knowledge-based distribution of search which has
been successfully applied to solve equational deduction
problems. ILF [8] is a framework for which supports the
cooperation of provers. For the lack of space here we focus
on the approach which is more related to ours, namely the
MathWeb architecture.

MathWeb [12] is a distributed network architecture for
automated and interactive theorem proving aiming at sup-
porting modularization, interoperability, robustness, and
scalability of mathematical software systems. The main
features of MathWeb are largely complementary to those
of the Logic Broker Architecture. In MathWeb the activ-
ity of combining logical services is simplified considerably
thanks to the adoption of the Agent-Orient Programming
paradigm. On the other hand, MathWeb makes no provi-
sion to ensure the soundness of the combination of the log-
ical services, whereas this is one of the main features of the
Logic Broker Architecture. Furthermore, MathWeb agents
are required to employ a MathWeb specific protocol based
on an XML encoding of (a subset of) KQML performatives.

4We deviate from the OPENMATH standard in that we do not commit to
specialized encodings for OPENMATH objects and content dictionaries. In
the OPENMATH ESPRIT Project a big effort is put in building language-
specific libraries (both in C and JAVA) for two specific encodings (Binary
and XML). This is not necessary in our framework since the CORBA frees
the programmer from the burden of dealing with the actual encoding of the
information exchanged.

This is usually achieved by encapsulating the reasoning sys-
tems into wrappers implementing the protocol. In our pro-
totype implementation of the Logic Broker Architecture the
addition of new reasoning systems is a considerably simpler
activity thanks to the use of CORBA. In the future work we
plan to lift the Logic Broker Architecture to an agent-based
architecture [14].

The Open Mechanized Reasoning Systems (OMRS for
short) project [15, 1] aims at the definition of a specifica-
tion framework for specifying logical services. Specifica-
tions play a fundamental rôle when automatic and/or prov-
ably sound integrations are at stake. The incorporation of
the OMRS specification framework into the Logic Broker
Architecture is part of our future work.

6 Conclusions

We have presented theLogic Broker Architecture, a
framework which provides the middle-ware for making
mechanized reasoning systems interoperable. We have
shown that the architecture provides location transparency,
a common syntax for representing mathematical informa-
tion, and a way to forward requests for logical services
to appropriate reasoning systems via a simple registra-
tion/subscription mechanism.
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