
Reflective and Refractive Variables: A Model for Effective and
Maintainable Adaptive-and-Dependable Software

Vincenzo De Florio, Chris Blondia

University of Antwerp
Department of Mathematics and Computer Science

Performance Analysis of Telecommunication Systems group
Middelheimlaan 1, 2020 Antwerp, Belgium

Interdisciplinary institute for BroadBand Technology
Gaston Crommenlaan 8, 9050 Ghent-Ledeberg, Belgium

Abstract

We propose a simple and effective tool for the expres-
sion of tasks such as cross-layer optimization strategies
or sensors-related applications. The approach is based
on what we refer to as “reflective and refractive vari-
ables”. Both types of variables are associated with ex-
ternal entities, e.g. sensors or actuators. A reflective
variable is a volatile variable, that is, a variable that
might be concurrently modified by multiple threads. A
library of threads is made available, each of which inter-
faces a set of sensors and continuously update the value
of a corresponding set of sensors. One such thread is
“cpu”, which exports the current level of usage of the
local CPU as an integer between 0 and 100. This inte-
ger is reflected into the integer reflective variable cpu.
A refractive variable is a reflective variable that can be
modified. Each modification is caught and interpreted
as a request to change the value of an actuator. For
instance, setting variable “tcp sendrate” would request
a cross-layer adjustment to the thread interfacing the
local TCP layer entity. This allows express in an easy
way complex operations in the application layer of any
programming language, e.g. plain old C. We describe
our translator and the work we are carrying out within
PATS to build simple and powerful libraries of scripts
based on reflective and refractive variables, including
robotics applications and RFID tags processing.

1 Introduction

As well known, a number of problems require solu-
tions that involve the whole of the system layers, from

the bare machine up to the application. Problems of
this type include e.g. fault-tolerance, cross-layer sig-
naling, or adaptability [9]. We can observe that wher-
ever there is a need for flexibility, performance, quality
trade-offs, or security and co-operation, there exists
a need to monitor and adjust parameters across the
whole of the system layers. Much more than this, there
exist a need to do so in an as much as possible simple
way, from both an architectural and the user points
of view. This means that the architectural strategy
must be simple and that the way to express the solu-
tions must be straightforward. To date, several clever
architectural strategies to solve those problems exist.
Just to name a few, the energy-performance manager
of IMEC [2] or the network-status of Mobiman [3] pro-
vide interesting architectures to reach effective cross-
layer optimization. In both the mentioned approaches,
though, no solution is envisaged to the problem of the
optimal expression of cross-layered adaptations. For in-
stance, both the above mentioned approaches require
ad hoc versions of the protocol layers, versions that ex-
plicitly make use of the network status. Each layer,
to be compliant to these models, must endorse logics
to take actions making use of the of the information
kept in a network status database. This requires the
design of ad hoc software. In such software the two
concerns – the functional one, i.e. the layer function,
and the non-functional one, for cross layer adaptation
– are mixed and intertwined. A possible solution cur-
rently being investigated by other researchers is aspect
oriented computing [8, 1], which requires the use of cus-
tom programming languages and complex tools. We
propose a simpler, language independent solution that
we call reflective and refractive variables (in short, RR
vars). In the following we describe our approach in

1



Figure 1. A simple example of the use of RR vars.

Sect.2 and we show how we implemented it in Sect.3.
An analysis of current and possible uses of RR vars in
fields such as robotics, sensor networks, and RFID ap-
plications, is presented in Sect.4. Section 5 concludes
this work with a description of our future plans involv-
ing RR vars.

2 Reflective, Refractive and Redun-
dant Variables

The idea behind RR vars is to use memory access
as an abstraction to perform concealed tasks. RR vars
are volatile variables whose identifier links them with
an external device, such as a sensor, or an RFID, or an
actuator. In reflective variables, memory cells get asyn-
chronously updated by service threads that interface
those external devices. We use the well-known concept
of reflection because those variables “reflect” the val-
ues measured by those devices. In refractive variables,
on the contrary, write requests trigger a request to up-
date an external parameter, such as the data rate of
the local TCP protocol entity or the amount of redun-
dancy to be used in transmissions. We use to say that
write accesses “refract” (that is, get redirected [7]) onto
corresponding external devices.

The RR var model does not require any special lan-
guage: Figure 1 is an example in the C language. The
portrayed program declares two variables: “cpu”, a re-
flective integer, which reports the current level of us-
age of the local CPU as an integer number between 0
and 100, and “tcpTxRate”, a reflective and refractive
integer, which reports and sets the send rate param-
eter of the TCP layer. The code periodically queries
the CPU usage and, when that reaches a value greater
than 90%, it requests to change the TCP send rate.
Note that the only non standard C construct is at-
tribute “Ref t”, which specifies that a corresponding
declaration is reflective or refractive or both. Through
a translation process, discussed in Sect.3, this code is
instrumented so as to include the logics required to in-

terface the cpu and the TCP external devices. Figure
3 shows this simple code in action on our development
platform—a Pentium-M laptop running Windows XP
and the Cygwin tools.

We observe that through the RR var model the de-
sign complexity is partitioned into two well defined and
separated components: the code to interface external
devices is specified “elsewhere” (Sect.3 describes where
and how) while the functional code is specified in a fa-
miliar way, in this case as a C code reading and writing
integer variables.

The result is a structured model to express tasks
such as cross-layered optimization, adaptive or fault-
tolerant computing in an elegant, non intrusive, and
cost-effective way. Such model is characterized by
strong separation of design concerns, for the func-
tional strategies are not to be specified aside with
the layer functions; only instrumentation is required,
and this can be done once and for all. This pre-
vents spaghetti-like coding for both the functional and
the non-functional aspects, and translates in enhanced
maintainability and enhanced efficiency.

The RR var model provides the designer also with
another attribute: a variable, be it an RR var or a
“common” one, can be tagged as being “redundant”.
Redundant variables are variables whose contents get
replicated several times so as to protect them from
memory faults. Writing a redundant variable means
writing a number of replicas, either located strate-
gically1 on the same processing node or on remote
nodes—when available and the extra overhead be al-
lowed. Reading from a redundant variable actually
translates in reading from each of its cells and perform-
ing majority voting. The result of this process is mon-
itored by a special device, that we call Redundance.
Redundance measures the amount of votes that differ
from the majority vote, and uses this as a measure of
the disturbance in the surrounding environment. Un-
der normal situation, Redundance triplicates the mem-
ory cells of redundant variables. This corresponds to
tolerating up to one memory fault in the cells asso-
ciated to a redundant variable. Under more critical
situations, the amount of redundancy should change.
This is what actually happens: the component that
manages redundant variables declares the integer re-
flective variable “ref t int redundance”. The latter is
set asynchronously by the Redundance device, which
adjusts the corresponding memory cells2 with a num-
ber representing the ideal degree of redundancy with

1Strategically means here that the redundant cells are allo-
cated in such a way as to tolerate possible burst errors, affecting
contiguous memory cells.

2Not surprisingly enough, variable “redundance” is in-
deed. . . redundant.

2



Figure 2. An excerpt from the execution of the code in Fig.2.

respect to the current degree of disturbances.
The RR var model does not support only cross-layer

optimization—in general, it provides an application-
layer construct to manage feedback loops.

Feedback loops (see Fig.3)—a well known concept
from system theory are ideal forms to shape our sys-
tems so as to be adaptive-and-dependable [10]. Such
property is an important pre-requisite for the welfare
of our computer-dominated societies and economies: in
the cited paper Van Roy explains their relevance to
future software design. RR vars provide a straightfor-
ward syntactical structure and software architecture for
the expression of feedback loops. We use this structure,
e.g., to implement redundant variables. The main ad-
vantage in this case is that, instead of taking a design
decision once and for all, we let a system parameter
change as needed, zeroing in on the optimum. The use
of RR vars simplifies the design of our solution, which
also enhances maintainability. But probably the most
important consequence is that our solution does not as-
sume a fixed, immutable fault model, but lets it change
with the actual faults being experienced.

Figure 4 shows how simple it is using a redundant
variable: no syntactic differences can be noticed. The
required logic is “hidden” in the translation process.

3 Implementation

The core of the RR vars architecture is a parser that
translates the input source code into two source files,
one with an augmented version of the original code

and one server-side to monitor and drive the external
devices. To explain this process we consider Fig.5, an
excerpt from the translation of the code in Fig.4. Let
us review the resulting code in more detail (please note
that item x in the following list refer to lines tagged as
“// x” in the code):

1. First the translator removes the occurrences of at-
tributes “ref t” and “redundant”.

2. Then it performs a few calls to function “aopen”.
This is to open the associative arrays “reflex” and
“rtype”. As well known, an associative array gen-
eralizes the concept of array so as to allow address-
ing items by non-integer indexes. The arguments
to “aopen” are functions similar to “strcmp”, from
the C standard library, which are used to compare
index objects. The idea is that these data struc-
tures create links between the name of variables
and some useful information (see below).

3. There follow a number of “awrites”, i.e., we cre-
ate associations between variables identifiers and
two numbers: the corresponding variables address
and an internal code representing its type and at-
tributes.

4. Then “Server”, the thread responsible to interface
the external devices, is spawned.

5. Besides a write access into refractive variable tcp-
TxRate, the translator places a call to function
“CalltcpTxRate”. In general, after a call to refrac-
tive variable v, the call “Callv(&v)” is produced.

3



Figure 3. General structure of feedback loops (picture from [10]).

Figure 4. Redundant variables.

6. Similarly, a write access to redundant variable w,
of type t, is followed by a call to “RedundantAs-
sign t(&w)”.

7. Finally, reading from redundant variable w, of type
t, is translated into a call to function “Redun-
dantRead t(&w)”.

It is the responsibility of the designer to make
sure that proper code for functions “Callv(&v)” is
produced. Functions “RedundantAssign t(&w)” and
“RedundantRead t(&w)” are automatically generated
through a template-like approach—the former per-
forms a redundant write, the latter a redundant read
plus majority voting. For voting, an approach similar
to that in [5] is followed. Associative arrays are man-
aged through class ASSOC [4].

As already mentioned, the “Server” thread is the
code responsible to monitor and interface the exter-
nal devices. Its algorithm is quite simple (see Fig.6):
the code continuously waits for a sensor update (lines
tagged with “// 1”), then retrieves the address and
type of the corresponding reflective variable (in “//
2”) and finally updates that variable (“// 3”).

The complexity to interface external devices is
charged to function “getValue”, we show an excerpt
of which in Fig.7. The core of “getValue” is function
“cpu”, which returns the amount of CPU currently be-
ing used.

4 Problem Solving with RR Vars

We are in the process of making use of RR vars
in several real-life applications—we plan to report on
these use cases in further papers. In the meanwhile we
report herein on possible contexts where RR vars could
provide effective and low-cost solutions.

4.1 Concurrency

As cleverly explained e.g. by Gates in [6], a well
known challenge in robotics is concurrency, defined in
the cited paper as “how to simultaneously handle all
the data coming in from multiple sensors and send the
appropriate commands to the robot’s motors”. The
conventional approach, i.e., making use of a long loop
that first reads all the data from the sensors, then pro-
cesses the input and finally controls the robot is not
adequate enough. Because of this, the robot control
could be using stale values, which could bring to disas-
trous consequences. As Gates mentions in the cited pa-
per, this is a scenario that applies not only to robotics
but also to all those fields such as distributed and par-
allel computing where data and control often need to
be effectively orchestrated under strict real-time con-
straints. “To fully exploit the power of processors
working in parallel, the new software must deal with
the problem of concurrency”, Gate says. We believe

4



Figure 5. Abridged version of the main function of the translated code.

Figure 6. The Server code.

Figure 7. Function getValue interfaces all the external devices that are connected to RR vars.

5



Figure 8. RR var to localize objects with RFID tags on
them.

an approach like RR vars can be an effective syntactic
structure for that: a control loop using reflective vari-
ables, for instance, would not need to specify a reading
order for the input variables, which are updated asyn-
chronously, as new values need to replace old ones.

4.2 Localizing Hidden Assets

We are currently extending our translator so as to
allow writing programs such as the one in Fig.8.

At first sight the program may sound meaningless,
as it only declares a function and an RR var, “rfid”, and
does not seem to perform any useful action. “Behind
the lines”—a nice feature offered by translators—what
happens is that surrounding RFID tags reflect their
content onto reflective variable “rfid”. Data stored into
that variable is compared with the initialization value
(in this case, an ISBN number). In case of a match,
function “beep” is called.

Now imagine running this code onto your PDA while
walking through the lanes of a large library such as
the Vatican Library in search for a “lost” or misplaced
book. When in reach of the searched item, the PDA
starts beeping3. Or imagine that, due to interna-
tional regulations, all “companies” building antiperson-
nel mines be obliged by law to embed RFID tags into
their “products”. When activated, these tags and a
program as simple as the one in Fig.8 could easily pre-
vent dreadful events that continuously devastate the
lives of too many a human being.

5 Conclusions

We introduced a translation system that allows mak-
ing use of reflection in a standard programming lan-
guage such as C. The same translator supports “refrac-
tion”, that is the control of external devices through
simple memory write accesses. These two features are

3The tomes of the Vatican library have been recently
equipped with RFID tags.

used to realize redundant data structures. As well
known, redundancy is a key property in fault-tolerance.
The Shannon teorem teaches us that through any un-
reliable channel it is possible to send data reliably by
using a proper degree of redundancy. This famous re-
sult can be read out in a different way: for each de-
gree of unreliability, there is a minimum level of re-
dundancy that can be used to tolerate any fault. Our
approach uses RR vars to attune the degree of redun-
dancy required to ensure data integrity to the actual
faults being experienced by the system. This provides
an example of adaptive fault-tolerant software.

RR vars can be used to express problems in cross-
layer optimization, but also in contexts where con-
currency calls for expressive software structures, e.g.
robotics. Localization problems could also be solved
through a very simple scheme. Within PATS we are
now further improving our model and tools and de-
signing a few simple and powerful libraries of scripts
based on reflective and refractive variables.

References

[1] J. Bonér. AspectWerkz - dynamic AOP for Java. In
Proceedings of AOSD 2004, March 2004.

[2] B. Bougard, G. Lenoir, W. Eberle. A new approach
to dynamically trade off performance and energy con-
sumption in wireless communication systems. In Proc.
of IEEE SiPS, Aug. 2003.

[3] M. Conti, G. Maselli, G. Turi, S. Giordano. Cross-
layering in mobile ad hoc network design. Computer,
37(2):48–51, Feb. 2004.

[4] V. De Florio. Array associativi, linguaggio C e pro-
grammazione CGI. DEV., (27), Feb. 1996.

[5] V. De Florio, G. Deconinck, R. Lauwereins. Soft-
ware tool combining fault masking with user-defined
recovery strategies. IEE Proceedings – Software,
145(6):203–211, Dec. 1998.

[6] B. Gates. A robot in every home. Scientific American,
Jan. 2007.

[7] Institute for Telecommunication Sciences. Telecom-
munication standard terms. Retrieved on Jan. 31,
2007 from www.babylon.com/dictionary/4197/Tele-
communication Standard Terms Dictionary.

[8] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Videira Lopes, J.-M. Loingtier, J. Irwin. Aspect-
oriented programming. In ECOOP’97, Lecture Notes
in Computer Science, vol. 1241, Finland, June 1997.
Springer, Berlin.

[9] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-
end arguments in system design. ACM Trans. Comp.
Sys., 2(4):277–288, 1984.

[10] P. Van Roy. Self management and the future of
software design. Elec. Notes in Theor. Comp. Sci.
(www.elsevier.com/locate/entcs), 2006.

6


