Supporting the Secure Deployment
of OSGI Bundles

Pierre Parrend, Stephane Frenot
INRIA Ares team, CITI Laboratory,
21, Avenue J. Capelle, INSA-Lyon, France.
Phone: +33 (0) 04 72 43 71 29
E-mail: {pierre.parrend {stephane.frenp@insa-lyon.fr

Abstract—The OSGi platform is a lightweight man- OSGi Release 4 [1]. The publication process is not
agement layer over a Java virtual machine that makes defined by these specifications, but relies on the Open
runtime extensibility and multi-application support possi- Bundle Repository (OBR) format [2], which is supported
ble in mobile and constraint environments. This powerfull by several Open Source OSGi implementations: the
capability opens a particular attack vector against mobile OBR1 format is supported by Oscar and Knopflerfish
platforms: the installation of malicious OSGi bundles. The and the OBR?2 format is supported by Felix ’

first countermeasure is the digital signature of the bundles X .))
We developed a tool suite that supports the signature, the The OSGi platform is a lightweight overlay to the Java

publication and the validation of the bundles in an OSGi Virtual machine, which supports the runtime installation
framework. Our tools support the publication of bundles of Java components, the management of their life-cycle,
onto a remote bundle repository as well as the validation as well as the proper expression of the dependencies
of the signature according to the OSGi R4 specifications. A pbetween them. This facility typically allows a user to
comparison of existing validation mechanisms shows that gjscover software packages that are available on the In-
our security layer is the only one that is compliant with 106t or in its near environment, to install them together
the specification. with their dependencies, and to un-install them when
they are no longer required. The runtime extensibility
which is thus provided opens a new attack vector, which
The OSGi platform is on the way of becoming they the best of our knowledge has been overlooked in
de facto standard componentization middleware for supe |iterature: the possibility of seamlessly executing
porting extensible software, through the managemeghjicious code from the environment. The figure 1
layer it provides to control the life-cycle of the soshows the attack tree for executing malicious code on a
called ‘bundles’,i.e. the OSGi components. Howevergjient system [3]. Two main strategies exists: to install a
the security characteristics of this life-cycle are hardppjiicious platform, and to install malicious bundles. The
identified, in particular during the deployment of thejst strategy is prevented by the control of the integrity
bundles which is usually realized over insecure networksy. the framework when it is installed. The second strat-
We present here the tools we developed to support the 8§y can be realized through three different approaches:
cure deployment of bundles. The first tool, SF-Jarsiynefserting malicious code during the development, insert-
covers the early life-cycle phases of the deploymemg malicious bundles onto the bundle repositories, or
namely the signature of the bundles by their issuer apgtalling bundles from unauthorized repositories. The
their publication. The second tool, SFélids actually an pyndie issuer is responsible for guaranteeing that the
implementation of the digital signature validation layeggde he provides is sound, which can be achieved by
of OSGi Release 4 specifications, and is based on H\@alyzing it [4]. The insertion of malicious bundles in the
Felix> OSGi implementation. Both are compliant withepositories or the installation from unvalid repositerie
1This work is partially founded by MUSE IST FP6 Projectcan be preventte?hby:heldigitaIdSignlatur%Otf bundeeS' -I;?]i-s
. . paper presents the tools we developed to perform this
" ?ﬁfﬁj}ifigigﬂfgoiliiﬁgfsmjedm‘u%' digital signature. Further information is provided in the
2http://sfelix.gforge.inria.fr/ related technical report [5].
3http://incubator.apache.org/felix/ The main current use cases of the OSGi platform

. INTRODUCTION

source location and the scope of the component release
are published in ‘release databases’ [7]. The binding
between the publishers and the clients is done either
through the publication of static metadata [2], or through
<~ apublish/subscribe mechanism [8]. In both cases, a third
(EE party broker is required. The discovery phase is made of
the identification of the available bundles by the clients,
and the resolution of the dependencies. The Eureka
framework is an example of such a discovery mechanism

is the deployment of Open Source software. In su@Yer the OSGi platform [9]. Specific languages are
environments, security problems are often neglected diffined to support this process of dependency resolution
to the open structure of the projects. However, the brodd0]- The download phase is typically done from a
ening of the applications of the OSGi framework angentralized repository [2]. However, the distribution of
the benefits it may provide to adaptable and extensilifté resources over peer-to-peer overlay networks can be
business-critical systems are highly likely to require ysed with benefit, so as to increase the robustness of the
firm understanding of its security implications, and th@frastructure, the availability of the components[11jeT
availability of effective tools. The security infrastruce, ast phase of the deployment is the configuration of the
which relies in a great part on the digital signature Gomponents on the client. It builo!s the finalization phase
bundles, is common to all application domains, such 86 the deployment of complex distributed systems, and
mobile commerce, wireless remote control, health-cafeoften overlooked when deploying single applications
monitoring, and video-surveillance. This infrastructurB-2]-
must be completed with context- and application-specific The t0ols we propose are based on the Bundle Repos-
security policies, which are out of the scope of this papd’y Metadata to support the extraction of metadata
The following of the paper is organized as followsduring the publication, and their resolution by the clients
The section I presents the related works. The sectiéh€ download is handled by the ‘bundle repository’ bun-
Il gives the detail relative to our tool suite. The sectiol€ at the client's, which is part of the Felix framework.
IV provides a comparison of the various available toold/e integrate these existing facilities together with a
and frameworks dedicated to signing and validating tpeiblication management tool we developed. This latter
digital signature of bundles. Lastly, we conclude thideals with the update of the meta-data of the bundle

ervices

Fig. 1. The Attack Tree for malicious Code Execution

work and give further perspectives. repository and the upload of the bundles. To the best of
our knowledge, such a tool is available neither in the
Il. RELATED WORKS frame of the Felix project, nor in the Equinox platform.

So as to define a secure process for deploying OS iSec Deol i
bundles, it is necessary both to control the overall ure Leploymen
deployment process, as well as the security mechanism3dhe cardinal security properties are the integrity of the
that can be used to protect it. We therefore present otféi@ta, the authentication of their emitter, the confidential
research works related to the deployment process, diydof the communications and the non-repudiation of

to the security aspects of deployment. the actions. Diverse approaches have been defined so as
to enforce these properties on the context of component
A. Deployment of Components deployment.

The various steps of the life-cycle of software compo- The current specification for securing the deployment
nents and of OSGi bundles in particular are the followingf bundles is based on the Java Archive specification
[6]: the publication of the components, the discovery ¢13], and defined with precision in the OSGi Release
the components, the resolution of dependencies betwdespecifications [1]. It consists in the integration of
the components, the download, and the configurationtaée integrity control for each resource through a hash
the initialization step. value and a digital signature in the bundle itself. The

The publication step requires that both the compaigorithms used are SHA-1 for hashing and DSA for the
nents and the information necessary for the client signature. The necessary meta-data is encapsulated in a
execute them properly are made available: the comgide compliant with the ‘Cryptographic Message Syntax’
nent meta-data, dependencies between components,[id¢ This approach provides the authentication of the

bundle issuer and the guarantee of the integrity of tielix implementation of OSGi. Our main contribution in

code. SFelix is the implementation of the OSGi R4 security
An alternative to signature based on asymmetric cryfayer, which is the sole project we know that supports

tography is the use of Message Authentication Codeindle signature according to the OSGi Specifications

(MAC) based on symmetric key [15]. This provides §l]. For more precision, please refer to our technical

more lightweight cryptographic mechanism, but is oftereport [5].

considered as being less secure'than asymmetric Crxp_%;cure Deployment

tography, because the secret key is shared among severa

entities. Moreover, no performance indication is given, The process of secure deployment is shown in the

which means that no factual comparison can be dofigure 2. The deployment of OSGi bundles is compound

with current specifications. The MAC signature proce$¥ issuance phase, and a client-side phase.

can take benefit of the XML signature encapsulation for

easier management [15]. Register o e
A more robust mechanism for guaranteeing the de- T ety

ployment of component is the S-CODEP (SECure COm:-

ponent DEPloyment) protocol [16]. It is based on Ker- Jgn2undes

beros, and provides an anti-replay mechanism. It as-

PKI Authority
(ACS)

— \ Validate Bundle
é N with Security Layer

sumes that the underlying platform can _not be com- Publcaton _gundl SigneEid,e IAELEES I
promised. The use of Kerberos make this approach a S posto Inetalaton raix

. . . Client Platfc
heavyweight one. It is adapted for sensitive systems such =
as enterprise information systems or telecommunication Fig. 2. Secure Deployment of OSGi Bundles

environments.

Several security infrastructures for specific compo- The issuance phase is performed by the bundle issuer.
nent platforms have been defined. For instance, thfie first step is to sign the bundles, or to check that
Cingal model is a component model very similar tghe existing signature is valid. The second step is the
the OSGi one, and provides digital signature using th&traction of the meta-data of the signed bundles, and
same principle of digital signature of the bundles [17}he publication onto a third party repository. The format
A similar mechanism has been defined to support tge the meta-data is defined by the OBR2 Request for
deployment of Web Services [18]. The .Net frameworkomments of the OSGi Alliance [2].
also proposes a similar mechanism to sign assembliesthe client-side phase of the deployment is made of
Its main limitation is that the installed assemblies can ngfe discovery of the bundles, the dependency resolution,
be removed, contrary to OSGi bundles, which makestfe download of the code archives, the validation of the
unproper for mobile and resource-constraint platformsgigital signature, and the start of the bundles. The discov-

These research works related to the problem of s&y, the dependency resolution and the download steps
curely deploying OSGi bundles and other software corgre dealt with by the bundle-repository facility, which is
ponents suffer from one obvious drawback. There gailable in the Felix distribution. The validation step is
currently to the best of our knowledge no tools thgjerformed when the bundle is stored locally, to avoid a
supports the deployment process as it is specified by thecToOu (time-of-check, time-of-use) substitution, and
OSGi Alliance. This matter of fact makes any comparpefore it is installed, so that not authenticated bundles
son impossible - and greatly limits the use of the OSGhn not be executed. It must be compliant with OSGi
platform in environments where security is required. WR4 specifications, but also compatible with the behavior
therefore developed those tools, and present them in #§&he virtual machine. The Sun tools are considered as
subsequent sections. the reference. When the bundle signature is valid, and
the signer is identified by the platform as being a trusted

one, the bundle can be started.
So as to support the process of secure deployment

of OSGi bundles, we developed two complementa SF-Jarsigner: a Tool for secure Publication of Bun-
tools. The first is the SF-Jarsigner that performs tKe€s

signature and the publication of the bundles by their The SF-Jarsigner tool aims at providing a convenient
issuer. The second is SFelix, which is an extension of tgeaphical user interface for signing and publishing OSGi

[1l. THE SFELIX TOOLS SUITE

bundles. Since the signature generation mechanismsignature of a given bundle is unvalid, the bundle is
compatible with the Sun Jarsigner tool, other types ofjected and the installation is aborted.
Jar files or data archives can also be signed. The SFelix security layer is provided as a Java li-
The SF-Jarsigner tool is compound of four graphicékary, and therefore not seen as actual bundles in the
panels. The first panel let the archive publisher selecframework. The verification is performed as a single
‘keystore’ file, where its private/public key pair (respeceall to the ‘jarvalidation’ library we provide, and which
tively a public key) is stored for signing (respectivelys the same that the bundle used in the SF-Jarsigner
checking) bundles. The second panel is the one showol. The required libraries are the Bouncycastle libiarie
on the figure 3, it supports the signature or verificatidscprov and bcmail. The total size of the Security Layer
of bundles that are stored on the local system. The vaigl1.932 kbytes, because of the numerous cryptographic
bundles are shown on the list on the right, and mageimitives that are embedded in the Bouncycastle library.
available for publication. The third panel allows to sdh an environment with restricted resources, it would
and store the informations relative to the remote filee necessary to extract the required classes from these
server where the bundles are to be published. Currentilgrary, so as not to overwhelm the available memory
only the FTP protocol is supported. The last panel leisth unused code.
the publisher choose among the available signed bundles
which one are to be published. The operation can be
repeated on several Bundle Repositories.

IV. COMPARISON WITH OTHERARCHIVE
VALIDATION PROCESSES

So as to confirm the usefulness of the tools we
propose, we compare them to the solutions that are
Buniles 0 be Sgned currently available. Two aspects need to be considered:

fhome; Signer Alias /home/ pierre/tmp/ signed, fr.inri . .)
- o i i d/ frid

e ([omelbierre/ B/ signed rdo) the signature step, and the validation step.

/home/ pierre/tmp/ signed, fr.inri

Jarsigner /0]

Sign »>

A. Sgning Archives

Check »>

R . Two tools are available for signing Jar files or bundles.
hadoneaon [-]® e el The first is the Sun Jarsigner, with is part of the Java
OED06 SDK. The second is the SF-Jarsigner tool we provide.
The Sun Jarsigner is available as a command line utility.
— The SF-Jarsigner is provided as a set of OSGi bundles,
Fig. 3. The Interface of the SF-Jarsigner Tool which support both a convenient use through a graphical
user interface, or a programmatic use through services
The SF-Jarsigner tool is provided as OSGi bundlgsublished inside the OSGi framework.
It can be executed over the Felix, SFelix and Equinox The specifications of digital signature according to the
platforms. With a minor configuration effort, it can alsdar file specifications [13] are relatively vague. They are
be executed over Knopflerfish. It uses several third pattyerefore completed in the OSGi R4 specifications [1].
open source libraries: the Bouncycastle cryptographiowever, if the validity criteria for archive signature are
libraries bcprov and bcmail, the XML libraries xml-more strict in the frame of OSGi systems (see section
commons-resolver and Xerxes from Apache, the FTR-B), the default signature process by the Sun Jarsigner
library Edtftp, and the OBR2 metadata extractor Bindegenerates OSGi compatible archives.
The validation functionalities are provided by the ‘jar- The main difference between the Sun JVM and the
validation’ bundle, and the graphical interface by th©SGi specifications is that, in the case of the Sun
‘Jar Signer Gui’ bundle. Its total size is 3,657 kbytesignature, all entries of the manifest file must be hashed
SF-Jarsigner is available through the SFelix Bundind stored in the so-called ‘Signature File’ (see [5]
Repository. for the detailed structure of a signed bundle). This is
C. SFelix: a hardened OSGi platform not required by the OSGi specifications, Which consid_er
_) , _that no new resource can be added to a signed archive.
The SFelix platform is an extension of the Felix, o er to provide compatibility with Sun tools, the
OSGi implementation, which performs_a bundle S'gSF—Jarsigner adds these additional meta-data.
nature check before the bundles are installed. If theConsequentIy, it is possible to use any of those tools
*http://www.sfelix.free.fr/repository/repository-ppahn| for performing the digital signature of OSGi bundles - or

of other Java archives. The benefit of SF-Jarsigner lie ;[)Oer f:rrs'igner ‘;i‘gr‘:‘t’;h Felix- | Skelix
1) in the convenient user interface and 2) in the support Manager
for bundle publication. Unsigned W A R R
! R Archive
B. Sgnature Validation Unknown A A R R
Whereas the actual behavior of the considered sign ng'gner
tools is identical, the criteria for verifying the validit Addition of A A A R
. o) 9 _y Resource
of signed archive greatly varies between the varioORemoval of A A A R
available checkers and platforms. This has the dirgdResource
consequence that an OSGi bundle that has been modifiégdification R R W R
will not be considered as unvalid in all tools but ours of Resource
o . . . ‘I Unvalid Order A A A R
The criteria of validation of the signature of a bundleof Resources
are shown in the table I. All potential errors are listedSignature of [R R W R
according to the OSGi R4 specification [1], and theEmbedded Archive
behavior of the tested tools and platforms in the presemeaad
. ; p . P }eﬁme Of Check Test Exec Exec | Install
of such an error is given. The considered tools angk: Accept: R: Reject; W: Warning;
platforms are the following: the Sun Jarsigner, the Sun
Java virtual machine with a Security Manager, the Felix TABLE |
platform with security enabled, and the SFelix platform. BEHAVIOR OF SEVERAL TOOLS AND FRAMEWORKS IN THE
All data are directly drawn from experience, but the PRESENCE OF UNVALID ARCHIVES

Felix behavior. Since no minimal permission policy is

made available, and can not be easily deduced from

the behavior of the platform, it can be assumed that 1)

the certificate control, which is done explicitly in the

platform, is performed correctly, and 2) that the integritjnachine is launched. Therefore, no modification of the
control, which is done by the virtual machine, is donkst of trusted signers can be done at runtime, which
in the same way than the ‘Java with Security Managetan be restrictive. The Felix framework is expected to
case. The behavior of the SF-Jarsigner tool, which cégject the unsigned archives and the archives with unvalid
also be used to check signatures, is the same as sighers. It issues warnings when archives that have been
one of SFelix, since it relies on the same ‘JarValidatiofampered with are installed, but seems to install them
library. The other open source implementations of OS@hyhow. SFelix has been developed specifically to be
are not considered here. Knopflerfistioes not provide conform to OSGi R4, so it has a proper behavior in all
support for bundle signature. Neither does Equfhoxested error cases. Its current limitation is that it does
The integrity control during the deployment of Eclips&ot handle certificates chains, used when a valid signer
plugins, which is based on the Equinox framework, @elegates its right to another entity.

performed during the Eclipse plugin deployment through The time of integrity control is different in each tool.

a specific mechanism. The Sun Jarsigner tool, as a command line utility, prints

The results of the experiments are the following. Tt}%e test results immediately. The Java virtual machine

Sun Jarsigner tool identifies files that are not Signegnecks the integrity of the files when they are loaded to

that have been tampered with, or for which the pUbIk?e executed, and so does the Felix platform. This is not

key certificate is ogtdateq. It does not take into ac_cou&gnsistent with the requirements that the whole archive
the fact that the signer is trusted or not, though it h

‘ N . . N3 sound which is expressed by the OSGi specifications.
access to the ‘keystore’ which contains such mformatloxﬂhiS explains why Felix is not R4 compliant, at least
The Java virtual machine has the same behavior than Wﬁ '

Jarsi but d take th _ int at concerns the control of the integrity of the bun-
arsigner, but does not fake tne warnings nto aCC(_Ju'H s. The SFelix platform performs the archive signature
Consequently, no difference is done between a sign

d ianed archive if th lid si ; i eck at install time. This implies a slight performance
and an unsigned archive It the valid signer are not expl verhead, but is necessary to guarantee that only valid
itly indicated in the permission policy before the virtua)

rchives are installed. This approach prevents the sudden
Shitp:/Aww.knopflerfish.org/ unavailability of services that are installed, but for whic
Shttp://www.eclipse.org/equinox/ some unfrequently executed classes are tampered with.

V. CONCLUSIONS ANDPERSPECTIVES

We present in this paper the tool suite we develope%]
to support the secure deployment of OSGi bundles. Ouyg]
contribution is twofold. First, we integrate the available
publication mechanisms defined by the Bundle Repos'iJ>
tory format in a convenient tool that makes possible to
publish a set of bundles so that they are made available to
the client platforms. Secondly, we provide a library that4l
support the generation and the validation of signature
according to the OSGi R4 specifications. The signature
generation functionality is integrated in the publications]
tool SF-Jarsigner. The signature validation functiogalit 6]
is integrated as an extension of the Felix OSGi imple-
mentation, name SFelix (for Secure Felix). No other tool
for bundle publication is currently available, to the best
of our knowledge. Moreover, all other existing validation[7]
mechanisms for OSGi bundle signature do not follow the
OSGi specifications. To provide firm arguments of the
benefit of our tools, we performed a comparison betweelfl
the various archive signature validation mechanisms.

The limitations of our tools are the following. Related
to the publication phase, only the OBR2 protocol id°]
supported. However, Knopflerfish, and Oscar (the pre-
decessor of Felix) still use the OBR1 format, which
is not compatible with it. The extension of the currerit0]
facility would make our tool useful in systems that use
those platforms, in particular Knopflerfish. Related to
the signature process, the main current limitation is that]
the possibility of signature delegation through signature
path is not supported at the verifier's, which must have a
reference to each actual signers. Moreover, the signatjirg
generation must be done to maintain the compatibility
with the Java virtual machine and Sun tools. Therefore
additional meta-data are inserted in the hash files of tﬁg]
signed bundles that would not be necessary.

This work provides the community with convenienk4]
tools for securely publishing OSGi bundles, or oth Is
software components. It also provides an implementation
of the OSGi security layer which is necessary for com-
paring the current specifications and a modified secur'tly
architecture. The next requirement is the developm n?]
of an infrastructure to manage the identity of the bundle
issuers. The current proposed solution is based on Pulbli@
Key Infrastructure, which proves to be difficult to put
into use. We therefore plan to study the possibility of
using an alternative signature scheme. The ldentity-bages]
signature mechanism, for instance, could be a valuable
alternative to provide a comparable level of security,
while greatly simplifying the key management process.

REFERENCES

OSGi Alliance, “Osgi service platform, core specificatire-

lease 4,” Draft, July 2005.

OSGi Alliance and R. S. Hall, “Bundle repository,”
OSGi Alliance RFC 112, 2006. [Online]. Available:
http://bundles.osgi.org/rfc-011BundleRepository.pdf

] P. Parrend and S. Frenot, “A security analysis for hontewgay

architectures,” inlnternational Conference on Cryptography,
Coding & Information Security, Venice, Italy, November 2006.
——, “A set of metrics for security assessment in compdnen
based software systems,” ependable System and Networks,
Dependable Computing and Communication Systems, 2007,
submitted.

——, “Secure component deployment in the osgi(tm) rededs
platform,” INRIA, Tech. Rep. RT-0323, June 2006.

A. Carzaniga, A. Fuggetta, R. S. Hall, A. van der Hoek,
D. Heimbigner, and A. L. Wolf, “Characterization framework
for software deployment technologies,” Dept. of Computer
Science, University of Colorado, Tech. Rep. CU-CS-857-98,
1998.

A. van der Hoek and A. L. Wolf, “Software release manage-
ment for component-based softwar&ftware: Practice and
Experience, vol. 33, pp. 77-98, 2003.

C. Wang, A. Carzaniga, D. Evans, and A. L. Wolf, “Security
issues and requirements for internet-scale publish-sillgssys-
tems,” inHawaii International Conference on System Sciences,
2002.

K. Pauls and R. S. Hall, “Eureka - a resource discoveryiser
for component deployment,” iisecond International Working
Conference on Component Deployment, ser. LNCS, vol. 3083,
2004, pp. 159-174.

D. Heimbigner, R. Hall, and A. Wolf, “A framework for
analyzing configurations of deployable software systenrs,”
Proc. of the 5 IEEE Int’'l Conf. on Engineering of Complex
Computer Systems, October 1999.

S. Frenot and Y. Royon, “Component deployment usingexpe
to-peer overlay,” inThird International Working Conference
on Component Deployment, Grenoble, France, ser. LNCS, vol.
3798, November 2005.

R. Hall, D. Heimbigner, A. van der Hoek, and A. Wolf, “An
architecture for post-development configuration managerne

a wide-area network,” ilnter national Confeence on Distributed
Computing Systems, May 1997.

Sun Microsystems, Inc., “Jar file specification,” Sunal&pec-
ifications, 2003.

R. Housley, “Cryptographic message syntax (cms),”FERFC
3852, July 2004.

] Y.-G. Kim, C.-J. Moon, D.-H. Park, and D.-K. Baik, “A mac

based service bundle authentication mechanism in the esgi s
vice platform,” inDatabase Systems for Advanced Applications,
ser. LNCS, vol. 2973, 2004.

M. Grechanik and D. E. Perry, “Secure deployment of comp
nents,” in Second International Working Conference on Com-
ponent Deployment, ser. LNCS, no. 3083, 2004.

A. Dearle, G. Kirby, A. McCarthy, and J. C. D. y Carballo,
“A flexible and secure deployment framework for distributed
applications,” inSecond International Working Conference on
Component Deployment, ser. LNCS, 2004, no. 3083.

M. Gaedke, J. Meinecke, and M. Nussbaumer, “Supporting
secure deployment of portal components,’liternation Con-
ference on Web Engineering, ser. LNCS, no. 3140, 2004.

