
OO Reactive Agents for RDM-Based Simulations

S.Bandini, F. De Paoli , S. Manzoni C. Simone
DISCO - Università di Milano Bicocca

Via Bicocca degli Arcimboli 8, 20126, Milano
DI - Università di Torino

Corso Svizzera 185, 10149, Torino
{bandini, depaoli , manzoni}@disco.unimib.it simone@di.unito.it

Abstract

The computer simulation of complex phenomena is a
challenging issue for studying their properties. Several
models and techniques have been developed in order to
provide useful conceptual and computational frameworks.

The aim of this paper is to present a simulation model
based on the Reaction-Diffusion Machine (RDM) and to
discuss its implementation by a system based on multi -
agent and Object Oriented paradigms. The chemical
extraction of substances in washing phenomena occurr ing
in percolation processes has been considered as reference
application.

1. Introduction

Many fundamental structures and dynamical
behaviours in physics, chemistry and biology are
described in terms of reaction-diffusion models or
metaphors that are rooted in the work of Alan Turing [7].
Applications of this model range from pattern formation
or epidemic spreads to natural selection through
ecological systems and the percolation systems. Reaction
refers to phenomena where two or more entities (agents)
become in contact and modify their state in consequence
of this fact. Diffusion implies the existence of a space
where the involved agents are situated and can move.
While reaction is univocally interpreted, diffusion takes
different meanings in different disciplines.  Specifically,
in the disciplines which consider biotic agents, diffusion is
interpreted as movement of agents in a given space: for
example, in animal population dynamics [5], agents move
to concentrate together or to scatter according to
behavioural patterns and mutual interactions. As such,
reaction and diffusion describe the behaviour of agents in
terms of changes of state and position, respectively;
however, they are not enough to describe that some factor,
possibly independent of the involved agents, can influence
the way in which they perform both reaction and diffusion
behaviours. This influence can be captured by the notion
of field as used in physics. There are fields whose sources
are outside the considered space: for example, the heat,

light, gravity; and fields that are originated by some
agents located in the space: for example, the emission of
ad hoc substances in the case of animal species (like
pheromone in ants) or the heat and light generated by a
lamp. Both kinds of fields are characterised by specific
distribution laws that determine fields' values at each point
in the space; moreover, agents are characterised by their
capabilit y of being sensitive to those fields at different
degrees in relation to their current state.

The reaction diffusion machine model allows for the
simulation of complex systems in which entities react
locally with each other and with the environment, and the
global system behaviour emerges from the local behaviour
of the composing entities. In the reaction-diffusion
machine (RDM) [1] the control is fully distributed. The
agent behaviour is determined by a local 'computation'
based on its position and sensitivity to fields as well as on
reaction and diffusion patterns characterising its type.

The RDM simulation model has already been
implemented on a parallel computer [2]. The objective of
that implementation was to deliver an effective tool to be
used to collect information on realistic simulations (i.e. to
explicitly represent topological features of the simulated
phenomena), which means that it was designed to process
thousands, or even milli ons, of data to represent a
significant portion of the real experiment. The model
proved to be accurate and effective, and the tool
demonstrates to scale over the simulation size. The
simulation time resulted in direct inverse relation to the
number of processors.

This paper describes the development of an agent-
based implementation that conforms more accurately to
the distributed nature of the model and, in addition,
provides a portable simulation tool with minimum loss of
performance.

The object-oriented paradigms is suitable for agent
implementations since it models the world by independent
entities, the objects, that are autonomous and
communicate with each other by means of messages.
Moreover, available object-oriented platforms allow
objects to be autonomous, and to be distributed over a
computer network. These properties facilit ate the task of
developing agent systems [8]. Literature reports successful



stories about agent-based systems for scientific computing
[4]. Anyway, the use of object-oriented platforms for
scientific simulation is still questionable, since the costs of
the infrastructure to support the execution of an object-
oriented system could be too costly in term of
performance. One of our goals is to evaluate this aspect by
benchmarking the parallel implementation and the
distributed, object-oriented implementation of the
simulator.

As reference application, we consider the chemical
extraction of substances in washing phenomena occurring
in percolation processes. This kind of phenomena are
usually modelled and simulated by numerical approaches.
Moreover, cellular automata approaches have been
developed [3]. A comparison between RDM and cellular
automata has been discussed in [1].

The next section presents the reaction diffusion
machine. Section 3 describes the chemical problem that
we adopted as reference case study for our developments.
Section 4 discusses the concepts behind the agent system
we are designing to simulate the chemical phenomenon.
Section 5 outlines the object-oriented design of the
simulation tool. Finally, section 6 concludes the papers
with a description of the ongoing activities.

2. The reaction diffusion machine model

The Reaction-Diffusion Machine model [1] is defined
by a space, a set of sites with an adjacency relation
among them, a set of reactive agents populating the space,
and an interaction mechanism among agents.

Their type distinguishes agents. The type of an agent
specifies the values of some parameters that govern its
behaviour in given states. These parameters are: a field
sensitivity function telli ng in which states the related entity
is sensible to which fields in accordance with a vector of
thresholds, one value for each field. A field is
characterised by its set of values and distribution function
and by functions to compose and compare field values,
sensitivity values and thresholds. Notice that each agent
can be source of, and sensitive to, different fields at the
same time. The perceived fields can be generated by
agents. An agent is characterised by its type, current state
and position. A general law states that each site contains
at most one agent (non-copenetrabilit y law).

The dynamic part of the model is described in terms of
rule schemes that define the transitions between
configurations (as in standard transition systems). There
are four main rule schemes are based on both state and
position of the involved agents:

• Field diffusion rules define when a field is generated
(i.e., if an agent of a specific type, in a specific state, and
is a source of a field, then the field propagates according
to its distribution function and initial value).

• Trigger rules define how a field effects the state of an
agent (i.e., if an agent is sensitive to a field in relation to
its state, threshold and sensitivity function, then the agent
changes its state according to a predefined state transition
function).

• Transport rules define how a field effects the position
of an agent (i.e., if an agent is sensitive to a specific field -
as for trigger rules - then it changes its location according
to a predefined site transition function).

 • Reaction rules define the synchronous state change
of agents constituting a vicinity, that is, they are all
pairwise adjacent (i.e., if agents constituting a vicinity
possess specific types and specific states, then they
change their state according to a predefined state
transition function).

3. The chemical extraction processes

The application problem that has been used to test the
RDM model concerns chemical reactions and the
movement of fluid particles in a porous medium. The
application field is the pesticide percolation through soil
(the application has been developed in collaboration with
the International Centre for Pesticide Safety).

Within the general framework of the problem of
pesticides pollution in the soil , we focused our attention
on the problem of pesticide's leaching to ground water
caused by water percolation through the soil . When
applied to crops, pesticides are absorbed by soil . Then,
when water flows through the soil (percolates) because of
rain or floods, pesticides can be released into it. Water
containing pesticides reached the groundwater layer
because of gravity, and, since groundwater is usually the
source of common tap water, it is straightforward to
understand the pollution danger deriving from the
excessive use of pesticides [6]. The amount of pesticide
released changes according to the chemical properties of
the pesticide itself and the physical and morphological
properties of the soil .

The extraction process of soluble substances
(pesticides) from the percolation bed (soil ) can be divided
into two main phases: washing and diffusion. Washing
corresponds to the reaction that takes place between water
flowing into the percolation bed and the surface of the soil
particles. This phenomenon causes the release of pesticide
from the soil to the water. Diffusion is characterised by
the uniform spreading into the water of the chemicals
washed from the percolation bed.

The main goal of the simulation of the percolation
process is to obtain the flow rate of the pesticide in
different condition (e.g., granulometric distribution of the
particles composing the ground). The simulation model
based on RDM has been created in a multi -reactive agent



perspective, where the entire extraction process is
modelled in terms of a complex collective phenomenon.

4. The RDM agent-based model for the
simulation

The space is modelled as a regular two-dimensional
grid. Two types of agents are introduced: S-Agents
(representing soil particles) and W-Agents (representing
single portions of water). S-Agents are motionless and
sited on sites. W-Agents are mobile and can move on free
sites on the grid. Moreover, they move reacting to an
external field (gravity). S-Agents can interact only with
W-Agents. W-Agents can interact either with other W-
Agents or with S-Agents (asymmetric interaction
behaviour)

Both the types of agents (W and S) possess a tank of
particles whose capacity is defined by saturation constant.
Each tank is divided into as many compartments as the
number of the adjacencies of each agent on its site (four in
the case of the regular grid). Each compartment contains a
portion of the quantity of particles that can be exchanged
only with the adjacent compartment of an adjacent agent.

From the standpoint of the interaction among agents, S-
Agents can only give particles to W-Agents (equili brium
law), and W-Agents can absorb or give particles from and
to other W-Agents and only absorb particles from S-
Agents (same law).

The behaviour sets of rules determining the dynamics
of the entire multi -agent system are:

Reaction Rules: Recognition of free/taken sites in the
surrounding of radius 1 and interaction among agents (S-
Agents/W-Agents, W-Agents/W-Agents) to exchange
particles according to an “equili brium law” .

Balance Rules: The total quantity of the particles of the
4 compartments of each agent's tank is uniformly
redistributed.

Movement Rules: W-Agents can move only to south,
east or west free sites.

5. The Object-Oriented multi-agent system

The RDM simulation model described in the previous
sections has been implemented on a parallel computer to
be used as tool to collect realistic information on
percolation phenomena. That implementation was written
in C according to the MPI model over a Cray computer
with up to 128 processors. The major goal of that
development was performance maximization, since that is
a crucial property of any effective simulation tool. The
experiment was successful since the simulation time
resulted in direct inverse relation to the number of
processors.

The purpose of the multi -agent implementation is to
model the reality more accurately and provide a portable
simulation tool with littl e loss of performance. For these
reasons, we choose to develop the new prototype directly
in the Java programming language and platform, instead
of on specialized platforms for agent systems. Java is
object oriented, which means that entities can be modeled
by objects to capture their properties in a single
component. Java is multithreaded, which means that each
object can have an associated thread. Therefore, it is
suitable for developing autonomous components. Java
ensures portabilit y, since it runs on a virtual machine that
is largely available over the majority of systems.
Moreover, Java is network enabled, which means that
objects and classes can be transferred over a computer
network. All these peculiarities make Java a perfect tool to
develop agents systems.

The Java simulation tool is composed of objects to
model the environment and the two types of agents
described above.

Passive objects that implement the grid and control the
simulation execution model the environment. A matrix
that hosts the agents implements the simplest grid. Each
agent is aware of its position on the grid and, therefore,
can access its adjacent elements. Communication can
occur directly between two agents. The movement is
implemented by the transfer of an agent from the current
position to a next position in the matrix. A more
sophisticated grid layout is implemented by a set of
objects, named sites. They are connected according to the
topology of the percolation bed. The state of every site
holds information about the gravity external field, the
adjacent sites and the hosted agent, if any. A site can
answer messages about its state information.

The former solution should be more eff icient, since the
infrastructure is kept at the minimum, but it has the
drawback of being feasible only in a single-processor
simulation. The latter forms a network of hosting objects
that can be distributed over a set of processors. Moreover,
this solution fits better the physical model since the agent
can find locally -by asking the host site- information about
the environment. In the former solution, instead, the
agents need to hold information on their position and the
gravity field. We decided to implement both the solutions
to compare them with each other and with the C
implementations.

The two type of agents, S-agent and W-agent, are
modelled as active objects. The state of an agent
represents the tank and its four partitions to define the
amount of pesticide it can carry on. The interaction
between agents is modelled by message exchanging.

Agents are active, since they have to react, balance and
move, as described above. Autonomous threads of
execution are associated with active objects to let them act



concurrently. The activity carried on by a W-agent can be
summarised as follows:

(a) it checks with the adjacent sites whether they host
agents, and, if that is the case, it reacts with the
adjacent agents by issuing messages;

(b) it balances its internal state;
(c) it moves on the bases of the information about empty

sites next to it, and the local gravity field;

The above activities are repeated indefinitely. S-agents
differ from W-agents by the fact that they do not perform
activity (c).

The reaction activity is implemented by a set of
message exchange to let each of the involved agents know
the number of particles of the adjacent partitions. This
information allows the agent to define the new number of
particles for each tank partition, thus simulating the
particles exchange.

The RDM model is synchronous, which means that
agents need to synchronise before reacting each other.
Synchronisation has been modelled by the definition of an
object, named Synchroniser, which grants each agent the
permission of proceeding before and after the reaction
activity. The Synchroniser is a shared object that ensures
full synchronous behaviour on a single processor machine.
In a distributed implementation, the full synchronisation
constraint has to be released in favour of a local
synchronisation mechanism that involves clusters of
adjacent agents.

Although it involves a single agent, diffusion activity
requires synchronisation, since agents' moving may result
in a conflict when two or more agents decide to occupy
the same site. To model the effect of the gravity field -
which is not explicitly modelled, since it is constant in
each site-, we assume that moving to a South-site is
always granted, while there is not a preferred way between
moving to West-sites or East-sites. Therefore, a first-
come-first-served policy can be adopted. This policy can
be easily implemented by having an agent lock the
involved portion of the grid before performing the
diffusion activity. In the single processor implementation
this results in a mutual exclusive access to the grid, while
in the distributed implementation it results in a lock of the
involved site.

6. Conclusions

The RMD model has been proved effective for the
class of problems addressed in this paper. This has been
experimentally proved through a parallel implementation
of a cellular-automata-based model of this complex
system [2]. A development based on the multi -agent and
object-oriented paradigms should deliver a clean and
flexible platform that can be easily tailored to

accommodate several kinds of simulations to fit specific
domain requirements. The implementation is developed in
Java to ensure portabilit y and open the possibilit y of
different execution patterns, ranging from concurrent
execution on a single virtual machine to a truly distributed
execution over networked computers.

Preliminary versions of both single-processor and
multi -processor implementations are available for testing.
The current activity is twofold: complete the testing phase
of the two versions and work on the multi -processor
version to release the constraints introduced in the other
versions due to the assumptions of centralised control.
This evolution should deliver a platform in which agents
move and act freely, without other synchronisation then
the ones requested by the reaction with the vicinity.

Moreover, benchmarks are planned to contrast the
multi -agent implementation in Java of the simulation tool
on networked workstations with the implementation in C
on a parallel computer. Even if it is likely that the parallel
implementation overtakes the multi -agent implementation,
it will be interesting to evaluate what is the performance
decrease. The conjecture is that the multi -agent system is
still effective to run realistic simulation over a number of
data. To prove it, we will evaluate whether the gain in
design and implementation quality (in terms of software
engineering principles) and in simplicity and economy (in
terms of computer availabilit y and costs) compensates the
loss in performance.

References

[1] S. Bandini, and C. Simone, “ Integrating Forms of
Interaction in a Distributed Coordination Model” ,
Fundamentae Informaticae, in press.

[2] S. Bandini, G. Mauri, G. Pavesi, C. Simone, “Parallel
Simulation of Reaction-Diffusion Phenomena in
Percolation Processes: a Model Based on Cellular
Automata”, Future Generation Computer Systems, in press.

[3] B. Chopard, M. Droz, Cellular Automata Modelli ng of
Physical Systems, Cambrige University Press, 1998.

[4] R. Gustavsson, “Networked Agents for Scientific
Computing” , Communication of the ACM, Vol. 42, N. 3,
March 1999.

[5] A.Okubo, Diffusion and Ecological Systems: Mathematical
Models, New York: Springer Verlag, 1980.

[6] P. S. C. Rao, A. G. Hornsby, and R. E. Jessup, “ Indices for
Ranking the Potential for Pesticide Contamination of
Groundwater” , TR ICPS, 1985.

[7] A. Turing,  “The Chemical Basis of Morphogenesis.
Philo”s. Trans. R. Society, vol. 237, 1952.

[8] A. M. Uhrmacher, “Concepts of Objects – and Agent
Oriented Simulation” , Transactions on SCS, Vol. 14. No.
2, 59-67, 1997.


