
Java for Real–time Object–oriented Programming

Antonio Boccalatte and Mauro Coccoli

University of Genova
Department of Computer, Communication, and Systems Science

via Opera Pia, 13–16145 GENOVA
nino@dist.unige.it, coccoli@dist.unige.it

Abstract

Real–time programming is simply a necessity in many
fields of application and specific real–time operating sys-
tems exist in order to fulfill the necessity of users to have
time determinism in their applications. Anyway, often time
constraints are not so hard and it is possible to identify hard
and soft real–time applications, but time determinism keeps
on being the mandatory requirement. The aim of this paper
is that of describing the results of an activity devoted to in-
vestigate the possibility of real–time programming in a Java
environment. A package has been developed in order to give
a Java platform real–time capabilities of scheduling threads
with time–based policies or by priority and events. A set of
methods for threads to communicate through queues, mes-
sages, and mailboxes has been developed too.

1 Introduction

It can be claimed that“Java is not an appropriate lan-
guage for real–time programming”. In fact, given general
characteristics that a real–time system should offer [1], Java
seems not to be adequate at all for real–time programming;
the main motivation can be found in the fact that Java is a
platform–independent language, and a real–time scheduling
of Java Threads can not be guaranteed if there is noa priori
knowledge about the operating system scheduling charac-
teristics. Moreover Java has an automatic garbage collector
whose influence should be taken in account (see [2], [3]) .
Anyway, since Java naturally supportsThreads[4], it ap-
pears to be suited for the experiment proposed in this paper.
In fact, real–time applications have to be written as a series
of separate component programs that can execute concur-
rently in a multi threading organization; every Java thread
is a complete program capable of independent execution

sharing its memory with others, always keeping separate
addresses so that context switching can be very fast. More-
over, since its first appearance, in May of 1995, Java was
presented as a language for facilitating the development of
embedded systems software [5], and most embedded com-
puter systems, have to deal with real–time constraints. Gen-
erally speaking, it is possible to distinguish betweenhard
andsoft real–time constraints and it can be seen that it is
possible to have a certain degree of real–time reliability with
Java too, when Java programming is performed in aspe-
cial environment. In order to provide Java with real–time
characteristics, a first solution is being developed by a con-
sortium comprehending IBM, Hewlett Packard, and New-
monics, that has already developed a modified Java Virtual
Machine, calledPerc(a real–time dialect of Java). It is im-
portant to notice that such a consortium, however supported
by major software houses, is not sustained by Sun, that has
made up an Expert Group on its own. Whomever it can de-
rive from, it is evident that such a solution would have a
great impact on the platform independence that a Java ap-
plication should keep on claiming and guaranteeing. An-
other possible, alternative, solution, should go towards the
development of specific real–time programming facilities
for handling process scheduling and real–time features. In
this paper, this second way, has been followed, and a pack-
age for Java programming has been developed, that allows
to respect time constraints that (soft) real–time applications
always have to deal with.

After this short introduction, the paper will be organized
as follows: in Section 2 basics on real–time programming
will be reported, that have driven the realization of the pro-
posed package; in Section 3 motivations for investigating
in the field of Java real–time (JRT) programming are pre-
sented, while in Section 4 the Java Virtual Machine (JVM)
is discussed, motivated by the possibility of performing a
slight modification to its architecture in order to build a



modified JVM for JRT. The Java package is described in
Section 5 and the results of the performed tests are finally
presented and discussed in Section 6. General considera-
tions and conclusions follow.

2 Real–time Programming

Whenever a real–time operating system is not present, it
is up to the programmer to give its tasks pseudo real–time
characteristics, if it is necessary. The following attributes
can be considered mandatory requirements for a system to
be able to deal with real–time: multitasking/multithreading,
priority management, preemption, synchronization mecha-
nism, timing.

Such characteristics can be guaranteed by the presence
of specific software components: task manager, memory
manager, message queue, event and asynchronous signal,
semaphore, timer, interrupt handling, error manager [6].

Generally speaking, real–time applications need concur-
rent execution of several tasks, sometimes one depending
from other ones. This is multi tasking programming, where
each task is an executable portion of code with a specific
role with its own memory area, stack, stack pointer, and pro-
gram counter. Switching among concurrent tasks is driven
by interrupts causing suspension of processes. Suspending
a process always has to be a safe operation, so registers,
program counter, and more (thecontext) have to be saved,
while the context of the next executing task has to be loaded.
Context switching is up to the operating systems’ scheduler.

Real–time processes can be represented as if they could
be in one among four possible states:

1. Active–The process is in execution.

2. Ready–The task is ready to be executed but the CPU
is busy.

3. Blocked–The task cannot be executed due to a missing
resource.

4. Dormant–Either if the task has finished its job or the
task has not yet requested CPU time.

The possible transitions are shown in the following sketch,
(Fig. 1).

3 Why Java for Real–time?

The starting point for the answer to the above ques-
tion is the Java language claimed platform independence.
For real–time and embedded systems’ development where,
in most cases, using custom hardware is the unique solu-
tion, having the possibility to write general purpose soft-
ware that then will run everywhere, is a more than fascinat-
ing item. Moreover, many embedded systems’ applications

DORMANT

READY

ACTIVE

BLOCKED

Figure 1. The possible states a task can be in
(operating system view)

have more and more the necessity of Web connection [7]
and Java is, since the start, the best language for Web pro-
gramming because it has a special ability for the develop-
ment of distributed applications, and it offers high–level
graphical user interfaces with a very small programming ef-
fort.

In particular modern Internet appliances require In-
ternet connectivity, security, interactivity, and dynamic–
extensibility features: Java makes all of these available.

From a software technology point of view, Java is a well
suited development tool for the embedded market for the
following features it can guarantee:

� security (no memory pointers, sand box model);

� portability (object–oriented programming enable and
promote code reuse, ported to many real–time OS’ and
processors);

� small memory sizes (fits in small ROM footprints, Java
byte code format smaller than native code, dynamic
loading/unloading when needed);

� dynamic (allows new features/patched to be loaded, se-
cure).

Most applications designed to run on an embedded system
need real–time features in order to deal with the real world
via I/O devices and to be able to respond with determinism
to the operating system messages and alarms. Moreover,
often time constraints have to be strictly respected. Java
language supports multi threading programming, through
synchronization modifiers introduced in the language syn-
tax, through specific classes developed for multi threading
which can be inherited by other classes, and by recover-
ing data areas that are no longer being used for multiple
threads, that is garbage collection. Multi–threading is in
thepros column from the real–time point of view, garbage
collection, on the other hand, is opposite to any real–time
behaviours, due to its time–unpredictability. Java can not



act direct memory access and in such a way reading from a
register or writing a device driver is not an easy task.

4 Inside the Java Virtual Machine

Inside the Java Virtual Machine, each thread can be in
one among the four possible following states:

1. Initial–Any thread is in this state from the moment it is
created, until the methodstart() is called.

2. Runnable–Once thestart() method has been
called.

3. Blocked–If waiting for an unblocking event.

4. Exiting–After therun() method has terminated its
execution or thestop() method has been called.

Only one thread at a time can be executed but several
threads can be in theRunnable state at the same time. In
such a condition, it is up to the JVM to select which one of
the possible threads will jump in execution. Such a choice
is not a random decision but it must be driven by a preemp-
tive process scheduler following a priority–based schedul-
ing policy. Every thread has its own priority, ranging from
1 up to 10; the value 5 is the default one. Once assigned a
different priority to a specific thread, such value can not be
any more modified by the JVM. Always, the thread with the
highest priority will be executed. If a thread is running and
another thread with higher priority reaches theRunnable
state, this last one will jump in execution (that is preemp-
tion) while the former will keep on being aRunnable task
but it will not go on further until the other thread has been
executed.

Such a policy may seem to show a predictable behaviour.
Indeed this is true when no two threads have the same pri-
ority. Since priority values are chosen among ten, complex
systems having more than tenRunnable threads could not
be deterministic any more. How does the JVM select the
thread to run among the same priority ones? The JVM keeps
track references to threads in thirteen linked lists (Fig. 2):
one list for processes in each of the stateBlocked, Initial,
Exiting, that is three lists; the remaining ten lists are rele-
vant to any priority value of threads in theRunnable state.
Typically, the higher priority task is promoted but this is
only one among many possible criteria by which the JVM
sets the thread to be executed. Whenever more than one
process have the same priority, the operating system depen-
dence arises. The running task can change its state depend-
ing on one of the following events.

1. The thread is awaiting for a particular condition or
has finished its job. JVM will retrieve the first
Runnable thread within the list. It is the highest pri-
ority Runnable thread.

NULL

NULL

NULL

NULL
NULLNULL

Exiting

Blocked

Initial

Runnable
10

1

Figure 2. The linked lists inside JVM

2. A thread with higher priority than the running one gets
in the Runnable state. This depends on the preemp-
tiveness of the JVM.

3. The CPU time–slice is over for that thread. Any pro-
cess is assigned a maximum time for CPU usage and it
has to be released after this time has passed.

This last item is connected to the operating system under-
lying the Java environment. Many UNIX operating sys-
tems do not have such an event in such a way that schedul-
ing can be said to be deterministic for it is based on the
first two events occurring only. This is not the case of the
Microsoft Windows operating systems and there can be a
non–deterministic scheduling of threads, depending on the
events driven by time–slice.

5 The Real–time Package

In this Section, the developed real–time package is de-
scribed; a short overview of the classes and methods it of-
fers the programmer is presented.

5.1 Java Timing

When working with Java, there exists one only
way to deal with time, thereal time, that is the
System.currentTimeMillis() method; when in-
voked, it gives out the elapsed time since 1970, in millisec-
onds. Another time–based method issleep() able to sus-
pend a thread for a specified number of milliseconds. Any-
way, this last method can not be considered reliable, since
its result depends on the platform the software is running
on.

A possible solution for the realization of periodic threads
(e.g., a control loop) is an infinite looping of a process sus-
pending itself by asleep() call but such a control loop
will be affected by an error that, in some cases, could be not
tolerable.



5.2 The Classes in the Package

The developed package extends (by the Java meaning
of extension) the functionality of the basicThread class
by adding new methods in order to be able to manage
semaphores, messages, and events. The new classes are
listed in the following:

� McQueue.java– A class whose methods allow to
access the data structure which has in charge the man-
agement of suspended processes. The policy this
queue is based on in this first implementation is a FIFO
technique.

� McError.java– A class for managing errors.

� McEventActivation.java– A class which ex-
tends theException class since any event can be
regarded as en exception to be handled and processed
through specified methods. In this case the extension
gives the possibility to immediately activate a process
despite whatever is running.

� McEventManagement.java– A class containing
the method to access to whom manages the event of
the typeMcEventActivation.

� McJob.java– A class which extends the class
Thread, whose methods allow to interact with other
data inside the package and to access the synchroniza-
tion primitives.

� McClock.java– A class which creates a process
with a fixed dead–line, extension of theMcJob class.

� McMbox.java– A class which defines characteristics
and methods of a mailbox for the processes.

� McMboxList.java– A class whose methods allow
to manage the mailboxes of single processes.

� McSemaphoreList.java– A class whose meth-
ods allow to manage the semaphores of single pro-
cesses.

� McMessage.java– A class to define messages for
interprocess communication.

� McNode.java– A class to define the characteristics
of suspended processes.

� McProcess.java– A class to keep track of all of
the processes.

� McSemaphore.java– A class to define a
semaphore characteristics and methods. Any process
standing on a semaphore is registered in the queue of
suspended processes.

� McState.java– A class container for all of the in-
formations regarding created semaphores.

� McTask.java– A class with all the needed methods
to interact with data and with all of the synchronization
primitives.

By using such classes, it is possible to create programs to
manage processes for real–time applications, based on a
driven scheduling and on synchronization primitives.

5.3 A Real–time Process Scheduler

A process scheduler has been written, based on the use of
the previously described classes. It is a trial for verifying the
effective Java real–time behaviour in such a situation and
the limits of the presented package. From a trivial graphical
user interface the following tasks can be performed:

� view the queue of suspended processes

� choose a prespecified scheduling algorithm

� create a process

� activate a known process

� define the time–slice

� modify process parameters (i.e., priority)

� view a draft scheduling output

Scheduling can be manual or automatic, where, for the sake
of simplicity, here automatic means priority driven FIFO.
Manual scheduling provides the programmer with the abil-
ity to activate a process among the ones in a process list
identified by a unique tag. A process may have been created
as a periodic one or not. In the priority driven scheduling,
any newly created process will be scheduled according to its
time demand and priority. A suitedMcEventList man-
ages all the processes and any events yet to come is called
McNode. Any process has its own methodMcControl()
whose aim is to define the parameters for the next event as-
sociated to the running task. Once defined such parameters,
an update is performed before calling theMcSuspend()
method. Events are arranged by a time–based order and in
case of concurrency, then priority will drive the choice.

In order to define the processes that will have to run, it
is possible to extend theJob class overriding therun()
method, and adding methods for synchronization and com-
munication while the code to be executed is linked by a
methodcontrol().



+0 +0 0 +

95% 97% 98%

Figure 3. Timing errors on a periodic task
along 5, 10, and 20 [min] of execution (Linux)

6 Benchmark and Experimental Results

Different tests have been performed on periodic tasks
relevant the respect of their given timing. Some meaning-
ful discrepancies in the behaviour of real–time tasks have
been encountered depending on the underlying operating
system: the most widely used PC operating systems have
been chosen for testing, that is Linux and Microsoft Win-
dowsNT (due to the existing in–laboratory configuration,
the Linux machine had a worse processor than the Win-
dowsNT one but the tasks were not heavy computing ap-
plications). A periodic task has been run for a duration of5,
10, and20 [min] in order to evaluate time reliability. Such a
task should have been activated at exact time intervals (e.g.,
a sampling period in a control system). Results are shown
in bar–diagrams which report the number of times the task
has been activated at the right time instant (marked with
0), or late (marked with+) at the right side of the graphic.
Another test has been carried on by launching 3 real–time
threads at the same time, to be executed in parallel, whose
periods were100 [ms], 500 [ms], and1000 [ms]. Such a
test has been performed along a10 [min] duration: it aimed
to evaluate the time accuracy in the execution of the three
tasks. Bar–diagrams report as in the previous experiment
delays on the tasks execution.

0 +

94%

Figure 4. Timing errors on the 100 [ms] peri-
odic task (Linux)

0 +

96 %

Figure 5. Timing errors on the 500 [ms] peri-
odic task (Linux)

0 +

96%

Figure 6. Timing errors on the 1000 [ms] peri-
odic task (Linux)

6.1 Results on a Linux PC

Running the first of the above experiments on a Linux
PC (obviously without RT extensions), the results shown in
Fig. 3 have been obtained. They show a hit ratio for timing
of the periodic thread of95%, 97%, and98% for differ-
ent lasting times of the test. It can be noticed how, as time
grows, the accuracy becomes higher and higher.

For the second experiment too, bar–diagrams are re-
ported, (Fig. 4, up to Fig. 6) relevant to the three tasks with
different timing, and the results are94% hit for the 100 [ms]
thread, 96% for the 500 [ms] one, and 96% for the 1000
[ms] thread.

6.2 Results on a Windows NT PC

The same bar–diagrams for the above experiments are
reported in the case when real–time threads have been run
in a WindowsNT environment. Results are shown in Fig. 7,
up to Fig. 10. Hit percentages are not reported but diagrams
are in scale (anyway the zero–delayed are about 45%).



0 ++00 +

Figure 7. Timing errors on a periodic task
along 5, 10, and 20 [min] of execution (Win-
dowsNT)

0 +

Figure 8. Timing errors on the 100 [ms] peri-
odic task (WindowsNT)

7 Conclusions

The problem of real–time programming in Java has been
considered, and a real–time package has been developed
in order to give the Java language some real–time reliabil-
ity. General problems of this language for such applica-
tions have been identified, and strong motivations for try-
ing to provide Java with real–time programming capabili-
ties have been given. System primitives have been imple-
mented to give the programmer the ability to deal with bi-
nary semaphores, events, messages, process control, mem-
ory sharing. Considering the restricted area of soft real–
time applications where the level of urgency of every task is
specified and the CPU is assigned to the most urgent thread
that is ready to execute, the other aspects of real–time pro-
gramming holding, the package that has been presented in
this paper can be profitably used.

An interesting outcome of this work can be considered
the observed operating system sensitivity of the package.
The proposed benchmark has outlined a better behaviour of
the Linux PC with respect to the WindowsNT one if we con-
sider the average error. On the other hand, if we consider
the absolute error, the WindowsNT PC has shown narrower
diagrams suggesting that the timing is not respected in the
most cases but the error is very small while in the Linux PC,

0 +

Figure 9. Timing errors on the 500 [ms] peri-
odic task (WindowsNT)

0 +

Figure 10. Timing errors on the 1000 [ms] pe-
riodic task (WindowsNT)

sometimes timing is wrong for a great amount of [ms]. De-
pending on the specific application the system is intended
to, one behaviour could be better than the other one. Much
attention has to be paid in the choice of the priority of the
threads to be run.

References

[1] N. Nissanke.Real–time Systems. Prentice Hall, 1997.
[2] R. Johnson. Reducing the latency of a real–time garbage col-

lector. ACM Letters on Programming Languages and Sys-
tems, pages 46–58, March 1992.

[3] H.G. Baker, Jr. The treadmill: Real–time garbage collection
without motion sickness.OOPSLA Workshop on Garbage
Collection in Object–oriented Systems, 1991.

[4] The java language overview. Sun Microsystems, Inc.: Moun-
tain View, CA, 1995.

[5] The java language environment: a white paper. Sun Microsys-
tems, Inc.: Mountain View, CA, 1995.

[6] D. Ripps. An Implementation Guide to Real–time Program-
ming. Yourdon Press Computing Series, Prentice Hall, 1989.

[7] V. Perrier. Can java fly? adapting java to embedded develop-
ment.Embedded Developers Journal, pages 8–18, September
1999.


