
Expressing Collaboration And Competition Among Abductive Logic Agents

Anna Ciampolini, Evelina Lamma, Paola Mello and Paolo Torroni
University of Bologna

V.le Risorgimento 2, 40136 Bologna, Italy
faciampolini, elamma, pmello, ptorronig@deis.unibo.it

Abstract

This paper presents a language for coordinating several
logic-based agents capable of abductive reasoning. The
system is particularly suited for solving problems with in-
complete knowledge, where agents may need to make rea-
sonable hypotheses about the domain. We defined a sim-
ple declarative language to express agent behavior, and in
particular, two forms of coordination: collaboration and
competition. An example in the area of medical diagnosis
is presented to show the features of the language and the
behavior of the proposed architecture.

1 Introduction

The area of logic multi-agent systems is currently a very
active research field [1]. The agent concept is systematically
used to represent entities with the ability to solve problems,
reflecting the results on an environment which might be not
completely under their control. Intelligent agents need de-
ductive and pattern-matching capabilities to perform goals
and activity requests on them. Recently, a number of works
proposed systems where intelligent agents are modeled with
logics [15, 6, 7].

In knowledge-intensive (distributed) applications, it is
often the case that intelligent agents require some sort of
guessabout a computation (viz., a goal in a logic program-
ming perspective) which cannot be performed (viz., solved)
locally since their local knowledge is incomplete or they
have to perform some form of hypothetical reasoning. This
is very frequent, for instance, in diagnostic systems where
each agent has to guess the causes of some symptoms. In
his respect, some form ofopenor abductivereasoning has
to be considered. Abduction has been widely recognized as
a powerful mechanism for hypothetical reasoning in pres-
ence of incomplete knowledge [5, 10, 12], and also captures
other important issues such as reasoning with defaults and
beliefs [14, 18].

In a single-agent context, hypotheses are assumed pro-

vided that they are consistent with the agent’s current
knowledge. In a multi-agent setting, where each agent
can perform abductive reasoning, different scenarios (and
therefore different forms of combinations of the hypotheses
raised by each agent) can occur depending on the role of
each agent in the computation. In particular, an agentA can
be involved in a computation in order to solve a problem
in a collaborativeor competitiveway with respect to other
agents. In the collaborative case, the task assigned to agent
A is a sub-problem of the original one which has been split
in a divide and conquermanner. When each agent is able
to perform abductive reasoning, and more than one agent
is involved in a computation in a collaborative way, each
sub-problem is not completely independent, since the (ab-
ductive) explanations separately found by each agent have
to be merged and to be consistent with each other. In the
competitive case, the same task is assigned to agentA and
other (competitive) agents; each agent can find a solution
for the task, and one solution, among those found by the
competitive agents, is selected.

In this work we present a language for coordinating a
system of several logic agents, capable of abductive reason-
ing. Several autonomous agents, enclosing a local knowl-
edge base, can either autonomously reason using their own
local knowledge base, or can ask other agents to cooper-
ate, in a collaborative or competitive way, in order to solve
a given goal. The language is supported byALIAS [2], a
multi-agent architecture that will be shortly presented in the
sequel. Our system uses logics for both modeling agent rea-
soning (in particular abduction, as in [19]), and expressing
communication and coordination between agents (as in [8]).
In particular, this work presents a language that, similarly to
other proposals ([17]) allows to express communication and
coordination among agents, using, unlike them, a declara-
tive style.

2 The Architecture of ALIAS

The agent architecture we refer to isALIAS(Abductive
LogIc Agents System), a system where several intelligent

agents, each enclosing a local knowledge base, can either
autonomouslyreason on its own local knowledge base or
can exhibit asocialbehavior, interacting with other agents
by different coordination schemata. A peculiar feature of
ALIASagents is that they can solve a problem by means of
abductive reasoning.

The inner structure of eachALIAS abductive agent,
shown in Figure 1, is basically composed of two modules:
the Abductive Reasoning Module(ARM, for short) and
theAgent Behavior Module(ABM). Both modules encap-
sulate a local knowledge base (KB): theabductiveknowl-
edge base (in theARM module) and thebehaviorknowl-
edge base (in theABM module). The abductive KB is
represented by an abductive logic program (for more de-
tails, see Section 3); the behavior KB is a set of logic
clauses which describe the behavior of the agent within
the environment in a declarative style by means of the
LAILA language (presented in Section 4). In particular,
the social behavior of each agent can be expressed within
ABM, by means of explicit communication and collabo-
rative/competitive queries. Each time the agent’s behavior
requires the abductive explanation of a goalG, an interac-
tion betweenABM andARM is needed, in order to lo-
cally start the abductive proof forG. It is up to theABM
to coordinate the computations carried on by different col-
laborating/competing agents.

A1

ARMKB

ABMKB

A2

ARM KB

ABM KB

Figure 1. The structure of a ALIASagent

Within this framework, a multi-agent application is
mapped onto several agents, possibly interacting, either co-
operating or competing. Being the behavior of each agent
modeled via a logic-based language, the computation is
driven by goals to be demonstrated.

3 Abduction in a Multi-Agent Environment

Abduction is a well known hypothetical reasoning tech-
nique [10, 11], that allows to find explanations for a given
observation, under theopen worldassumption. Hypothet-
ical reasoning could be extremely useful when the knowl-
edge about the problem domain is incomplete: this is the
case of multi-agent applications where each agent might
have a partial, and possibly incomplete, view of the world.
For this reasonALIAS agents are equipped with abduc-
tive reasoning capabilities, thus being able to support the
demonstration of goals even if their knowledge is incom-

plete. In some cases, however, it could be necessary to in-
volve in a demonstration several agents, in order to obtain
an abductive explanation that is consistent with their KBs.
In ALIAS, agents cooperate in the abductive proof of goals
by means of a distributed abductive algorithm. In that case,
the produced abductive explanation is a set of hypotheses
agreed by all agents. In the following we recall some pre-
liminary concepts on abductive reasoning and introduce the
algorithm.

3.1 Abductive Logic Programs

As described in 2, eachALIASagent may enclose (in its
ARM module) anabductive logic program.

An abductive logic program is a triplehP;A; ICi where
P is a logic program possibly with abducible atoms in
clause bodies;A is a set ofabducible predicates, i.e.,open
predicates which can be used to form explaining sentences;
IC is a set of integrity constraints: each constraint is a de-
nial containing at least one abducible. Given an abductive
programhP;A; ICi and a formulaG, the goal of abduction
is to find a (possibly minimal) set of atoms� (i.e., the ab-
ductive explanation ofG) which together withP entailsG.
It is also required that the programP [� is consistent with
respect toIC. According to [10], negation as default, pos-
sibly occurring in clause bodies, can be recovered into ab-
duction by replacing negated literals of the formnot a with
a new positive, abducible atomnot a and by adding the in-
tegrity constraint a; not a to IC. The natural syntactic
correspondence between a standard atom and its negation
by default is given by the following notion of complement:

l =
n
� if l = not �

not � otherwise

where� is an atom.
We suppose that each integrity constraint inIC has at

least one abducible in the body. We suppose that abducible
predicates have no definition as in [13].

3.2 Extending abductive reasoning to multi-agent
systems

In a multi-agent setting, we can equip each abductive
agent with a distinct abductive logic program. In particular,
in ALIASeach agent encloses in itsARM a local abduc-
tive program. Agents can dynamically group into bunches,
with the purpose of finding the solution of a given goal in
a collaborativeway. In this perspective the set of program
clauses and integrity constraints might differ from agent to
agent, we assume that the set of abducible predicates (de-
fault predicates included) is the same for all the agents in a
bunch. This implies that during the proof of a given goal,
if an agentA assumes a new hypothesish, all the arguing

agents (i.e., the agents belonging to the same bunch) must
check the consistency ofh with their own integrity con-
straints. These checks could possibly raise new hypothe-
ses, whose global consistency within the bunch have to be
recursively checked. Therefore, inALIAS, the abductive ex-
planation of a goal is a set of abduced hypotheses agreed by
all agents in the bunch.

In order to perform abduction in a multi-agent envi-
ronment we need to introduce some mechanism to sup-
port agent bunches, local abduction and global consistency
checks. The algorithm we have adopted in the current im-
plementation (DAA, Distributed Abduction Algorithm), dis-
cussed in [2], is based on a proof procedure, defined origi-
nally in [10] by Eshgi and Kowalski and further refined by
Kakas and Mancarella [13], which is correct with respect to
the abductive semantics defined in [4]. The proof procedure
presented in [13] extends the basic resolution mechanism
adopted in logic programming by introducing the notion of
abductiveandconsistencyderivation. Intuitively, anabduc-
tive derivation is the usual logic programming derivation
suitably extended in order to consider abducibles. When an
abducible atomh is encountered during this derivation, it is
assumed, provided this is consistent. The consistency check
of a hypothesis, then, starts the second kind of derivation.
Theconsistencyderivation verifies that, when the hypothe-
sish is assumed and added to the current set of hypotheses,
any integrity constraint containingh fails (i.e., the bodies of
all the integrity constraints containingh are false). During
this latter procedure, when an abducibleL is encountered,
in order to prove its failure, an abductive derivation for its
complement,L, is attempted. TheDAA algorithm extends
the Kakas and Mancarella approach in the sense of distribu-
tion: now knowledge is distributed among several agents. In
particular, while abductive derivation is limited to the local
KB, consistency derivations have to be coordinated within
the pool of logic agents of the current bunch.

It is worth to notice, however, that theALIASarchitec-
ture is not strictly related to the Kakas-Mancarella abduc-
tive proof procedure. The same high-level features of the
system could exploit different abduction algorithms. In par-
ticular, the major drawback of the current approach is that
it applies only to ground predicates, thus limiting the real
exploitation of the system. Therefore, as a future work, we
plan to experiment other abductive proof procedures, such
as, for instance,SLDNFA[9] in order to test the system in
real applications. Moreover, the system could be extended
to other forms of inference, such as, for instance, inductive
reasoning. To this purpose, we plan also to integrate into
the ALIAS architecture agents capable to learn, following
an inductive approach.

4 The Coordination Language

In ALIAS, agent behavior is expressed in theLanguage
for AbductIve Logic Agents(LAILA, for short). This lan-
guage allows to model agent actions and interactions in a
logic programming style. In particular we will focus on
agent social behavior, and especially on how each agent can
request and coordinate proofs of goals to other agents in the
system. In the following subsections we will describe the
syntax and the operational semantics of LAILA.

4.1 Syntax of LAILA

The syntax of LAILA is given as a BNF grammatics.
Let us consider a system composed byn + 1 agents.
Each agent encapsulates a LAILA program describing its
behavior.
LetV be the vocabulary of the language:

V = f ;&; ;; >; #;A0; : : : ;An; a0; : : : ; ak;not; true; g

where:

� is an implication operator;
� & is thecollaborativecoordination operator;
� ; is thecompetitivecoordination operator;
� > is thecommunicationoperator;
� # is thedown-reflectionoperator;
� Ai, i = 0; : : : n is the identifier of the(i+ 1)-th agent

in the system;
� aj , j = 0; : : : k is a ground atom (either abducible or

not) occurring in the program.

A LAILA program is a set of L-clause. A L-clause is
defined as follows:

L� clause ::= Atom Body:

Body ::= Formula;BodyjFormula

Formula ::= SingleFormula&Formulaj
SingleFormula

SingleFormula ::= truej#LiteraljCommFormula

CommFormula ::= Agent>Literal

Literal ::= Atomjnot Atom
Atom ::= a1ja2j : : : jak
Agent ::= A0jA1j : : : jAn

A computation can be started by a query, defined as
follows:

Query ::= ?Body

In order to help the reader in understanding the sense
of L-clauses, we anticipate here two simple examples. Let
us consider, for instance, the following LAILA competitive
query, formulated by agentA0:

? # g1 ; A1 > g2

It means thatA0 must either perform a local abductive
derivation for g1, or ask agentA1 to demonstrate goal
g2. Le us consider, now, the following collaborative query,
given by agentA0:

? A1 > g3 & A2 > g4

It means that agentA0 asks agentA1 to proveg3 andA2 to
prove goalg4.

4.2 Operational Semantics of LAILA

In this section we present LAILA operational semantics.
A LAILA program P is a collection of L-clauses, possi-
bly distributed among a set of agents. In the following,
A0; : : : ; An denote agents in the system;g denotes a sin-
gle formula,G a composition of formulae;�1; : : : �n de-
note conjunctions of abduced hypotheses;L is a literal;h
denotes an atomic formula. Given a formulaF , let us de-
note by:

b(F) = fAjA is an agent in a communication formula2 Fg

In other words,b(F) represents the set of agents involved in
message exchanges byF . For instance, given the formula
F : A1 > g1; A2 > g2 & A3 > g3, b(F) is fA1,
A2, A3g. Let us introduce the definition of a successful
top-down derivation.

Definition 1 (Successful top-down derivation)Let P be
a program andG a formula. atop-down derivationfor G
in P can be traced in terms of (possibly infinite) sequences
of steps:A `�in;i;�out;i Gi, whereA is an agent,�in and
�out are sets of abduced hypotheses, andGi is a formula.
Each step is obtained by applying withinA a suitable in-
ference rule starting from the set�in of hypotheses, and
possibly producing a new set of hypotheses�out. The first
step of a top-down derivation starts from an empty set�in;0.
A top-downderivation is successful if, at some stepk, the
null formula is derived. The set�out;k represents the ob-
tained abductive explanation associated with the successful
derivation.

In the following:

� Ai

abd

j= �i�j
s, wheres is a set of atoms, denotes the

local abductive proof of the conjunction of all atoms
in s, perfomed by agentAi (whose meaning is given
by the adopted abductive proof procedure);

� B
cons

j= �i�j
s, wheres is a set of atoms, denotes the

consistency check of the conjunction of all atoms ins,
with respect to the integrity constraints of all agents in
bunchB.

Let us give the set of inference rules modeling the oper-
ational behavior of the system.

Definition 2 (True formula)

A `�;� true

Definition 3 (Down reflection formula)

A
abd

j= �1;�2
fLg

A `�1;�2 # L

Therefore, the goal# g starts a local abductive derivation
for g.

Definition 4 (Communication formula)

A1 `�1;�0

2
L ^ fA0; A1g

cons

j= �1;�2
�0

2

A0 `�1;�2 A1 > L

Definition 5 (Collaborative formula)

A0 `�1;�0

2
g ^ A0 `�1;�00

2
G ^ fA0g [b(g&G)

cons

j= �1;�2
�0

2
[�00

2

A0 `�1;�2 g&G

Thus, the following query, (formulated, for instance, by
agentA0):

? A1 > q1 & A2 > q2

has the following effects:

� A0 asksA1 to solveq1; if q1 succeeds,N (N > 0)
abductive explanations�1;i (i 2 [1; : : :N]) for q1 could
be obtained.
� A0 asksA2 to solveq2 ; if q2 succeeds,M (M >

0) abductive explanations�2;j (j 2 [1; : : :M]) for q2
could be obtained.

The abductive explanation for the query is therefore a set
of hypotheses� including both�1;i and�2;j (i 2 [1; : : :N],
j 2 [1; : : :M]) , such that it is consistent in the bunch
fA0; A1; A2g. If eitherA1 > q1 orA2 > q2 fail, the query
Q fails.

Definition 6 (Competitive formula)

(A0 `�1;�0

2

g _ A0 `�1;�00

2

G) ^ �2 2 f�
0

2
; �00

2
g

A0 `�1;�2 g;G

For instance, let us consider the followingcompetitive
query, formulated by agentA0:

? A1 > q1 ; A2 > q2

it causes:

� A0 asksA1 to solveq1; if q1 succeeds,N (N > 0)
abductive explanations�1;i (i 2 [1; : : : N]) for q1 could
be obtained.
� A0 asksA2 to solveq2 in the bunchfA0; A2g; if q2

succeeds,M (M > 0) abductive explanations�2;j
(j 2 [1; : : :M]) for q2 could be obtained.

The resulting abductive explanation is either�1;i (i 2
[1; : : :N]) or �2;j (j 2 [1; : : :M]). It is worth to notice that
in this case the selection rule for the abductive explanation�

is not specified: it could be either purely non-deterministic
or it could follow a different criterium (e.g., priority among
the components of the query). If bothq1 andq2 fail, the
competitive query fails.

Definition 7 (Consistency check)

8Ai 2 B Ai

abd

j= �1;�
i
2

� ^ B
cons

j= �1;�2

S
i �

i
2

B
cons

j= �1;�2
�

B
cons

j= �1;�1
�

Finally, the semantics of atomic formulas is described, as
usual, by the following inference rule:

Definition 8 (Atomic formula)

9h0 G 2 A ^ 9 � = mgu(h; h0) ^ A `�1;�2 fGg�

A `�1;�2 h

5 An Example

The domain of medical diagnosis is particularly suited
for providing examples for both the collaborative and the
competitive case. Let us consider for instance a group of
medical doctors, each one expert in a particular area (e.g.
gastroenterology, ematology, etc.) who have to collaborate
in order to formulate a diagnosis for a given set of symp-
toms. Each expert can be modeled by an abductive agent
whose task is to find an hypothesis (i.e., a disease) as an
explanation for a sub-part of the symptoms (i.e., those rele-
vant for his/her area) given as observations to the agent. In
some cases, the hypotheses raised by an agent can generate
an inconsistency with other hypotheses raised by a collab-
orative agent. For instance, a certain symptoms, let us say
low blood pressure, does not occur when the diseased is
present, e.g.,d is a disease associated with hypertension.

As an example of the competitive case, let us consider
again a group of medical doctors, each one expert in a par-
ticular area who have to find a diagnosis for the symptom.

Each expert can be modeled by an abductive agent whose
task is to find an hypothesis (i.e., a diagnosis) as an explana-
tion for the symptoms given as observations to the agents.
Different diagnosis can thus be proposed by the different
agents, and thebestone can be chosen according to some
policy (for instance, the one with major incidence, or the
most plausible one, with respect to the clinical history of
the patient).

Now, let us suppose agentA0 (representing a patient)
wants to query agentsA1 andA2 (both representing medical
specialists) about some symptomss1 ands2 , observed on
himself.

Let us consider agentA1. His knowledge is modeled by
the following L-clauses:

ABM : s1 # s1: ARM : s1 d1:

 d1; s2:

whered1 represents a certain disease.
Finally, let the agentA2 knowledge be the following:

ABM : s1 # s1:
s2 # s2:

ARM : s1 d3:

s2 d2:

whered2 andd3 represent diseases.
Both agents could give explanations for symptoms1. In

respect to symptoms2, though, only agentA2 is able to
formulate a diagnosis. Therefore agentA0, the patient, for-
mulates the following query:

? (A1 > s1 ; A2 > s1) & A2 > s2

A0’s ABM interprets the query and sends three different
messages (ask) to request demonstrations to other agents:

(1) A0 asksA1 s1 in bunchB0

1 = fA0, A1g, which means that
A1 has to demonstrates1 in bunchB0

1. A1 down-reflects
s1 to the localABM module. This computation succeeds,
producing the abductive explanation�0

1 = fd1, not s2 g.
(2) A0 asksA2 s1 in bunchB00

1 = fA0, A2g, which means
thatA1 has to demonstrates1 in the bunchB00

1 . A1 down-
reflectss1 to the localARM module. This computation
succeeds producing the abductive explanation�

00

1 = fd3g.
(3) A0 asksA2 s2 in bunchB2 = fA0, A2g, which means that

A1 has to demonstrates2 in bunchB2 the query.A2 maps
s2 into the abductive querys2 for the localABM module
This computation succeeds producing the abductive expla-
nation�2 = fd2g.

The three computations start in parallel and have to be co-
ordinated according to the meaning of the collaborative /
competitive operators in the query raised byA0. In par-
ticular, after one or both of the competitive computations
(computations 1 and 2) ends, the agent selects one of the
two � produced. We have two different cases:

(a) �0

1 = fd1, not s2 g is selected. The collaborative com-
position with�2 follows, in order to check their consistency

and to produce a temporary hypothesis which is the union
of the two solutions:� = �0

1 [�2 = fd1, not s2, d2 g.
If it was inconsistent,ABM would trigger a backtracking
mechanism in order to find another solution from(A1>s1;
A2>s1) . This is not the case, thereforeA0 issues the cre-
ation of a last bunchB = fA0, A1, A2g, to whichA0 will
submit as a query� = fd1, not s2, d2 g, in order to test
it consistency, and to generate a solution to the whole query
(i.e., a final�). Unfortunately, this� fails because ofA2 ’s
rule: s2 d2, therefore a backtracking, again, is needed (in
this case, it leads to case b).

(b) �00

1 = fd3g is selected. The collaborative composition with
�2 follows, producing:� = �

00

1 [�2 = fd3, d2 g, which is
consistent.A0 issues the creation of a bunchB = fA0,A2g,
to whichA0 will submit as a query� = fd3, d2 g, which
succeeds.

Therefore, the only possible solution for the initial query
is supported by the abductive explanation� = fd3, d2 g
as a solution to the initial query.

6 Conclusion And Future Work

In this work we presented a language for expressing
communication and coordination among logic-based agents
in a declarative style. Agents are thought to interact within
a system, ALIAS, whose current implementation allows
distributed abduction to be performed among dynamically
grouped agents [2, 3].

In the future, we intend to improve the implementation of
ALIAS in order to support the coordination language, and
to extend it to cope with other abductive proof procedures
and other forms of reasoning, e.g. inductive reasoning. Our
intention is also to test the system in a real world case, in
particular in the field of medical diagnosis.

6.1 Acknowledgements

This work has been supported by M.U.R.S.T. Project on
Intelligent agents: interaction and knowledge acquisition.

References

[1] S. Rochefort, F. Sadri, and F. Toni, eds.,Proc. Int. Workshop
on Multi-Agent Systems in Logic Programming. In conjunc-
tion with ICLP’99, Las Cruces, New Mexico, 1999.

[2] A. Ciampolini, E. Lamma, P. Mello and P. Torroni. An Im-
plementation for Abductive Logic Agents. InProc. AI*IA99,
Springer-Verlag LNAI 1792 (to appear).

[3] A. Ciampolini, E. Lamma, P. Mello and P. Torroni. Rambling
Abductive Agents inALIAS. In [1].

[4] A. Brogi, E. Lamma, P. Mancarella, and P. Mello. A Unify-
ing View for Logic Programming with Non-Monotonic Rea-
soning. InTheoretical Computer Science, Vol. 184, 1–49,
North Holland, 1997.

[5] P. T. Cox and T. Pietrzykowski. Causes for events: Their
computation and applications. InProc. CADE-86, 608, 1986.

[6] P. Dell’Acqua, and L. M. Pereira. Updating Agents. In [1].

[7] P. Dell’Acqua, F. Sadri, and F. Toni. Combining Introspec-
tion and Communication with Rationality and Reactivity in
Agents. In U. Furbach and L. Farinas del Cerro eds.,Proc.
6th European Workshop on Logics in Artificial Intelligence,
Springer Verlag LNAI 1489, 17–32 (1998)

[8] P. Dell’Acqua, F. Sadri, and F. Toni. Communicating Agents.
In [1].

[9] M. Denecker and D. De Schreye SLDNFA: an abductive
procedure for abductive logic programs.Journal of Logic
Programming, 34(2):111–167, Elsevier, 1998.

[10] K. Eshgi and R. A. Kowalski. Abduction compared with
negation by failure. In G. Levi and M. Martelli, editors,Proc.
6th Int. Conf. on Logic Programming, 234. MIT Press, 1989.

[11] A. C. Kakas, R. A. Kowalski, and F. Toni. Abductive Logic
Programming.Journal of Logic and Computation, 2(6):719–
770, 1993.

[12] A. C. Kakas, and P. Mancarella. Generalized stable models:
a semantics for abduction. InProc. 9th European Conf. on
Artificial Intelligence. Pitman Pub., 1990.

[13] A. C. Kakas, and P. Mancarella. On the relation between
Truth Maintenance and Abduction. InProc. PRICAI90,
1990.

[14] R. A. Kowalski. Problems and promises of computa-
tional logic. InProc. Symp. on Computational Logic, 1-36.
Springer-Verlag, Nov. 1990.

[15] R. A. Kowalski, and F. Sadri. From Logic Programming to
Multi-Agent Systems. InAnnals of Mathematics and Artifi-
cial Intelligence, 1999 (to appear).

[16] N. R. Jennings, M. J. Wooldridge, eds.,Agent Technology.
Springer-Verlag, 1998.

[17] Y. Labrou, and T. Finin. A semantics approach to KQML
– a general purpose communication language for software
agents. InProc. 3rd Int. Conf. on Information and Knowl-
edge Management, 1994.

[18] D. L. Poole. A logical framework for default reasoning.Ar-
tificial Intelligence, 36:27. Elsevier, 1988.

[19] F. Sadri, and F. Toni. Abduction with Negation as Failure
for Active Databases and Agents. InLNAI, Proc. AI*IA99.
Springer-Verlag, 1999 (to appear).

[20] M. H. van Emden and R. A. Kowalski. The semantics of
predicate logic as a programming language.Journal of the
ACM, 23(4):733–742, 1976.

