
On the Consistent Observation of Active Systems

Gianluca Moro�, Antonio Natali, Mirko Viroli
DEIS - University of Bologna, Italy

via Rasi e Spinelli 176, I-47023 Cesena (FC)
fgmoro,anatali,mvirolig@deis.unibo.it

Abstract

The consistency issues have been well studied in term of
methodologies and technologies for the most popular inter-
action paradigm, namely the client-server. In the agent’s
world such a paradigm is used as much as another one,
the notification-observation, in which an active system no-
tifies its status changes to registered observer agents. In
the client-server paradigm, when a client invokes a read
operation of the system, the latter is always able to reply
with a consistent status. Also in the notification-observation
paradigm, the perception of consistent status changes of the
observed system is a requirement, in order to take decision
correctly. But the above-mentioned instruments used for the
client-server scenario, are not suited for the notification-
observation paradigm. In this paper we highlight the prob-
lem and propose an abstraction called observation inter-
face, as an architecture allowing observer agents to per-
ceive consistent status changes of an active system.

1. Introduction

The even widening dissemination of active systems (e.g.
monitoring, workflow, active databases, active Web sources,
decision support system, etc.) has generated a new tendency
in the software engineering, based on the observation of the
sources of events.
Observers are reactive agents notified by the system when
its status changes; in other words they do not retrieve the
status of the system on a polling basis. Systems to be ob-
served are often made up of several components and their
global status depends on the status of these components.
The observers are not guaranteed to view a global (or par-
tial) consistent status just by listening directly the notifica-
tions of the single sub-components.
The literature has proposed methodologies and successful
technologies which allow concurrent proactive clients to

�Contact author: Gianluca Moro, Tel +3954722221, Fax +3954722418

update and read consistently the status of a system (e.g.
DBMS Transaction Manager [4][2], CORBA Transaction
Service [6], Transaction Processing Systems [1][5], Enter-
prise Java Beans [3]). Our claim is that the dual problem,
that of systems able to notify their consistent status when
necessary to reactive clients (observers), has not received
the same attention.
We believe that this happens because the design of systems
usually only focuses on the modeling of the entry interface
(or API) used by clients (or proactive agents) to change its
status (left side of Figure 1). In other words the design does
not take into consideration the modeling of the dual inter-
face (right side of Figure 1) which we call the observation
interface(or exit interface). This interface mainly depends
on constraints, validation and updating rules modeled and
implemented by the system in order to preserve its consis-
tency (function f - bottom of Figure 1). The role of the
observation interface is to allow consistent observations of
the global status of the system (or part of it) by notifying to
observers events of a higher abstraction level.
We claim that it is not sufficient, in general, to provide re-
active mechanisms to passive systems. Rather, engineering
methodologies are needed to specify the set of notification
events; how they map into system changes and how they are
related. We believe that the idea of observation interface for
an active system can represent a first step in this direction.
For example it could be an add-on for a new generation of
observation-compliant TP monitors.
The remainder of this short paper is organized as follows.
The next section highlights the problem through a symbolic
example. Section 3 proposes a framework for the design of
the observation interface for active systems and in the con-
cluding section we outline an implementation as a ”proof of
concept” of this framework.

2. The Issue of Consistent Observation

Typically a system is thought out and designed by con-
sidering the point of view of its use, that is by providing a set
of operations to some clients in order to perform elaboration

TP Monitors
or OTM

 M
 i
 d
 d
 l
 e
 w
 a
 r
 e

c1

c2

c3

 System

System
Operations

E
n
t
r
y

I
n
t
e
r
f
a
c
e

Clients (i.e.
Proactive Agents)

Events of System
Components

o1

o2

o3

Observers
(i.e. Reactive
Agents)

O
b
s
e
r
v
a
t
i
o
n

I
n
t
e
r
f
a
c
e

Higher Level
Events

 f(System)→ Observation
 Interface

c4
Possible

add-on for
TP Monitors

or OTM

E
n
t
r
y

I
n
t
e
r
f
a
c
e

Figure 1. Entry and Observation Interface of a system

and possibly to change its status. Generally the system is
designed to serve concurrent requests from proactive clients
preserving its internal consistency (i.e. constraints and rules
of the modeled information). This means that when clients
of such a system invoke update operations, some compo-
nents of the system change their status, and the system tran-
sits from an old status towards a new one. The consistency
is guaranteed because the operations are executed through
transactions which modify atomically the status of system
components. Each time a transaction commits, the system
goes from an old consistent status towards a new consistent
one.
Figure 2 shows a simple example of a system, without los-
ing generality, made up of 3 components a, b, c, represent-
ing three integers. The system transits through status S1,
...,S4 because of a transaction Tbc carried out by a proac-
tive client (or agent). In the status S2 the transaction Tbc is
changing the component c setting it to 5, and in the status
S3, Tbc is changing the component b setting it to 0. S2 and
S3 are intermediate states of the system, in which the trans-
action could also abort, rollbacking the system at the initial
status S1. After the commit at time T4, the system reaches
the consistent status S4 in which all components are perma-
nently changed.
Traditionally if a proactive client asks to read the status of
the system during the execution of transactions, the system
replies by returning a consistent status anyway. In this case
if a client invokes a status read at time T2, the system will
return the status S4 or the status S1 depending on the isola-
tion level chosen by the transactions [4][2].

As mentioned in the previous section, effective models and
technologies allow the realization of such a system for
updating and reading consistently its status independently
from the number of concurrent proactive clients.
In a relevant class of current applications an active system
is observed in order to take decisions or to perform some
elaboration. The main difference of an active system from
the previous one is that it should be able to notify its status
changes to remote observers. The objective of an observer
is similar to that of a client invoking a consistent status read-
ing, the main difference is that the observer does not emit
such a request on a polling-basis because it is notified by
the system itself only when necessary.
Currently both areas of Object-Oriented and DBMS tech-
nology offer implementation mechanisms for the observa-
tion of their single components, generally based on the
event-driven paradigm. For instance, if the components of
the system of Figure 2 are tables on a relational database,
they could be observed by placing a trigger on each of them
([9][10]). Each trigger notifies to the observer every change
occurring due to the transaction Tbc. In this way the ob-
server observes all states, included S2 and S3 which are
not committed, giving raise to observations which are not
consistent. In fact let us consider for example an observer
interested in the sum of components a, b, c of Figure 2, con-
sidered as three distinct bank accounts, and the transaction
Tbc as an usual bank transfer operation. Each time the ob-
server receives a change it updates the sum. At time T1

the sum is 6, at time T2 it is 11 and at time T3 and T4 it
is 6 again. In conclusion the observer at time T2 has ob-

a
b

c

a
b

c

a b

c
a

b
c

Transaction
Tbc

Time T1 T2 T3 T4

Status S1 S2 S3 S4

5

1

0

0

5

5

5

01

1

5
1

Commit

Figure 2. Status changes of a system due to a transaction

served incorrect account balances. Additionally if a trans-
action fails, a rollback occurs, and the observer may have
performed decisions or elaborations on the basis of a sta-
tus which does not exists any more. In other words the is-
sue is analogous to that of a client which reads inconsistent
states, but the problem requires different solutions. These
considerations are quite general and also hold if the system
components of Figure 2 are objects, simply the notification
happens through the reactor-acceptor pattern [8].
To avoid incorrect observations, the active system must only
manifest consistent states. The next section proposes a first
solution based on what we call observation interface, by
which observers can know what can be observed and how
they can register itself for several kinds of observation.

3. The Observation Interface

The architecture we propose to manage the problem of
the consistent observation of active systems has already
been depicted in Figure 1. Observers do not have to directly
access the reactive components of the system, but commu-
nicate with a software component, which we call the ob-
servation interface. Such component transforms the notifi-
cation events that the system sends, the system events, into
the events which will be notified to the observers, the out-
put events. The former are in general of an higher abstrac-
tion level than the system events; they will be obtained by
performing some computation over the data carried by the
system events. Furthermore such computations will only
be realized using the data values coming from the same
committed transaction. The observation interface, so to
speak, will take account of the problem of the notification

of consistent views. In this section we will sketch a pos-
sible design for this software component. The process of
transformation that the observation interface realizes is in
general not straightforward and comprehends a set of sub-
functionality whose implementation may depend on the ap-
plication domain, on the way the system deals with trans-
actions, on the type of information the observers may need.
For these reasons we split the work of the observation in-
terface into three, different and mostly independent sub-
components (see Figure 3):

� Synchronizer: which accepts the system events and de-
cides how to group them into wholes, for successive
processing

� Evaluator: which realizes the actual mapping from the
data carried by the system events and the data that will
be carried by the output events

� Notifier: which manages the communication with ob-
servers

In order to simplify the comprehension of the tasks these
sub-components realize, we will refer to the example shown
in Figure 2, that is:

� the active system may send 3 kinds of system events,
namely eA, eB e eC. Each is the notification of a
change on one of the components of the system, which
are a, b or c, and carries its new status, represented as
an integer value. Furthermore the observation interface
has also to accept two more events: eTC which is fired
when a transaction commits, or eTR when a transac-
tion rollbacks, both carrying the transaction identifier
TrID;

Active
System

S
y
n
c
h
r
o
n
i
z
e
r

E
v
a
l
u
a
t
o
r

N
o
t
i
f
i
e
r

Obs

Obs

Obs
System
Events

Output
Events

Figure 3. Observation Interface details

� the observation interface exports three kinds of output
event: o1, o2 e o3. o1 will carry an integer value which
is the sum of the values carried by eB and eC, o2 the
sum of those of eA and eB, and in the case of o3 just
the data value carried by eA. We will say that o1 =

eB + eC, o2 = eA+ eB, o3 = eA;

� three observers, Ob1, Ob2 and Ob3 are registered for
respectively o1, o2 and o3;

Synchronizer. The strategy of grouping system events into
wholes is stored in the Synchronizer. The Synchronizer
is in fact the only component of the observation interface
which has to know the details of the System, and in
particular about the way information is packed into events.
It accepts asynchronous system events and keeps track of
them. Then by applying some synchronization policy, that
can be local or based on the information the events carry, it
can decide to put together some of them and send the whole
to the following processing. The typical implementation is
that in which events belonging to the same transaction are
collected (using their TrID), and fired when the transaction
commits (events eTC) or discarded if rollbacks occurs
(event eTR). In our use case an event of type eC carrying
the value 5 arrives at time T2, and an event of type eB with
value 0 arrives at time T3. When at time T4 the transaction
commits the two couples, (eC; 5) and (eB; 0), are sent for
further processing.

Evaluator. An observation interface typically exports
a finite set of output events. The task of the Evaluator is to
accept the group of events it receives from the Synchronizer
and to compute the output data values that will be carried
by the output events. Such events will be used by the
observers to take their decisions and to perform some
new computation, in a consistent way. This is the core of
the mapping process, and can be typically realized in a
functional way, storing an internal status when needed. In
general the data values which arrive from the Synchronizer
need an adjustment before the computation can be exe-
cuted. For example there can be more values for a single
input (caused by the arriving of two events of the same kind
of system event), or not all the inputs may have values to

be computed. Typically the adjustment will discard older
values in the first case and use a cached copy for the second.
In our example the Evaluator receives ((eC; 5); (eB; 0)),
adjusts it by using the cached value of eA (suppose it is
1) obtaining ((eC; 5); (eB; 0); (eA�

; 1)), and performs the
computation which returns ((o1; 5); (o2; 1); (o3�; 1)). We
used the star symbol over eA and o3 to highlight the fact
that their values are not new, but obtained using a cached
copy. Notice that we admit o2 to be computed using a new
value (that of eB) and a cached value (eA�), and that we
do not consider o2 a cached copy.

Notifier. This is responsible for handling the com-
munications with the observers. First of all it accepts
observers registration for some of the output events it
provides and keeps track of them using a queue structure.
Then it receives the data computed by the Evaluator and
prepares the correspondent output events. In our use case
it will notify the observer Ob1 with the value 5 and the
Observer Ob2 with the value 2. Observer Ob3 is not
notified because o3 is star-labelled. Notice in fact, that
the component a of the system is not changed by the
underlying transaction.

4. Conclusions

Typically the observers listen to the notification events
sent by an active system in a direct way but this may cause
the observers to perceive status which are not consistent.
The situation becomes even more problematic in the case
of concurrent transactions, and transactions which can roll-
back. Notice that in the latter case events would be fired
anyway and it is not possible in general to obtain a roll-
back of the actions the observers has performed due to
the events that have already been generated. The observa-
tion interface introduced in this paper helps to overcome
this problem, notifying only consistent states of the sys-
tem. An implementation of the framework we presented
has been realized as a ”proof of concept” over an Oracle
Database (version 7.3) [7], which is available at the fol-
lowing URL: http://elena.ingce.unibo.it/observation/. Ob-
viously additional work has to be done, both from a theo-

retical and from a pragmatical point of view, to better un-
derstand the impact of the consistent observation issue on
the engineering of active systems.

References

[1] Philip A. Bernstein, Transaction Processing
Monitors, Communication of ACM, november
1990/Vol.33,No.11, pag. 76-86

[2] A. Elmasri (Ed.): Database Transaction Models for
Advanced applications, Morgan Kaufmann Publish-
ers, Inc, 1992

[3] Enetrprise Java Beans Specifica-
tion, 1999, Sun Mycrosystems,
http://www.javasoft.com/products/ejb/docs.html

[4] J. Gray, A. Reuter: Transaction Processing: Concepts
and Techniques. Morgan Kaufmann1993, ISBN 1-
55860-190-2

[5] Sherri Kennamer, Microsoftcorn: A High-Scale Data
Management and Transaction Processing Solution,
SIGMOD’98Seattle. WA, USA, 1998 ACM pag. 539-
540

[6] R. Orfali, D. Harkey, Client/Server Programming with
Java and CORBA, Wiley Computer Publishing, USA,
ISBN 0-471-24578

[7] Oracle Corporation, PL/SQL User’s Guide and Ref-
erence Release 2.3, Part No. A32542-1, chapter 8,
February 1996

[8] Schmidt, D. Reactor : An object behavioral pattern
for concurrent event demultiplexing and event hand-
laer dispatching. In J.O. Coplien and D.C. Schmidt,
Eds., Pattern Languages of Program Design. Addison-
Wesley, Reading, Mass., 1995

[9] Widom, J., Ceri, S., Active Database Systems. Mor-
gan Kaufmann, San Matteo, Calif., 1996

[10] Zaniolo, C., Ceri, S., Faloutsos, C., Snodgrass, R. T.,
Subrahmanian, V. S., Zicari, R., Introduction to Ad-
vanced Database Systems, Morgan Kaufmann, San
Matteo, Calif. 1997

