
An Agent-based Paradigm for Allocating Multi-Provider Service Demands

M. Calisti and B. Faltings
Laboratoire d’Intelligence Artificielle
Swiss Federal Institute of Technology

CH-1015 Lausanne, Switzerland
fcalisti, faltingsg@lia.di.epfl.ch

Abstract

The increasing number of competitors and the growing
traffic demand are the main factors pushing for a more dy-
namic and flexible service demand allocation mechanism.
Human interactions are becoming more and more inade-
quate to solve this task, since many different issues have to
be considered for optimising all possible choices and strate-
gies. Software tools are becoming fundamental for support-
ing human decisions and/or for reducing the need of hu-
man intervention. Nowadays, agent technology promises a
good support for pro-activeand autonomousnetwork con-
trol, that would enable the automation of many network
provider tasks. In order to prove the feasibility of such au-
tomation through the use of agents, a multi-agent simulator
for the allocation of service demands has been developed.
This paper describes the simulator and aims to give a useful
feedback for agent developers.

1 Introduction

For many distributed applications requiring intelligent,
autonomous and communicating software entities the multi-
agent technology seems to be the most promising answer.
Among others and despite the scepticism, the network-
ing community is also investigating the deployment of
autonomous agents for different purposes: network con-
trol, network management, etc. In particular, in a multi-
provider environment the distribution and the heterogene-
ity of actors, resources and technologies suggests a man-
agement solution based on static and/or mobile distributed
software entities. Such autonomous entities would have
the ability to directly invoke effective changes to switch
and router controllers, without the intervention of human
operators. Several good papers on this subject can be
found in [10]. For evolving the interaction between dis-
tinct network providers the NPI-mas,Network Provider
Interoperability-multi agent system, has been proposed and

developed [3]. The basic idea is to provide an efficient and
flexible mechanism for self-interested agents representing
different network operators for the allocation of service de-
mands spanning distinct networks. In order to prove the fea-
sibility of this paradigm, a multi-agent simulator has been
developed.

This paper focuses on the implementation of NPI-mas
aiming to describe the software components which the sim-
ulator consist of for:

� Showing the feasibility of distributed algorithms that
support the allocation of multi-domain service de-
mands. The simulations validate the algorithms and
give quantitative evaluations of the performance that
could be obtained in specific network scenarios.

� Sharing with the readers the lesson learned by pro-
gramming distributed, autonomous and communicat-
ing software entities.

� Presenting a multi-agent paradigm that could be inte-
grated in a real network in order to both support hu-
man operators and automate many inter-domain man-
agement steps.

First, we present the architecture of the NPI-mas simulator
including a description of its main structural components.
Evaluation results are then presented and a comparison of
our approach to previous work on the multi-provider service
demand allocation is given. Final remarks and comments on
future work conclude the paper.

2 An Agent-Based Simulator

NPI-mas has been conceived and developed as the vir-
tual place that allows the simulation of multi-domain ser-
vice demands allocations. A service demand is defined as
dk ::= (xk ; yk; qosreq;k), wherexk is the source node,
yk the destination node, andqosreq;k the required Qual-
ity of Service. A demand may be anything from a video-
conference to a virtual link in a Virtual Private Network. In

our framework the QoS requirements correspond toband-
width and theend-to-end delay.

Three main types of agents populate NPI-mas. TheEnd
User Agent (EUA) that acting on behalf of a final end user
expresses needs and formulates service demands, theSer-
vice Provider Agent (SPA) that processes service demands
and contacts aNetwork Provider Agent (NPA) that owns or
directly controls specific network resources. The NPA con-
tacts peer-operators, whenever interactions are needed, e.g.,
when the service demand spans several networks. This pa-
per mainly focuses on theNPA-to-NPA interactions.

2.1 The NPI-mas Architecture

The NPI-mas simulator is entirely implemented in Java.
JATLite 1 has been adopted as the main framework for the
agent development. The three main components of the sim-
ulator are:

� TheRouter that receives messages from the registered
agents and routes them to the correct recipient/s. All
agent communications rely upon TCP/IP sockets.

� The Agent Management Interface, that is a graphical
interface that allows the selection of a multi-domain
scenario, the creation of agents, and the visualisation
of simulations’ outputs.

� Theagents’ tribe: several EUAs and SPAs can be cre-
ated. A NPA is associated with every network provider
in the simulated scenario.

The AMI (Figure 1) enables first the selection of a ran-
domly generated network scenario. Next, all agents pop-
ulating the pre-selected scenario are created. Each agent
automatically registers with therouter, its name and its ad-
dress. In addition, every NPA recovers the data describing
the network topology from dedicatedmanagement informa-
tion databases. Finally, a text window displays the simula-
tion outputs such as the computed end-to-end paths from the
source to the destination network, the selected path along
which the inter-domain routing is started, the different re-
sults of intermediate steps of the demand allocation process
and final negotiation outcomes.

Every NPI-mas agent is associated with a graphical in-
terface that displays all messages that are sent and received
by the agent. From the interface associated with an EUA,
it is possible to enter a specific service demand. An aux-
iliary window is used to enter a service demand in terms
of source and destination nodes, required amount of band-
width, available budget, required end-to-end delay and tem-
poral constraints. Next, the EUA sends acall for proposal
to a selected SPA.

1JATLite is a set of packages that facilitates the agent framework
development using Java. On-line documentation can be found at:
http://piano.stanford.edu/

Figure 1. The Agent Management Interface.

An SPA represents both theclient of the network ser-
vices offered by the NPAs and theprovider of a variety
of telecommunications services to customers (EUAs). The
SPA acts as a (currently very simple)matchmaker, finding
suitable agents (NPAs), and accessing them on behalf of the
requesting agent (EUA). In the future, this entity will be
enhanced by introducing more sophisticatedbrokering and
recruiting capabilities.

Since the main goal of our simulator is to make use of
the algorithms and the techniques designed and developed
for the inter-domain QoS-based routing, we focused on the
development of Network Provider Agents. Because of mul-
tiple tasks an NPA has to carry on several sub-components
have been implemented. NPAinput can be either messages
coming from other agents or human user commands. An
NPA central controller is responsible for the coordination
of several parallel activities, for processing inputs, for in-
terfacing the agent world with human operators, for getting
data characterising the network state, etc. In our simulated
scenario, the data is stored in a database that is dynamically
updated during the simulation. In a real network, the data
would be retrieved directly from the network management
platform through the use of ad hocwrappers. The NPA
communicator module parses agents’ messages, maintains
communication channels, controls and manages all ongo-
ing conversations. The NPACSP expert is a specialised
sub-structure that is responsible for CSP modelling and for
applying typical CSP consistency and searching techniques.
The NPA negotiator module generates strategies for the
controller. Considering the current state of the network, the
various constraints, the utility function, and the interaction

protocol, this module produces the strategy to be followed
at every step of the negotiation process. Possibleoutputs
of the NPA activity are either messages to other agents, or
internal actions, such as changes in the data configuration,
or presentation of options to human operators.

2.2 NPA-to-NPA Interactions

� Every NPA has an aggregated view of the multi-
domain network topology that is used for computing
the abstract paths to other networks. Anabstract path
is an ordered list of distinct providers’ networks be-
tween the source and the destination network. We call
initiator the NPA that first receives a request from a
SPA. The choice of a specific abstract pathP is based
on the following heuristics: (1) Eliminate all the paths
that do not guarantee enough bandwidth. (2) Among
the paths left select the cheapest. (3) If still more than
one path exists, chose the path which has, after having
accepted the incoming demanddk, the largest band-
width left [2].

� Next, theinitiator contacts all the NPAs alongP re-
questing them to locally determine the setS of possi-
ble internal routes for allocatingdk.

� If all providers are locally consistent, i.e.,S non empty,
thearc consistency phase is started. During this phase,
the NPAs exchange information aboutinter-domain
constraints. All not compatible network access points
are discarded, so that every NPA reduces the setS.
This phase involves a propagation of messages among
neighbours, in order to revise the setS for every access
point that is discarded. How to ensure that this propa-
gation terminates is described later in Section 3.1.

� If the arc consistency is successful, i.e, all NPAs have
a non empty setS consistent with inter-domain con-
straints, the negotiation for selecting a specific end-to-
end route is started. The initiator broadcasts acall-for-
proposal to all NPAs alongP . Every contacted agent
is supposed to follow thecollect-offers interaction pro-
tocol, Figure 2. An offer consists of a specific local
route at a certain price. Theinitiator evaluates all re-
ceived offers and elaborates possible global offers for
the EUA, which involvespricing andprofit maximisa-
tionq. The negotiation is successful whether the EUA
accepts the offer. The initiator confirms to the NPAs
the results of the transition. If the negotiation fails and
the end-user does not modify its requirements the de-
mand request is rejected and the initiator notifies all
other NPAs.

3 Behind the Evidence

NPI-mas agent communication relies on the use of
TCP-IP sockets for the exchange of messages. The JATLite
router is responsible for forwarding all messages to the
appropriate recipient. A first version of NPI-mas makes use
of KQML [6]. KQML facilities are in fact offered within
JATLite for the use of such a language between z agents2.
The content language used by NPI-mas agents is an ad
hoc set of basic components such aspropositions, objects
and actions. For instance,arc-consistency-successful is
a proposition that can be eithertrue or false whether the
inter-domain constraints are satisfied or not. For the future
development of NPI-mas, we envisage the usage of the
Constraint Choice Language, CCL [8]. This language
has been expressly designed and developed for agents
deploying Constraint Satisfaction Problem techniques,
which our solving algorithms are based upon. The common
ontology that all our agents are referring to is not explicitly
and formally formulated. However, the context of a
conversation is defined through the use of those common
terms and expressions.

Ongoing agent conversations expect certain message se-
quences, which are fixed by theinteraction protocols. In
NPI-mas for many agent interactions we have been inspired
by the standardfipa-request-protocol, although the perfor-
mative we have used belongs to KQML and not to FIPA
ACL. This required some semantic mapping between sim-
ilar communicative acts of the two languages. One of
the most delicate interactions is the one described by the
collect-offers protocol, Figure 2. This protocol has been
designed as a one-to-many relationship, that theinitiator
starts. A call for proposal,cfp, is sent from theinitiator
to all peer NPAs involved in the multi-provider demand al-
location process. Every NPA can eitheragree or refuse to
make a proposal. Between the agreement and thepropose
there is a timeouttout for a peer NPA has to formulate an
offer. When theinitiator has received the offers from all
peer operators, a uniqueglobal offer for the EUA can be
formulated.

At this point, a second conversation following the
global-offering protocol is nested with the previous one. If
the EUA accepts the global offer, then the initiator confirms
the peer NPAs that the demand will be allocated. If the EUA
refuses the offer the message sent to the peer NPAs is afail-
ure. The nested conversation is time constrained in order to
ensure the termination of thecollect-offers conversations.

There are two main categories of data structures de-
ployed in NPI-mas: thedurable ones and theperishable

2We have also developed a communication language package that
enables the use of the FIPA ACL language [7] within JATLite. See
http://liawww.epfl.ch/ calisti/ACL-LITE

call-for-proposal

reject-proposal

accept-proposal

1 to N

propose
nested conversation

initiator NPA peer NPA

EUAinitiator

refuse

not-understood

propose tout

agree

confirm

failure

accept-proposal

reject-proposal

agree

Figure 2. Nesting interactions: the collect-offers protocol
and the nested global-offering protocol.

ones. The former category includes all these data structures
that are created at the beginning of the simulation and that
will last during all its duration. The bootstrap structure is
common to all agents, since it collects an aggregated view
of the overall network scenario, i.e., the providers’ networks
list, the inter-domain links characteristics, the boundary ac-
cess points, etc. Every agent has also access to a private
permanent data structure that contains information about
its own resources. A distributed management information
structure guarantees in fact a flexible and scalable approach
to the service demand allocation. Furthermore, privacy and
security are better controlled by having non-shared infor-
mation structures.

The perishable data structures are all these objects that
are instantiated during the simulation and that are used by
agents for a specific demand allocation. These structures
are created, and eventually updated at run-time, and finally
deallocated whenever the specific demand allocation pro-
cess terminates.

3.1 The Lesson Learned

Somebody could argue that agents are just objects by an-
other name, however when implementing software agents
that are supposed to be autonomous, reactive, pro-active
and social the intrinsic difference becomes more evident,
at least to an agent developer. Even though objects encap-
sulate some state, can communicate via message passing,

has methods corresponding to operations that may be per-
formed on this state, the main difference is that an object
usually has a single thread of control and does not have
a flexible behaviour. Basicly, while an object controls its
state, an agent controls its behaviour.

Despite ‘standard’ solutions for supporting agent inter-
actions exist [9], [6], the way to implement them is not al-
ways so standard. Specific technical issues that a developer
has to face are summarised in the following.

Naming and addressing issues. No matter what kind of
platform is used, an agent needs to be uniquely identified
in the system he is living in. The ‘ identity card’ of an NPI-
mas agent consists of three major fields: the name, the pro-
fession and the address. The agent name is automatically
checked by NPI-mas whenever a new agent is created. The
name must be unique. The profession identifies if it is an
EUA, a SPA or a NPA. This allows the creation of agents
with specific skills, that correspond to specific roles played
in the multi-provider demand allocation process. The ad-
dress includes the agent name, the host-name (i.e., the ma-
chine where the agent is running), and a time-stamp corre-
sponding to the moment at which the agent is created. Ad-
dresses are handled transparently by the JATLite router.

Handling multiple conversations. Every agent can be in-
volved in more than one conversation at the time. A conver-
sation identifier, conv-id, is used for that purpose for every
non isolated communicative act. A vector of conversation
objects has to be dynamically maintained by every agent.

Handling multiple data structures. Analogously to what
happens with multiple conversations, every agent manages
vectors of data structures, since different objects need to be
instantiated for different and parallel allocation demands.
The dynamic update of such vectors is the most delicate
part since messages from different agents can concern the
same data structure. To face this concurrency problem we
adopted a FIFO policy, serialising the access to the data
structures.

Detection of a global state. During the ‘arc consistency’
phase there is a propagation of messages among agents in
order to revise the set of possible local routes. This phase
ends when all agents are consistent (or eventually as soon
as one of them is inconsistent) and when no messages are
pending in the system, i.e., when the global state is sta-
ble [4]. In order to detect that this state is reached a control
mechanism, namely a Java thread instantiated by the NPA
initiator, is used. The initiator receives notifications about
the state of every single agent involved in the arc consis-
tency and about the messages that are spread around in the
system. This allows to maintain and update a global state,
that is periodically checked by the control thread.

Integration of JATLite with ‘external’ Java code. The
modularity of the JATLite’s architecture enables develop-
ers to build agent-based systems that deploy only specific

0

5

10

15

20

25

30

35

40

45

50

ND=4 ND=6 ND=15

A
ve

ra
ge

 s
ol

ut
io

n
tim

e,
 T

to
t,

se
c

Number of providers’ networks

Figure 3. Three different simulated scenarios have been
considered. Ttot has been computed over a set of 300 ran-
domly generated demands.

packages of such a tool. The on-line documentation of both
JATLite and Java has been sufficient for the integration of
all the NPI-mas components.

3.2 Simulation Results

The performance metrics that have been observed for
evaluating the NPI paradigm are the average demand
allocation time, Ttot, and the allocation rate, Ar :=

nbsuccess=nbdemands, with nbsuccess the number of
demands successfully allocated, and nbdemands the total
number of service demands.

Simulations with a variable number ND of networks
(Figure 3), and therefore of NPAs 3, have been run in or-
der to check the scalability of our algorithms and in par-
allel the usability of communicating agents for the multi-
provider service allocation purpose. The average values that
has been obtained for Ttot, i.e., [25; 40] seconds, can be con-
sidered a positive result when compared to the current de-
lays required by human operators to negotiate solutions and
topology changes. Given a fixed number ND of providers’
networks, we then tested the influence of a different num-
ber jLj of inter-domain links. Increasing jLj has a double
effect: (1) The complexity of the solving process increases
by augmenting the number of possible access points com-
binations between neighbour networks: Ttot increases, see
Figure 4. (2) The probability that at least one end-to-end
path satisfying the QoS requirements of demands to be al-
located exists augments: Ar grows, see Figure 5. Similar
results have been obtained when varying the complexity of
the internal topology of every network. A greater number
of network nodes and intra-domain links can augment the
search space and can introduce an additional computational

3In our simulations ND 2 [4; 15], which correspond to a realistic
multi-provider scenario. However, we are testing the NPI paradigm for
greater values of ND .

0

5

10

15

20

25

30

35

40

45

50

ND=4 ND=6 ND=15

A
ve

ra
ge

 s
ol

ut
io

n
tim

e,
 T

to
t,

se
c

Number of providers’ networks

|L|=x
|L|=x+x/3

Figure 4. Ttot increases when increasing the number of
inter-domain links, since the search space increases.

0

0.2

0.4

0.6

0.8

1

ND=4 ND=6 ND=15

A
llo

ca
tio

n
R

at
e,

 A
r

Number of providers’ networks

|L|=x
|L|=x+x/3

Figure 5. The graphic shows the increment of demands
successfully allocated, when increasing the inter-domain
capacity.

overhead. However, as for an increment of jLj, if the topo-
logical changes correspond to an increment of the network
resources, the number of demands successfully allocated in-
creases.

3.3 Contribution

Many multi-agent systems are already available and the
most common classifications distinguish between architec-
tures for reactive agents, deliberative agents and interact-
ing agents (see [12] for good references). Hybrid archi-
tectures have also been developed for integrating reaction
and deliberation. However, some platforms are too specific,
some others are not freely available, and more in general
no pre-existing agent platform was offering a support for
any kind of Constraint Satisfaction (CS) technique. Fur-
thermore, when we started the development of NPI-mas no
FIPA compliant agent platform was available.

NPI-mas has been conceived as an agent platform which
(1) can flexibly make use of ad hoc Constraint Satisfaction
algorithms; (2) supports agent communications either via

KQML or FIPA ACL; (3) allows the simulation of differ-
ent underlying network scenarios, (4) supports the simu-
lation of automatic multi-provider service demand alloca-
tions. NPI-mas agents could be integrated within a real net-
work by providing ad hoc wrappers in order to interface
the agent-based and the non-agent worlds, i.e., the network
management and control level. These wrappers would take
into account the low level characteristics of specific under-
lying network technologies.

The service demand allocation is a complex and articu-
lated process that is even more delicate for networks that
aim to provide QoS guarantees [5], especially in a multi-
provider context where every provider tries to maximise his
own utility and knowledge about the network topology is
restricted by the network providers for strategic reasons.

Although multi-domain QoS routing has been tack-
led from many directions (ATM and SDH network [11],
billing [1], multi-domain management in the MISA 4

project, agent interactions for routing multimedia traffic
over distributed networks, see [7] and the FACTS project 5)
no previous work has addressed the possibility of dynamic
negotiations about more than one path at a time.

In NPI-mas the use of Distributed Constraint Satisfac-
tion techniques and the deployment of autonomous agents
making use of a compact aggregation of network resources
availability characteristics, offer the capability of: (1) ac-
celerating the allocation of multi-provider service demands,
by automating many steps currently performed by humans.
(2) Supplying standard solutions that abstract from techni-
cal details, by using a common and standard agent commu-
nication language and a standard ontology. (3) Supplying
consistent solutions without the need of explicating internal
and confidential data, such as network topologies, negoti-
ation strategies, pricing mechanisms, etc. (4) Supporting
human decisions, or, in a more future scenario, of replac-
ing human operators. (5) Integrating economic principles
within self-interested agents, in order to optimise the rev-
enue.

4 Final Remarks

Implementing the NPI-mas system has been essential to
validate theoretical concepts previously defined, as well as
to destroy many of the prior certainties and modify some
concepts about both agents and service demand allocation.
The results obtained through the simulation prove the po-
tential of our paradigm.

Beyond more realistic simulations and more exhaustive
data analysis, there are several directions that the authors are
considering for the future development of NPI-mas. First
of all, more sophisticated negotiation techniques and more

4http://www.misa.ch
5http://www.labs.bt.com/profsoc/facts

accurate pricing mechanisms need to be integrated. Fur-
thermore, more complete and realistic representations of
networking data and multi-provider service demands would
bring additional value to the simulations. The possibility
of creating coalitions among NPAs, in order to take advan-
tage of a higher degree of coordination, is an alternative way
of determining a global service offer for end-users. More
work on the service provider level, i.e., more sophisticated
brokering capabilities would be added to the SPAs agents.
Additional work on the interaction between the human end-
user and the EUA together with more sophisticated broker-
ing capabilities for the SPAs are currently under investiga-
tion.

References

[1] C. Bleakley, W. Donnelly, A. Lindgren, and H. Vuorela.
TMN specifications to support inter-domain exchange of ac-
counting, billing and charging information. Lecture Notes in
Computer Science, 1238, 1997.

[2] J.-Y. L. Boudec and T. Przygienda. A Route Pre-
Computation Algorithm for Integrated Services Network.
Technical Report TR-95/113, LRC-DI, EPFL, Lausanne,
Switzerland, 1995.

[3] M. Calisti, C. Frei, and B. Faltings. A distributed approach
for QoS-based multi-domain routing. AiDIN’99, AAAI-
Workshop on Artificial Intelligence for Distributed Informa-
tion Networking, 1999.

[4] K. M. Chandy and L. Lamport. Distributed snapshots:
Determining global states of distributed systems. TOCS,
3(1):63–75, Feb. 1985.

[5] S. Chen and K. Nahrstedt. An Overview of Quality of Ser-
vice Routing for Next-Generation High-Speed Networks:
Problems and Solutions. IEEE Network, pages 64–79,
November/December 1998.

[6] T. Finin et al. Specification of the KQML Agent-
Communication Language – plus example agent policies
and architectures, 1993.

[7] Fipa. Fipa spec. 97 v2.0. Foundation for Intelligent Physical
Agents, 1997.

[8] Fipa. Fipa spec. 99, v0.2. Foundation for Intelligent Physi-
cal Agents, 1999.

[9] Foundation for Intelligent Physical Agents. FIPA Specifica-
tions, Oct. 1997. http://www.fipa.org/spec/.

[10] A. L. G. Hayzelden and J. Bigham, editors. Software Agents
for Future Communication Systems: Agent Based Digital
Communication. Springer-Verlag, Berlin Germany, 1999.

[11] D. Karali, F. Karayannis, K. Berdekas, and J. Reilly. Qos
based multi-domain routing in public broadband networks.
Lecture Notes in Computer Science, 1430, 1998.

[12] M. Wooldridge and N. Jennings. Intelligent agents: The-
ory and practice. The Knowledge Engineering Review,
10(2):115–152, 1995.

