
Runtime Deployment Adaptation for
Resource Constrained Devices

Raf Hens, Bas Boone, Filip De Turck, Bart Dhoedt
Department of Information Technology

Ghent University - IBBT - IMEC
9050 Gent, Belgium

E-mail: Raf.Hens@intec.UGent.be

Abstract—This paper proposes a solution for the re-
source constraints of mobile devices. As an alternative for
the thin client approach, a hybrid approach is presented,
that is able to adapt dynamically to changes in the context
in which the mobile application runs. By switching dy-
namically, at runtime, between local and remote execution
of components of an application, the quality of experience
of the end user is optimized.
An ILP model to minimize the impact on end user expe-
rience, taking into account different context parameters,
such network delay and available processing resources, is
presented. Tests performed with this model have resulted
in a simplified ILP model. The behaviour of this model
under changing network conditions is presented.
Finally, the possibilities to incorporate this model into an
earlier designed framework are discussed.

I. INTRODUCTION

The popularity of mobile devices, such as PDAs and
mobile phones, their increasing networking capabilities
and the growing number of applications and uses for
those devices caused the thin client paradigm to regain
interest. Although mobile devices have increasingly more
resources, they are still inherently restricted, because of
their mobility, if only because they are battery powered.
Therefore the thin client approach is feasible in this
context: offloading tasks to more powerful back end
servers in the network, while using the mobile device
only for input and output.

However, in order to reach an acceptable quality of
experience, the network has to meet certain conditions.
Network bandwidth has to be sufficient and network
latency has to be low enough to guarantee a smooth user
experience. Especially for mobile devices this is a sig-
nificant problem, because they use wireless connections,
which can fluctuate a lot in bandwidth and latency over
time.

Thus, a pure thin client approach is highly dependent
on the network conditions. Therefore we propose a

hybrid solution, that can switch at runtime between
local execution and offloading of components of an
application, transparently towards the end user. Such an
approach enables adaptation to the changes in the dy-
namic context in which mobile applications are executed.

This paper focuses on the question which composition
of the application is best suited at a certain time, with re-
gard to the location where the components are executed:
on the hybrid thin client device or on the offloading
server.

A. Related work

In [1] an architecture and design to support runtime
implementation switching have been presented. The high
level architecture is shown in Fig. 1. It is a component
based application framework that generates a level of
indirection (shaded in the figure) between the compo-
nents an application is composed of, in order to choose
the best suitable component at any time. By offering
the switching functionality, the framework relieves ap-
plication developers from the adaptation to the changing
conditions.

Although it is designed to support runtime imple-
mentation switching between any component of a set
of functionally equivalent components, the switching in
this case is limited to a locally executing and a remotely
executing component.

This paper focuses on the decision process of when to
switch to another deployment of locally and remotely ex-
ecuting components. The focus is thus on theSwitching
Mechanism.

The concept of offloading tasks to nodes in the net-
work has similarities to grid computing [2]. An im-
portant difference is the level of user interaction: tasks
in grid computing are often computationally complex
and/or data intensive processes without user interaction.
A study of grid computing for interactive applications



Fig. 1. Architecture of the framework

has been presented in [3]. Another important element is
the mobility of the end user device and the associated
dynamic context in which the applications run.

II. GENERAL ILP MODEL

In [4] an ILP model has been presented to find the
best deployment of a set of components of a distributed
system on a set of network nodes, with regard to the total
delay for a call to go through the distributed system. This
optimization is done at design time.

This model has been used as a basis for an ILP
model that calculates the best deployment of locally and
remotely executed components, given a set of conditions,
such as available resources and network parameters.

The model takes network nodes and software compo-
nents in consideration. Network nodes have a processing
capacity and a memory capacity. Software components
have a processor load and a memory usage. Network
nodes can be connected through network links. A depen-
dency between software components executing on dif-
ferent network nodes will introduce network traffic. The
model will optimize the deployment of the components
and the way the traffic is routed.

A. Parameters

Since the goal is to adapt to changing conditions
at runtime, the parameters in the model should be
interpreted as snapshots of the conditions at a certain
time. The indication of a timestamp has been omitted
for clarity, thusLit is written asLi (processor load of
componenti at time t).

In the model, the following parameters are used:
• I: the set of software components which are to be

deployed
• R: the set of network nodes on which these software

components can be deployed; this set consists of

two subsets:Rc (hybrid thin clients) andRs (off-
loading servers)

• N : the set of (uni-directional) network links be-
tween network nodes

• Li, i ∈ I: the processor load of software component
i. This is an indication of the processing load
the component will cause on a node. It could be
measured by profiling the component on a reference
system.

• Mi, i ∈ I: the memory usage of software compo-
nent i. Again, profiling may be used to determine
this value.

• Cr, r ∈ R: the processing capacity of node r. This
parameter is related to the processor load (Li): the
processor utilization for componenti on noder will
be Li/Cr. This parameter could be measured by
comparing the node with a reference system.

• Memr, r ∈ R: the memory capacity of node r. This
parameter is related to the memory usage (Mi): the
relative amount of memory used by componenti on
noder will be Mi/Memi.

• Tij , i, j ∈ I: the amount of data that is exchanged
between componenti andj.

• Bl, l ∈ N : the capacity (available bandwidth) of
network link l.

• δl, l ∈ N : an indication of the network latency of
network link l.

• Dij , i, j ∈ I: the latency dependency between com-
ponenti andj. This is an indication of how much
influence there is when network traffic between
componenti andj has a certain network latency.

B. Decision variables

The decision variables represent the deployment of the
components and the routing of messages through the
network. These variables are set by the ILP solver in
order to optimize the objective function.

• Sir: a binary decision variable. Its value is equal to
1 when componenti is deployed on noder, and0
otherwise.

• hlij : a binary decision variable. Its value is equal
to 1 if the network traffic from componenti to
componentj is routed over network linkl, and0
otherwise.

C. Constraints

•

∑

r∈R Sir = 1,∀i ∈ I: this constraint ensures that
each componenti is deployed on exactly one node
r.



•

∑

l∈Out(r) hlij −
∑

l∈In(r) hlij =
{

Sir − Sjr, if a call exists from i to j

0, otherwise
,

∀r ∈ R, i, j ∈ I
These constraints are the network flow constraints.
They ensure that a path exists between components
i andj, irrespective of where those components are
deployed.Out(r) and In(r) represent the set of
network links that start and end inr, respectively.
If componenti is deployed onr andj is deployed
elsewhere, then the right hand side of the equation
equals1. If both components are deployed onr,
then the right hand side of the equation equals0:
no network flow is required.

•

∑

i∈I SirLi < 0.9 × Cr,∀r ∈ R: Processing ca-
pacity constraint: the total load caused by the de-
ployment of components on noder can not exceed
the processing capacity of the node. Note that the
constraint limits the capacity at0.9 × Cr to avoid
pushing the node to its maximum capacity and thus
causing unwanted effects, such as queueing. The
constant,0.9, can of course be adjusted

•

∑

i∈I SirMi < 0.9 × Memr,∀r ∈ R: Memory
capacity constraint: the total memory usage can not
exceed the available memory. Limitting the capacity
to 0.9 × Memr could be useful, for example, to
avoid intensive memory swapping to hard disk.

•

∑

i,j∈I hlijTij < 0.9 × Bl,∀l ∈ N : This constraint
expresses the limit on the bandwidth for each net-
work link l. As before, the limit on the bandwidth
is at 0.9 × Bl, avoiding effects such as packet loss
at near maximum capacity.

• Sir = 1, if componenti has a fixed deployment on
noder. This is used, for example, to make sure that
the component that accepts user input and presents
output is always located on the hybrid thin client
device.

• Sir = 0,∀i ∈ Comp(r1), r ∈ Rc \ {r1}: This
constraint ensures that none of the components of
the set of components of clientr1, Comp(r1), is
deployed on other clients, only on offloading servers
or on clientr1 itself.
This constraint can be omitted when modelling an
ad-hoc network, where an infrastructure containing
offloading servers is limitted or non-existent.

D. Objective function

The objective function expresses the impact on user
experience. A lower figure means less impact and thus
a better user experience. The function is a weighted

mean of parameters that affect user experience. In this
case processing load, memory usage, network traffic and
network latency are considered.

All those parameters have to be as low as possible
on the hybrid thin client device, but since they are often
in contradiction with each other, trade offs have to be
made.

• processing load: the processor in the device is
inherently slower than the processor in an offloading
server causing the processing time to be longer

• memory usage: memory capacity of the device is
inherently limited

• network traffic: wireless links have limited band-
width; network traffic might have to paid for, per
byte.

• network latency: the delay caused by sending user
events to an offloading server and sending the
results back decreases the user experience

impact =

X1

∑

r∈R

(
∑

i∈I

SirLi/Cr)

+X2

∑

r∈R

(
∑

i∈I

SirMi/Memr)

+X3

∑

l∈N

(
∑

i,j∈I

hlijTij)/Bl

+X4

∑

l∈N

(
∑

i,j∈I

hlijDij)δl

Of course, it is difficult to quantify the different parts of
the objective function in relation to each other. It is, for
example, hard to say to what degree network delay has
more (or less) impact on user experience than any other
parameter. This is highly dependent on the application
and the user.
ThereforeX1 to X4 can be adjusted to determine the
weight of each part,

∑

p=1...4 Xp = 1.

E. Validation

The model described above has been tested with
different input sets, regarding among others network
topology, number of clients, number of software compo-
nents and interconnection between software components.
Fig. 3 shows the average impact per client, when the
number of clients increases while the network conditions
and the offloading servers are kept constant. All clients
connect through the same access network (AN) (Fig. 2).
The core network is modelled as a ring network and as
a full mesh network.



Mobile

devices

Ring network

Offloading

servers

Fig. 2. Network topology (for ring network)

The access network is varied from high capacity, over
low capacity, to very low capacity. High capacity means
the access network has the same bandwidth as the core
network, low capacity is1/10 of the core network and
very low is 1/20. The number of offloading servers is 3
and the number of components per client device is 4.

The graph shows that the network topology in the core
network is of little influence: the mesh and ring network
give very close results. As long as the access network
can cope with the load, all setups give the same result.
Once the access network is saturated, more components
have to be executed locally, thus increasing the average
impact. This is consistent with the situation where a
mobile device connects through a wireless link, which
imposes the biggest limitations.

The impact when all components are executed locally
(local execution) is the upper limit.

The same test has been repeated with software compo-
nents that have more interconnections and that send more
data to each other. The results are shown in Fig. 4. The
overall trend is similar, but as the access link saturates,
the impact increases more rapidly because of the extra
incurred network traffic.

III. S IMPLIFIED ILP MODEL

Since the topology of the core network is of little
influence and the access link is the main factor, the ILP
model can be simplified. Moreover, since the model tries
to keep components, that send much data to each other,
on the same node, it can be simplified further.

This simplification is very important when considering
runtime deployment adaptation. Since the best deploy-
ment has to be generated while an application is running
and the solution has to be re-evaluated when the context,
in which the application runs, changes, the complexity

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

clients

a
v
e
ra

g
e
 i

m
p

a
c
t

local execution ring, 3 servers, AN high

ring, 3 servers, AN low ring, 3 servers, AN very low

mesh, 3 servers, AN high mesh, 3 servers, AN low

mesh, 3 servers, AN very low

Fig. 3. Impact in relation to number of clients

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

clients

a
v

e
ra

g
e

 i
m

p
a

c
t

local execution ring, 3 servers, AN high
ring, 3 servers, AN low ring, 3 servers, AN very low
mesh, 3 servers, AN high mesh, 3 servers, AN low
mesh, 3 servers, AN very low

Fig. 4. Impact in relation to number of clients (more dependencies
between components)

of the model is an important factor. This is discussed
later.

The changes compared to the general ILP model are:

• Cc, Cs,Memc,Mems: the processing and memory
capacities of client and server, respectively.

• B: the capacity of the single access network link.
• δ: an indication of the network latency of the single

access network link.

A. Decision variables

• Si: a binary decision variable. Its value is equal to
1 when componenti is deployed on the offloading
server, and0 when deployed on the client.

• hij : a binary decision variable. Its value is equal to
1 if componenti and j are on different node, i.e.
when their interaction goes over the network. It is
0 otherwise.



TABLE I
MODELLING A XOR FUNCTION IN ILP

Si Sj Si − Sj Sj − Si hij XOR
0 0 0 0 0 or 1 0
1 0 1 -1 1 1
0 1 -1 1 1 1
1 1 0 0 0 or 1 0

B. Constraints

•















hij ≥ Si − Sj

hij ≥ Sj − Si

hij ≤ 1
∀i, j ∈ I
These constraints express the relation between the
two types of decision variables. IfSi and Sj are
equal, i.e. if componenti andj are deployed on the
same node,hij should be0. Otherwisehij should
be 1.
Thus, hij = Si XOR Sj, which can not be ex-
pressed directly in an ILP model. The constraints
above are equivalent to a XOR function (TABLE I)
when minimizing the objective function, as the
value ofhij will be chosen as low as possible, i.e.
0.

• The capacity constraints are similar to the ones used
in the general model.

C. Objective function

Thus, with the assumption that an offloading server is
available for the client device, the objective function can
be simplified. An offloading server could be elected in
a login phase or a subscription based mechanism could
be used. In this case the choice of deployment is limited
to 2 nodes: the client device and the offloading server.

impact =

X1

[

∑

i∈I

(1 − Si)Li/Cc + SiLi/Cs

]

+X2

[

∑

i∈I

(1 − Si)Mi/Memc + SiMi/Mems

]

+X3

∑

i,j∈I

hijTij/Bl

+X4

∑

i,j∈I

hijDijδ

D. Validation

The simplified model has been tested with input sets
representing different conditions. One result is shown in

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62

latency

im
p

a
c

t

thin client local execution hybrid

Fig. 5. Impact in relation to network latency

Fig. 5. It shows the associated impact when the network
latency increases. As references, the impact for local
execution, which is the upper limit, and the impact for
a pure thin client approach are shown.

When the network latency is low enough, the model
behaves as a pure thin client. All components, except
for the component that handles the user interaction, are
executed on the offloading server. As the network latency
increases, the trade off changes: using the less powerful
local resources becomes more feasible than accepting
the delay added by the offloading. This causes some
of the components to be executed locally to decrease
network traffic. As network latency increases further,
more components are executed on the hybrid thin client
device, until finally everything runs locally, reaching the
upper limit (local execution).

Determining the impact of network latency on user
experience is ongoing research in our thin client research.
This is done by subjective tests with different kinds of
applications. Similar research is presented in [5], where
the effect of network latency on interactive applications
on thin clients is quantified.

In the case shown in Fig. 5, the following simplifica-
tion is used. The indication of network latency,δ, is the
square of the actual network latency. This assumes that
the impact on user experience increases quadratically in
relation to increasing latency.

IV. PRACTICAL USE AND PROTOTYPE

In order to incorporate the decision process in the
prototype presented in [1], several approaches are pos-
sible. The easiest way is to just add the ILP model
in the framework through the use of an ILP solver.
This is usable for testing purposes and evaluation, but



proves counterproductive in practice. The resources on
the device are too scarce to be used for a problem as
complex as ILP solving.

Another possibility is to solve the ILP model on a
more powerful server, possibly one of the offloading
servers. In this setup, the framework on the hybrid thin
client device just monitors the available resources and
periodically sends them to the server, where the best
suited deployment is determined by solving the ILP
model.

Finally, a set of best deployments could be determined
beforehand, by varying the different parameters, such
as network latency, and solving the model according to
those parameters. At runtime, the actual set of parameters
could be mapped to the nearest set of known parameters
and the associated deployment can be used. While this
is less fine grained and less flexible, there is also a
decreased overhead at runtime.

V. FUTURE WORK

An important piece of the puzzle is the quantification
of the parameters describing the software components
and their interconnections. This could be determined by
profiling the components in an offline manner, in an en-
vironment designed for that purpose. A more ambitious
approach is to profile the components at runtime by the
framework itself, as a sort of self learning mechanism.
However, this may prove to have an overhead that is too
large.

An interesting alternative to the solving of the ILP
model is the use of heuristic methods, that try to
determine an acceptable, yet not necessarily optimal,
deployment. Research will be done to develop heuristic
methods, which will be compared to the ILP modelling.

VI. CONCLUSION

In order to optimize the quality of experience of users
of applications on mobile devices, a hybrid thin client
is proposed. This approach allows to dynamically switch

between local and remote execution of components of
the mobile application. An ILP model, that determines
the best deployment of components given certain condi-
tions, has been presented and validated using an intuitive
test case.

A simplified ILP model shows that the hybrid thin
client behaves as a classic thin client when network
conditions are good enough. When network conditions
are deteriorated, the deployment shifts to the other
extreme: everything is executed on the client device.
In between, the best suited composition of locally and
remotely executing components is chosen.

The results obtained through the models can be in-
corporated in various ways in the existing component
framework.

ACKNOWLEDGMENT

Raf Hens is a Ph. D. Fellow of the Research Founda-
tion - Flanders (FWO). Filip De Turck is a Postdoctoral
Fellow of the Research Foundation - Flanders (FWO).
They acknowledge the Research Foundation - Flanders
for the funding of their research.

REFERENCES

[1] R. Hens, F. D. Turck, and B. Dhoedt, “Runtime implementation
switching for resource constrained devices,” inProc. IASTED
International Conference on Software Engineering (SE 2007),
Innsbruck, Austria, Feb. 13–15, 2007 (in print).

[2] I. Foster and C. Kesselman, Eds.,The grid: blueprint for a new
computing infrastructure. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1999.

[3] R. Wismüller, M. Bubak, W. Funika, and B. Baliś, “A perfor-
mance analysis tool for interactive applications on the grid,” Int.
J. High Perform. Comput. Appl., vol. 18, no. 3, pp. 305–316,
2004.

[4] B. Boone, T. Verdickt, B. Dhoedt, and F. D. Turck, “Designtime
deployment optimization for component based systems,” inProc.
IASTED International Conference on Software Engineering (SE
2007), Innsbruck, Austria, Feb. 13–15, 2007 (in print).

[5] N. Tolia, D. G. Andersen, and M. Satyanarayanan, “Quantifying
interactive user experience on thin clients,”Computer, vol. 39,
no. 3, pp. 46–52, 2006.


