
From Objects to Agent Societies: Abstractions and Methodologies for the
Engineering of Open Distributed Systems

Andrea Omicini

LIA, Dipartimento di Elettronica, Informatica e Sistemistica
Università di Bologna, Viale Risorgimento 2, I-40136 Bologna, Italy

mailto:aomicini@deis.unibo.it

Abstract

We argue that the coming of the Internet era has raised
issues that traditional object-oriented software engineering
methodologies seem not ready to address. In this paper, we
first discuss the intrinsic limitations of the object abstrac-
tion in the engineering of complex software systems, and
compare it to the agent abstraction. Then, we show how an
agent-oriented methodology should take into account inter-
agent aspects such as the modelling of agent societies and
of the agent space, by providing engineers with specific, ad
hoc abstractions and tools.

To this purpose, we introduce the SODA agent-oriented
methodology for the analysis and design of Internet-based
systems. SODA supplies the abstractions and procedures
for engineering agent societies as well as the agent envi-
ronment, including social infrastructures. The main idea in
SODA is to exploit coordination models, languages, and in-
frastructures to address social issues. In particular, SODA
shows how to choose a coordination model, how to exploit
it to design social laws, how to embed them into a coordi-
nation medium, and how to build a suitable social infras-
tructure based on coordination services.

1 From Object- to Agent-Oriented Method-
ologies

Object-oriented (OO henceforth) methodologies for the
design and development of complex software systems have
already proven to be effective and reliable. Generally speak-
ing, they have shown how a suitably powerful abstraction
(like the notion of object) can be fully exploited not only to
define models and languages, but also to drive all the phases
of the engineering of software systems.

The coming of the Internet era, however, has raised
new issues that OO models, languages and methodologies
seem not ready to answer. Today’s applications are typi-

cally hosted by a multiplicity of distributed nodes, hetero-
geneous, dynamic, with no centralised control, and are often
intrinsically open, in that their components are often unpre-
dictable and unknown at design time. Moreover, the ever-
increasing number of inexperienced users of Internet-based
applications is making the request for intelligence in soft-
ware systems inescapable.

The inadequacy of OO approaches does not derive from
the methodologies, but from the object abstraction itself,
which is not powerful enough to help in facing these new
issues. Roughly speaking, an object is basically a reactive
entity living in a closed world, where control is fully de-
termined at the design level. Moreover, it offers no con-
ceptual support, no natural place for embedding intelligent
behaviour.

Instead, most of these issues are properly addressed by
the notion of agent [10], which may be fruitfully thought as
a methodological abstraction, rather than a totally new and
revolutionary concept. Despite the many different defini-
tions of agenthood, there is a quite common agreement on
the fact that an agent is characterised by autonomy, social
ability, reactivity, and pro-activeness [11].

In particular, the deliberative capability of an agent is the
natural place for whichever sort of intelligence is needed,
in whichever form. Pro-activeness makes it possible to ab-
stract from control, by designing systems in terms of tasks
and delegating responsibility to agents, instead of control.
Moreover, the intrinsic interactive nature of agent’s reac-
tivity makes an agent a more reliable abstraction in unpre-
dictable and dynamic environments.

Even more, the notion of agent in its full acceptation
has further relevant consequences from the methodologi-
cal viewpoint. In particular, social ability makes it possible
to put agents together to set up multi-agent systems (MAS,
henceforth). While each agent tries to accomplish its own
task(s) by interacting with other agents and with the sur-
rounding environment, a MAS is typically meant to pursue
more complex goals than the mere sum of its agents’ goals.
This is typically done by organising agents into societies,



defining or ruling their mutual interaction so as to produce
useful global behaviours. Agent societies can themselves
be exploited as independent, first-class abstractions in the
engineering of complex software systems.

Finally, when looking at agents as situated entities,
which cannot be thought separately from the environment
they live in, the idea of modelling a software system as
a MAS without modelling the agents’ environment seems
basically ineffective. Agents and societies live in envi-
ronments that may be heterogeneous, dynamic, open, dis-
tributed and unpredictable, like the Internet is. Such fea-
tures cannot have but a deep influence on the way in which
software systems are built, when thought as MAS: so,
agenthood calls for new abstractions modelling the agent’s
environment, in terms of resources, services, topology, and
so on.

2 Interaction as a Dimension for Software
Engineering Methodologies

By adopting an agent-oriented viewpoint, three issues
emerge that are not covered by traditional OO methodolo-
gies: agenthood, societies, and environment.

The first issue basically involves intra-agent aspects,
that is, the analysis, design and development of individ-
ual agents. This is basically a computational issue [9], and
agent-oriented engineering has been mainly concerned with
this aspects, till now. Instead, the two latter issues con-
cern the interaction of agents with their environment, the
resources, and other agents, which is instead not so well-
addressed by the existing literature on agent-oriented soft-
ware engineering. By taking interaction as an indepen-
dent dimension for the analysis, design and development
of MAS, the point is then how such a dimension should af-
fect methodologies for the engineering of complex software
systems when they are built as MAS.

2.1 Society

Agents are individuals entities with social abilities [11].
In general, they have a partial representation of the world
around them, a limited ability to sense and change it, and
typically rely on other agents for anything falling outside
of their scope or reach. So, agents have typically to be
thought as living dipped into societies: the behaviour of an
individual agent is usually not understandable if not in rela-
tion to a social structure. The behaviour of a buyer agent in
an auction is difficult to be explained out of the context of
the auction itself and of the rules which govern it. Dually,
the behaviour of a society of agents cannot generally be ex-
pressed in terms of the behaviour of its composing agents.
So, the rules governing an auction, in conjunction with the
behaviour of the individual agents participating to it, lead

to a global behaviour which could not be reduced to the
mere composition of the individual’s behaviour [9]. Social
rules harness inter-agent interaction, and drive the global
behaviour of a society as an independent entity of a multi-
agent system.

So, societies should not be conceived and built as the
mere composition of a number of agents, separately engi-
neered. Instead, agent-oriented methodologies should take
into account agent societies as first-class entities, to be ex-
ploited in the analysis, design and development of complex
software systems, and engineered as such. For this purpose,
agent-oriented methodologies should provide for specific
models, abstractions and technologies for engineering agent
societies. In particular, a methodology should drive engi-
neers in understanding which societies are required, which
social laws they need, how social rules should be designed,
and where they should be embedded. For instance, one
should be able to determine how much of a social behaviour
should be embodied in agents, and how much should be
instead charged upon social infrastructures – a particularly
relevant issue when open systems are concerned.

This is where coordination models [8] come at hand: in
fact, coordination media – that is, the abstractions medi-
ating agent interaction – make it possible to design social
laws, and to deploy them in terms of coordination rules. As
discussed in [5, 2], a coordination medium can work as the
core of an agent society, and its behaviour can be designed
so as to build the desired social behaviour. So, the choice
of a coordination model is an essential step in the analysis
and design of multi-agent systems, and of agent societies
in particular. Correspondingly, we argue that any effective
agent-oriented methodology should drive engineers in the
choice of the most effective coordination model and lan-
guage to shape the agent interaction space, and in particular
to build up social behaviour.

2.2 Environment

When looking at agents as situated entities, which cannot
be thought separately from the environment they live in, the
idea of modelling a software system as a multi-agent system
without modelling the agent environment seems to be inef-
fective from its very ground. Generally speaking, agents
and societies live in environments which may be heteroge-
neous, dynamic, open, distributed, and unpredictable – like
the Internet is. Obviously, the design of agents and societies
cannot but take these properties into account, since they af-
fect the way in which they represent the world they live in,
and how they plan and deliberate their course of actions
within it. Correspondingly, agent-oriented methodologies
should allow the agent space to be modelled, by making it
possible to determine from the very beginning of the engi-
neering process how the properties of the agent environment



affect the engineering of agents and societies.
Even more, it is often the case that the agent space itself

is subject to engineering – in particular, whenever it is pos-
sible and useful to factorise properties of the systems and
to delegate them to the infrastructure. One may think for
instance of directory services, shared knowledge bases, au-
thentication services, and so on: the way in which they are
built and made available to the agents of a multi-agent sys-
tem obviously affects the way in which the system and its
components are engineered. So, agent-oriented methodolo-
gies should help not only in modelling the agent environ-
ment, but also in building it.

3 SODA

SODA (Societies in Open and Distributed Agent spaces)
is a methodology for the analysis and design of Internet-
based applications as multi-agent systems. The goal of
SODA is to define a coherent conceptual framework and
a comprehensive software engineering procedure which ac-
counts for the analysis and design of individual agents,
agent societies, and agent environments. SODA is not
meant to account for intra-agent issues: designing a multi-
agent system with SODA leads to defining agents in terms
of their required observable behaviour, and of the role they
play in the multi-agent system. Then, whichever methodol-
ogy one may choose to define the agent structure and inner
functionality, it can easily used to complete the SODA one.

Instead, SODA concentrates on the inter-agent issues,
like the engineering of societies and infrastructures for
multi-agent systems. Since this conceptually covers all the
interactions within an agent system, the design phase of
SODA deeply relies on the notion of coordination model
[8]. In particular, coordination models and languages are
taken as the sources for the abstractions and mechanisms
required to engineer societies: social rules are designed as
coordination laws, and social infrastructures are build upon
coordination systems.

3.1 Analysis

During the analysis phase, the application domain is
studied and modelled, the available computational re-
sources and the technological constraints are listed, the fun-
damental application goals and targets are devised out. The
result of the analysis phase is typically expressed in terms
of high-level abstractions and of their mutual relationships,
providing designers with a formal or semi-formal descrip-
tion of the intended overall application structure and organ-
isation.

Since by definition agents have goals that they pursue
pro-actively, agent-oriented analysis can rely on agent’s re-
sponsibility to carry on one or more tasks. Furthermore,

agents live dipped into an environment, which may be dis-
tributed, heterogeneous, unpredictable and dynamic. So,
the analysis phase should explicitly take into account and
model the required and desired features of the agent ap-
plication environment, by modelling it in terms of the ser-
vices made available to agents. Finally, since agents are
basically interactive entities, depending on other agents and
available resources to accomplish their tasks, the analysis
phase should explicitly model the interaction protocols in
terms of the information required and produced by agents
and resources.

So, the SODA analysis phase focuses on three distinct
models:

� the role model – the application goals are modelled in
terms of the tasks to be achieved, which are associated
to roles and groups

� the resource model – the application environment is
modelled in terms of the available services, which are
associated to abstract resources

� the interaction model – the interaction involving roles,
groups and resources is modelled in terms interaction
protocols, expressed as information required and pro-
duced by roles and resources, and interaction rules,
governing interaction within groups

Even though conceptually different, these three models
used by SODA as the basis for the analysis phase are strictly
related, and have to be defined in a consistent way.

3.1.1 The role model

Tasks are expressed in terms of the responsibilities they in-
volve, of the competences they require, and of the resources
they depend upon. Responsibilities are expressed in terms
of the state(s) of the world which has to result from the
task’s accomplishment.

Tasks are classified as either individual or social ones.
Typically, social tasks require a number of different com-
petences, and the access to several different resources,
whereas individual tasks are more likely to require well-
delimited competence and limited resources (see [2] for an
example).

Each individual task is associated to an individual role,
which is by consequence first defined in terms of the respon-
sibilities it carries. Analogously, social tasks are assigned to
groups. Groups are defined in terms of both the responsibil-
ity related to their social task, and the social roles participat-
ing in the group. A social role describes the role played by
an individual within a group, and may either coincide with
an already defined (individual) role, or be defined ex-novo,
in the same form as an individual one, by specifying its task
as a sub-task of its group’s one.



3.1.2 The resource model

Services express functionalities provided by the agent envi-
ronment to an agent system – like recording an information,
querying a sensor, verifying an identity. In this phase, each
service is associated to an abstract resource, which is then
first defined in terms of the service it provides.

Each resource defines abstract access modes, modelling
the different ways in which the service it provides can be ex-
ploited by agents. If a task assigned to a role or a group call
for a given service, the access modes required have to be
determined and expressed in terms of permission to access
the resource providing for that service. Such a permission
is then associated to that role or group.

3.1.3 The interaction model

Analysing the interaction model in SODA amounts to the
definition of interaction protocols, for roles and resources,
and interaction rules, for groups.

An interaction protocol associated to a role is defined in
terms of the information required and produced by the role
in order to accomplish its individual task. An interaction
protocol associated to a resource is defined in terms of the
information required to invoke the service provided by the
resource itself, and by the information returned when the
invoked service has been brought to an end, either success-
fully or not. An interaction rule is instead associated to a
group, and governs the interactions among social roles and
resources so as to make the group accomplish its social task.

It is worth to be noticed the degree of uncoupling pro-
vided by this approach: each interaction protocol is not
specifically bounded to any other, and can be defined some-
how independently – simply requiring the specification of
the information needed, but not its source. Obviously, the
final outcome of the analysis phase should account for this,
too, by ensuring that for any information required by any
protocol, there is an entity in the system in charge of pro-
viding it.

3.1.4 The outcome

In all, the results of the SODA analysis phase are expressed
in terms of roles, groups and resources. To summarise,

� a role is defined in terms of its individual task, its per-
missions to access the resources, and its corresponding
interaction protocol

� a group is defined in terms of its social roles, its social
task, its permissions to access the resources, and its
corresponding interaction rule

� a resource is defined in terms of the service it provides,
its access modes, the permissions granted to roles and

groups to exploit its service, and its corresponding in-
teraction protocol

3.2 Design

Design is concerned with the representation of the ab-
stract models resulting from the analysis phase in terms of
the design abstractions provided by the methodology. Dif-
ferently from the analysis phase, a satisfactory result of the
design phases is typically expressed in terms of abstractions
that can be mapped one-to-one on to the actual components
of the final system.

The SODA’s design phase aims at defining three strictly
related models:

� the agent model – individual and social roles are
mapped upon agent classes

� the society model – groups are mapped onto societies
of agents, to be designed around coordination abstrac-
tions

� the environment model – resources are mapped onto in-
frastructure classes, and associated to topological ab-
stractions

3.2.1 The agent model

An agent class is defined as a set of (one or more) roles, both
individual and social ones. So, an agent class is first char-
acterised by the tasks, the set of the permissions, and the
interaction protocols associated to its roles. Agent classes
can be further characterised in terms of other features: their
cardinality (the number of agents of that class), their loca-
tion (with respect to the topological model defined in this
phase – either fixed, for static agents, or variable, for mo-
bile agents), their source (from inside or outside the system,
given the assumption of openness).

The design of the agents of a class should account for all
the specifications coming from the SODA analysis phase
– but may exploit in principle any other methodology for
the design of individual agents, since these issue is not cov-
ered by SODA. What is determined by SODA is the out-
come of this phase, that is, the observable behaviour of the
agent in terms of all its interactions with its surrounding
environment. The observable behaviour is defined by the
interaction protocols, delimited by the permission sets, and
finalised to the achievement of the agent’s tasks.

3.2.2 The society model

Each group is mapped onto a society of agents. So, an agent
society is first characterised by the social roles, the social
tasks, the set of the permissions, and the interaction rules
associated to its groups.



Since the agent model assigns also social roles to agents,
the main issue in the society model is how to design inter-
actions rules so as to make societies accomplish their social
tasks. Being a problem of managing agent interaction, har-
nessing it to achieve the desired social behaviour, this is
basically a coordination issue [7]. As a result, societies in
SODA are designed around coordination media, that is, the
abstractions provided by coordination models for the coor-
dination of multi-component systems [1].

So, the first point in the society design is the choice of
the fittest coordination model – that is, the one providing ab-
stractions that are expressive enough to model the society’s
interaction rules [4]. Thus, a society is designed around co-
ordination media [5], which embody the interaction rules
of its groups in terms of coordination rules. The behaviour
of the suitably-designed coordination media, along with the
behaviour of the agents playing social roles and interact-
ing through such media, makes an agent society pursue its
social tasks as a whole. This allows societies of agents to
be designed as first-class entities, as shown in [2] where an
example is also discussed.

3.2.3 The environment model

Resources are mapped onto infrastructure classes. So, an
infrastructure class is first characterised by the services, the
access modes, the permissions granted to roles and groups,
and the interaction protocols associated to its resources. In-
frastructure classes can be further characterised in terms
of other features: their cardinality (the number of infras-
tructure components belonging to that class), their loca-
tion (with respect to topological abstractions), their owner
(which may be or not the same as the one of the agent sys-
tem, given the decentralised control assumption).

The design of the components belonging to an infras-
tructure class may follow the most appropriate methodol-
ogy for that class – databases, expert systems, security fa-
cilities, all can be developed according to the most suited
specific methodology, since SODA does not address these
issues specifically. Again, what is determined by SODA is
the outcome of this phase, that is, the services to be pro-
vided by each infrastructure component, and its interfaces,
as resulting from its associated interaction protocols.

Finally, SODA assumes that a topological model of the
agent environment is provided by the designer – but does
not provide for topological abstractions by its own, since
any system, any application domain may call for different
approaches to this problem. However, as an example of an
expressive set of topological abstractions that may easily fit
many Internet-based multi-agent systems, one may look to
places, domains and gateways as defined by the TuCSoN
model for the coordination of Internet agents [3].

4 Conclusions and further work

The main reference for the development of the SODA
ideas is the pioneering work on Gaia [12]. Gaia, to our
knowledge, is the first agent-oriented software engineer-
ing methodology that explicitly takes into account societies
(there, mainly referred to as organisations) as first-class en-
tities, by providing a coherent conceptual framework for the
analysis and design of multi-agent systems. Even though at
an early stage of its development, SODA addresses some
of the Gaia shortcomings, which does not suit well open
systems, and cannot easily deal with self-interested agents.
In SODA, this problems are overcome by exploiting suit-
able coordination models as the basis for the engineering
of societies, enabling open societies to be designed around
suitably-designed coordination media, and social rules to be
designed and enforced in terms of coordination rules.

In addition, SODA is the first agent-oriented methodol-
ogy to our knowledge to explicitly take the agent space into
account, and to provide engineers with specific abstractions
and procedures for the design of agent infrastructures.

Early versions of the SODA methodology have already
been used for the analysis and design of Internet-based
multi-agent systems [6, 5]: however, the methodology was
neither explicitly formalised nor named before. In the near
future, we intend to exploit SODA in the design of real
Internet-based multi-agent systems, so as to further verify
its effectiveness at the current stage of its development.

References

[1] Paolo Ciancarini. Coordination models and languages
as software integrators. ACM Computing Surveys,
28(2):300–302, June 1996.

[2] Paolo Ciancarini, Andrea Omicini, and Franco Zam-
bonelli. Multiagent system engineering: the coordi-
nation viewpoint. In Nicholas R. Jennings and Yves
Lespérance, editors, Intelligent Agents VI — Proceed-
ings of the 6th International Workshop on Agent The-
ories, Architectures, and Languages (ATAL’99), vol-
ume 1767 of LNAI. Springer-Verlag, February 2000.
Invited paper.

[3] Marco Cremonini, Andrea Omicini, and Franco Zam-
bonelli. Multi-agent systems on the Internet: Ex-
tending the scope of coordination towards security
and topology. In Francisco J. Garijo and Magnus
Boman, editors, Multi-Agent Systems Engineering –
Proceedings of the 9th European Workshop on Mod-
elling Autonoumous Agents in a Multi-Agent World¡
(MAMAAW’99), volume 1647 of LNAI, pages 77–88.
Springer-Verlag, June 30 - July 2 1999.



[4] Enrico Denti, Antonio Natali, and Andrea Omicini.
On the expressive power of a language for program-
ming coordination media. In Proceedings of the 1998
ACM Symposium on Applied Computing (SAC’98),
pages 169–177. ACM, February 27 - March 1 1998.
Track on Coordination Models, Languages and Appli-
cations.

[5] Enrico Denti and Andrea Omicini. Designing multi-
agent systems around a programmable communica-
tion abstraction. In John-Jules Ch. Meyer and Pierre-
Yves Schobbens, editors, Formal Models of Agents –
ESPRIT Project ModelAge Final Report, volume 1760
of LNAI, pages 90–102. Springer-Verlag, 1999.

[6] Enrico Denti and Andrea Omicini. Engineering multi-
agent systems in LuCe. In Stephen Rochefort, Fariba
Sadri, and Francesca Toni, editors, Proceedings of the
ICLP’99 International Workshop on Multi-Agent Sys-
tems in Logic Programming (MAS’99), Las Cruces
(NM), November 30 1999.

[7] Thomas Malone and Kevin Crowstone. The interdis-
ciplinary study of coordination. ACM Computing Sur-
veys, 26(1):87–119, 1994.

[8] George A. Papadopoulos and Farhad Arbab. Coordi-
nation models and languages. Advances in Comput-
ers, 46:The Engineering of Large Systems:329–400,
August 1998.

[9] Peter Wegner. Why interaction is more powerful than
computing. Communications of the ACM, 40(5):80–
91, May 1997.

[10] Michael J. Wooldridge. Agent-based software engi-
neering. IEE Proceedings on Software Engineering,
144(1):26–37, February 1997.

[11] Michael J. Wooldridge and Nicholas R. Jennings. In-
telligent agents: Theory and practice. The Knowledge
Engineering Review, 10(2):115–152, 1995.

[12] Michael J. Wooldridge, Nicholas R. Jennings, and
David Kinny. The Gaia methodology for agent-
oriented analysis and design. Journal of Autonomous
Agents and Multi-Agent Systems, 2000. To appear.


