
Supporting the Secure Deployment
of OSGi Bundles

Pierre Parrend, Stephane Frenot
INRIA Ares team, CITI Laboratory,

21, Avenue J. Capelle, INSA-Lyon, France.
Phone: +33 (0) 04 72 43 71 29

E-mail: {pierre.parrend},{stephane.frenot}@insa-lyon.fr

Abstract— The OSGi platform is a lightweight man-
agement layer over a Java virtual machine that makes
runtime extensibility and multi-application support possi-
ble in mobile and constraint environments. This powerfull
capability opens a particular attack vector against mobile
platforms: the installation of malicious OSGi bundles. The
first countermeasure is the digital signature of the bundles.
We developed a tool suite that supports the signature, the
publication and the validation of the bundles in an OSGi
framework. Our tools support the publication of bundles
onto a remote bundle repository as well as the validation
of the signature according to the OSGi R4 specifications. A
comparison of existing validation mechanisms shows that
our security layer is the only one that is compliant with
the specification.

I. INTRODUCTION

The OSGi platform is on the way of becoming the
de facto standard componentization middleware for sup-
porting extensible software, through the management
layer it provides to control the life-cycle of the so-
called ‘bundles’,i.e. the OSGi components. However,
the security characteristics of this life-cycle are hardly
identified, in particular during the deployment of the
bundles which is usually realized over insecure networks.
We present here the tools we developed to support the se-
cure deployment of bundles. The first tool, SF-Jarsigner1,
covers the early life-cycle phases of the deployment,
namely the signature of the bundles by their issuer and
their publication. The second tool, SFelix2, is actually an
implementation of the digital signature validation layer
of OSGi Release 4 specifications, and is based on the
Felix3 OSGi implementation. Both are compliant with

1This work is partially founded by MUSE IST FP6 Project
n◦026442 and AMIGO IST FP6 Project n◦004186.

1http://sf-jarsigner.gforge.inria.fr
2http://sfelix.gforge.inria.fr/
3http://incubator.apache.org/felix/

OSGi Release 4 [1]. The publication process is not
defined by these specifications, but relies on the Open
Bundle Repository (OBR) format [2], which is supported
by several Open Source OSGi implementations: the
OBR1 format is supported by Oscar and Knopflerfish,
and the OBR2 format is supported by Felix.

The OSGi platform is a lightweight overlay to the Java
virtual machine, which supports the runtime installation
of Java components, the management of their life-cycle,
as well as the proper expression of the dependencies
between them. This facility typically allows a user to
discover software packages that are available on the In-
ternet or in its near environment, to install them together
with their dependencies, and to un-install them when
they are no longer required. The runtime extensibility
which is thus provided opens a new attack vector, which
to the best of our knowledge has been overlooked in
the literature: the possibility of seamlessly executing
malicious code from the environment. The figure 1
shows the attack tree for executing malicious code on a
client system [3]. Two main strategies exists: to install a
malicious platform, and to install malicious bundles. The
first strategy is prevented by the control of the integrity
of the framework when it is installed. The second strat-
egy can be realized through three different approaches:
inserting malicious code during the development, insert-
ing malicious bundles onto the bundle repositories, or
installing bundles from unauthorized repositories. The
bundle issuer is responsible for guaranteeing that the
code he provides is sound, which can be achieved by
analyzing it [4]. The insertion of malicious bundles in the
repositories or the installation from unvalid repositories
can be prevented by the digital signature of bundles. This
paper presents the tools we developed to perform this
digital signature. Further information is provided in the
related technical report [5].

The main current use cases of the OSGi platform



Fig. 1. The Attack Tree for malicious Code Execution

is the deployment of Open Source software. In such
environments, security problems are often neglected due
to the open structure of the projects. However, the broad-
ening of the applications of the OSGi framework and
the benefits it may provide to adaptable and extensible
business-critical systems are highly likely to require a
firm understanding of its security implications, and the
availability of effective tools. The security infrastructure,
which relies in a great part on the digital signature of
bundles, is common to all application domains, such as
mobile commerce, wireless remote control, health-care
monitoring, and video-surveillance. This infrastructure
must be completed with context- and application-specific
security policies, which are out of the scope of this paper.

The following of the paper is organized as follows.
The section II presents the related works. The section
III gives the detail relative to our tool suite. The section
IV provides a comparison of the various available tools
and frameworks dedicated to signing and validating the
digital signature of bundles. Lastly, we conclude this
work and give further perspectives.

II. RELATED WORKS

So as to define a secure process for deploying OSGi
bundles, it is necessary both to control the overall
deployment process, as well as the security mechanisms
that can be used to protect it. We therefore present other
research works related to the deployment process, and
to the security aspects of deployment.

A. Deployment of Components

The various steps of the life-cycle of software compo-
nents and of OSGi bundles in particular are the following
[6]: the publication of the components, the discovery of
the components, the resolution of dependencies between
the components, the download, and the configuration at
the initialization step.

The publication step requires that both the compo-
nents and the information necessary for the client to
execute them properly are made available: the compo-
nent meta-data, dependencies between components, the

source location and the scope of the component release
are published in ‘release databases’ [7]. The binding
between the publishers and the clients is done either
through the publication of static metadata [2], or through
a publish/subscribe mechanism [8]. In both cases, a third
party broker is required. The discovery phase is made of
the identification of the available bundles by the clients,
and the resolution of the dependencies. The Eureka
framework is an example of such a discovery mechanism
over the OSGi platform [9]. Specific languages are
defined to support this process of dependency resolution
[10]. The download phase is typically done from a
centralized repository [2]. However, the distribution of
the resources over peer-to-peer overlay networks can be
used with benefit, so as to increase the robustness of the
infrastructure, the availability of the components[11].The
last phase of the deployment is the configuration of the
components on the client. It builds the finalization phase
of the deployment of complex distributed systems, and
is often overlooked when deploying single applications
[12].

The tools we propose are based on the Bundle Repos-
itory Metadata to support the extraction of metadata
during the publication, and their resolution by the clients.
The download is handled by the ‘bundle repository’ bun-
dle at the client’s, which is part of the Felix framework.
We integrate these existing facilities together with a
publication management tool we developed. This latter
deals with the update of the meta-data of the bundle
repository and the upload of the bundles. To the best of
our knowledge, such a tool is available neither in the
frame of the Felix project, nor in the Equinox platform.

B. Secure Deployment

The cardinal security properties are the integrity of the
data, the authentication of their emitter, the confidential-
ity of the communications and the non-repudiation of
the actions. Diverse approaches have been defined so as
to enforce these properties on the context of component
deployment.

The current specification for securing the deployment
of bundles is based on the Java Archive specification
[13], and defined with precision in the OSGi Release
4 specifications [1]. It consists in the integration of
the integrity control for each resource through a hash
value and a digital signature in the bundle itself. The
algorithms used are SHA-1 for hashing and DSA for the
signature. The necessary meta-data is encapsulated in a
file compliant with the ‘Cryptographic Message Syntax’
[14]. This approach provides the authentication of the



bundle issuer and the guarantee of the integrity of the
code.

An alternative to signature based on asymmetric cryp-
tography is the use of Message Authentication Code
(MAC) based on symmetric key [15]. This provides a
more lightweight cryptographic mechanism, but is often
considered as being less secure than asymmetric cryp-
tography, because the secret key is shared among several
entities. Moreover, no performance indication is given,
which means that no factual comparison can be done
with current specifications. The MAC signature process
can take benefit of the XML signature encapsulation for
easier management [15].

A more robust mechanism for guaranteeing the de-
ployment of component is the S-CODEP (SECure COm-
ponent DEPloyment) protocol [16]. It is based on Ker-
beros, and provides an anti-replay mechanism. It as-
sumes that the underlying platform can not be com-
promised. The use of Kerberos make this approach a
heavyweight one. It is adapted for sensitive systems such
as enterprise information systems or telecommunication
environments.

Several security infrastructures for specific compo-
nent platforms have been defined. For instance, the
Cingal model is a component model very similar to
the OSGi one, and provides digital signature using the
same principle of digital signature of the bundles [17].
A similar mechanism has been defined to support the
deployment of Web Services [18]. The .Net framework
also proposes a similar mechanism to sign assemblies.
Its main limitation is that the installed assemblies can not
be removed, contrary to OSGi bundles, which makes it
unproper for mobile and resource-constraint platforms.

These research works related to the problem of se-
curely deploying OSGi bundles and other software com-
ponents suffer from one obvious drawback. There is
currently to the best of our knowledge no tools that
supports the deployment process as it is specified by the
OSGi Alliance. This matter of fact makes any compari-
son impossible - and greatly limits the use of the OSGi
platform in environments where security is required. We
therefore developed those tools, and present them in the
subsequent sections.

III. T HE SFELIX TOOLS SUITE

So as to support the process of secure deployment
of OSGi bundles, we developed two complementary
tools. The first is the SF-Jarsigner that performs the
signature and the publication of the bundles by their
issuer. The second is SFelix, which is an extension of the

Felix implementation of OSGi. Our main contribution in
SFelix is the implementation of the OSGi R4 security
layer, which is the sole project we know that supports
bundle signature according to the OSGi Specifications
[1]. For more precision, please refer to our technical
report [5].

A. Secure Deployment

The process of secure deployment is shown in the
figure 2. The deployment of OSGi bundles is compound
of issuance phase, and a client-side phase.

Fig. 2. Secure Deployment of OSGi Bundles

The issuance phase is performed by the bundle issuer.
The first step is to sign the bundles, or to check that
the existing signature is valid. The second step is the
extraction of the meta-data of the signed bundles, and
the publication onto a third party repository. The format
of the meta-data is defined by the OBR2 Request for
Comments of the OSGi Alliance [2].

The client-side phase of the deployment is made of
the discovery of the bundles, the dependency resolution,
the download of the code archives, the validation of the
digital signature, and the start of the bundles. The discov-
ery, the dependency resolution and the download steps
are dealt with by the bundle-repository facility, which is
available in the Felix distribution. The validation step is
performed when the bundle is stored locally, to avoid a
TOCTOU (time-of-check, time-of-use) substitution, and
before it is installed, so that not authenticated bundles
can not be executed. It must be compliant with OSGi
R4 specifications, but also compatible with the behavior
of the virtual machine. The Sun tools are considered as
the reference. When the bundle signature is valid, and
the signer is identified by the platform as being a trusted
one, the bundle can be started.

B. SF-Jarsigner: a Tool for secure Publication of Bun-
dles

The SF-Jarsigner tool aims at providing a convenient
graphical user interface for signing and publishing OSGi



bundles. Since the signature generation mechanism is
compatible with the Sun Jarsigner tool, other types of
Jar files or data archives can also be signed.

The SF-Jarsigner tool is compound of four graphical
panels. The first panel let the archive publisher select a
‘keystore’ file, where its private/public key pair (respec-
tively a public key) is stored for signing (respectively
checking) bundles. The second panel is the one shown
on the figure 3, it supports the signature or verification
of bundles that are stored on the local system. The valid
bundles are shown on the list on the right, and made
available for publication. The third panel allows to set
and store the informations relative to the remote file
server where the bundles are to be published. Currently,
only the FTP protocol is supported. The last panel lets
the publisher choose among the available signed bundles
which one are to be published. The operation can be
repeated on several Bundle Repositories.

Fig. 3. The Interface of the SF-Jarsigner Tool

The SF-Jarsigner tool is provided as OSGi bundles.
It can be executed over the Felix, SFelix and Equinox
platforms. With a minor configuration effort, it can also
be executed over Knopflerfish. It uses several third party
open source libraries: the Bouncycastle cryptographic
libraries bcprov and bcmail, the XML libraries xml-
commons-resolver and Xerxes from Apache, the FTP
library Edtftp, and the OBR2 metadata extractor Bindex.
The validation functionalities are provided by the ‘jar-
validation’ bundle, and the graphical interface by the
‘Jar Signer Gui’ bundle. Its total size is 3,657 kbytes.
SF-Jarsigner is available through the SFelix Bundle
Repository4.

C. SFelix: a hardened OSGi platform

The SFelix platform is an extension of the Felix
OSGi implementation, which performs a bundle sig-
nature check before the bundles are installed. If the

4http://www.sfelix.free.fr/repository/repository-ppd.xml

signature of a given bundle is unvalid, the bundle is
rejected and the installation is aborted.

The SFelix security layer is provided as a Java li-
brary, and therefore not seen as actual bundles in the
framework. The verification is performed as a single
call to the ‘jarvalidation’ library we provide, and which
is the same that the bundle used in the SF-Jarsigner
tool. The required libraries are the Bouncycastle libraries
bcprov and bcmail. The total size of the Security Layer
is 1.932 kbytes, because of the numerous cryptographic
primitives that are embedded in the Bouncycastle library.
In an environment with restricted resources, it would
be necessary to extract the required classes from these
library, so as not to overwhelm the available memory
with unused code.

IV. COMPARISON WITH OTHERARCHIVE

VALIDATION PROCESSES

So as to confirm the usefulness of the tools we
propose, we compare them to the solutions that are
currently available. Two aspects need to be considered:
the signature step, and the validation step.

A. Signing Archives

Two tools are available for signing Jar files or bundles.
The first is the Sun Jarsigner, with is part of the Java
SDK. The second is the SF-Jarsigner tool we provide.
The Sun Jarsigner is available as a command line utility.
The SF-Jarsigner is provided as a set of OSGi bundles,
which support both a convenient use through a graphical
user interface, or a programmatic use through services
published inside the OSGi framework.

The specifications of digital signature according to the
Jar file specifications [13] are relatively vague. They are
therefore completed in the OSGi R4 specifications [1].
However, if the validity criteria for archive signature are
more strict in the frame of OSGi systems (see section
IV-B), the default signature process by the Sun Jarsigner
generates OSGi compatible archives.

The main difference between the Sun JVM and the
OSGi specifications is that, in the case of the Sun
signature, all entries of the manifest file must be hashed
and stored in the so-called ‘Signature File’ (see [5]
for the detailed structure of a signed bundle). This is
not required by the OSGi specifications, which consider
that no new resource can be added to a signed archive.
However, to provide compatibility with Sun tools, the
SF-Jarsigner adds these additional meta-data.

Consequently, it is possible to use any of those tools
for performing the digital signature of OSGi bundles - or



of other Java archives. The benefit of SF-Jarsigner lies
1) in the convenient user interface and 2) in the support
for bundle publication.

B. Signature Validation

Whereas the actual behavior of the considered signing
tools is identical, the criteria for verifying the validity
of signed archive greatly varies between the various
available checkers and platforms. This has the direct
consequence that an OSGi bundle that has been modified
will not be considered as unvalid in all tools but ours.

The criteria of validation of the signature of a bundle
are shown in the table I. All potential errors are listed
according to the OSGi R4 specification [1], and the
behavior of the tested tools and platforms in the presence
of such an error is given. The considered tools and
platforms are the following: the Sun Jarsigner, the Sun
Java virtual machine with a Security Manager, the Felix
platform with security enabled, and the SFelix platform.
All data are directly drawn from experience, but the
Felix behavior. Since no minimal permission policy is
made available, and can not be easily deduced from
the behavior of the platform, it can be assumed that 1)
the certificate control, which is done explicitly in the
platform, is performed correctly, and 2) that the integrity
control, which is done by the virtual machine, is done
in the same way than the ‘Java with Security Manager’
case. The behavior of the SF-Jarsigner tool, which can
also be used to check signatures, is the same as the
one of SFelix, since it relies on the same ‘JarValidation’
library. The other open source implementations of OSGi
are not considered here. Knopflerfish5 does not provide
support for bundle signature. Neither does Equinox6.
The integrity control during the deployment of Eclipse
plugins, which is based on the Equinox framework, is
performed during the Eclipse plugin deployment through
a specific mechanism.

The results of the experiments are the following. The
Sun Jarsigner tool identifies files that are not signed,
that have been tampered with, or for which the public
key certificate is outdated. It does not take into account
the fact that the signer is trusted or not, though it has
access to the ‘keystore’ which contains such information.
The Java virtual machine has the same behavior than the
Jarsigner, but does not take the warnings into accounts.
Consequently, no difference is done between a signed
and an unsigned archive if the valid signer are not explic-
itly indicated in the permission policy before the virtual

5http://www.knopflerfish.org/
6http://www.eclipse.org/equinox/

Error Sun Java with Felix SFelix
Type Jarsigner Security

Manager
Unsigned W A R R
Archive
Unknown A A R R
Signer
Addition of A A A R
Resource
Removal of A A A R
Resource
Modification R R W R
of Resource
Unvalid Order A A A R
of Resources
Signature of R R W R
Embedded Archive
Unvalid
Time Of Check Test Exec Exec Install
A: Accept; R: Reject; W: Warning;

TABLE I

BEHAVIOR OF SEVERAL TOOLS AND FRAMEWORKS IN THE

PRESENCE OF UNVALID ARCHIVES

machine is launched. Therefore, no modification of the
list of trusted signers can be done at runtime, which
can be restrictive. The Felix framework is expected to
reject the unsigned archives and the archives with unvalid
signers. It issues warnings when archives that have been
tampered with are installed, but seems to install them
anyhow. SFelix has been developed specifically to be
conform to OSGi R4, so it has a proper behavior in all
tested error cases. Its current limitation is that it does
not handle certificates chains, used when a valid signer
delegates its right to another entity.

The time of integrity control is different in each tool.
The Sun Jarsigner tool, as a command line utility, prints
the test results immediately. The Java virtual machine
checks the integrity of the files when they are loaded to
be executed, and so does the Felix platform. This is not
consistent with the requirements that the whole archive
is sound which is expressed by the OSGi specifications.
This explains why Felix is not R4 compliant, at least
what concerns the control of the integrity of the bun-
dles. The SFelix platform performs the archive signature
check at install time. This implies a slight performance
overhead, but is necessary to guarantee that only valid
archives are installed. This approach prevents the sudden
unavailability of services that are installed, but for which
some unfrequently executed classes are tampered with.



V. CONCLUSIONS ANDPERSPECTIVES

We present in this paper the tool suite we developed
to support the secure deployment of OSGi bundles. Our
contribution is twofold. First, we integrate the available
publication mechanisms defined by the Bundle Reposi-
tory format in a convenient tool that makes possible to
publish a set of bundles so that they are made available to
the client platforms. Secondly, we provide a library that
support the generation and the validation of signature
according to the OSGi R4 specifications. The signature
generation functionality is integrated in the publication
tool SF-Jarsigner. The signature validation functionality
is integrated as an extension of the Felix OSGi imple-
mentation, name SFelix (for Secure Felix). No other tool
for bundle publication is currently available, to the best
of our knowledge. Moreover, all other existing validation
mechanisms for OSGi bundle signature do not follow the
OSGi specifications. To provide firm arguments of the
benefit of our tools, we performed a comparison between
the various archive signature validation mechanisms.

The limitations of our tools are the following. Related
to the publication phase, only the OBR2 protocol is
supported. However, Knopflerfish, and Oscar (the pre-
decessor of Felix) still use the OBR1 format, which
is not compatible with it. The extension of the current
facility would make our tool useful in systems that use
those platforms, in particular Knopflerfish. Related to
the signature process, the main current limitation is that
the possibility of signature delegation through signature
path is not supported at the verifier’s, which must have a
reference to each actual signers. Moreover, the signature
generation must be done to maintain the compatibility
with the Java virtual machine and Sun tools. Therefore
additional meta-data are inserted in the hash files of the
signed bundles that would not be necessary.

This work provides the community with convenient
tools for securely publishing OSGi bundles, or other
software components. It also provides an implementation
of the OSGi security layer which is necessary for com-
paring the current specifications and a modified security
architecture. The next requirement is the development
of an infrastructure to manage the identity of the bundle
issuers. The current proposed solution is based on Public
Key Infrastructure, which proves to be difficult to put
into use. We therefore plan to study the possibility of
using an alternative signature scheme. The Identity-based
signature mechanism, for instance, could be a valuable
alternative to provide a comparable level of security,
while greatly simplifying the key management process.

REFERENCES

[1] OSGi Alliance, “Osgi service platform, core specification re-
lease 4,” Draft, July 2005.

[2] OSGi Alliance and R. S. Hall, “Bundle repository,”
OSGi Alliance RFC 112, 2006. [Online]. Available:
http://bundles.osgi.org/rfc-0112BundleRepository.pdf

[3] P. Parrend and S. Frenot, “A security analysis for home gateway
architectures,” inInternational Conference on Cryptography,
Coding & Information Security, Venice, Italy, November 2006.

[4] ——, “A set of metrics for security assessment in component-
based software systems,” inDependable System and Networks,
Dependable Computing and Communication Systems, 2007,
submitted.

[5] ——, “Secure component deployment in the osgi(tm) release 4
platform,” INRIA, Tech. Rep. RT-0323, June 2006.

[6] A. Carzaniga, A. Fuggetta, R. S. Hall, A. van der Hoek,
D. Heimbigner, and A. L. Wolf, “Characterization framework
for software deployment technologies,” Dept. of Computer
Science, University of Colorado, Tech. Rep. CU-CS-857-98,
1998.

[7] A. van der Hoek and A. L. Wolf, “Software release manage-
ment for component-based software,”Software: Practice and
Experience, vol. 33, pp. 77–98, 2003.

[8] C. Wang, A. Carzaniga, D. Evans, and A. L. Wolf, “Security
issues and requirements for internet-scale publish-subscribe sys-
tems,” inHawaii International Conference on System Sciences,
2002.

[9] K. Pauls and R. S. Hall, “Eureka - a resource discovery service
for component deployment,” inSecond International Working
Conference on Component Deployment, ser. LNCS, vol. 3083,
2004, pp. 159–174.

[10] D. Heimbigner, R. Hall, and A. Wolf, “A framework for
analyzing configurations of deployable software systems,”in
Proc. of the 5 IEEE Int’l Conf. on Engineering of Complex
Computer Systems, October 1999.

[11] S. Frenot and Y. Royon, “Component deployment using a peer-
to-peer overlay,” inThird International Working Conference
on Component Deployment, Grenoble, France, ser. LNCS, vol.
3798, November 2005.

[12] R. Hall, D. Heimbigner, A. van der Hoek, and A. Wolf, “An
architecture for post-development configuration management in
a wide-area network,” inInternational Confeence on Distributed
Computing Systems, May 1997.

[13] Sun Microsystems, Inc., “Jar file specification,” Sun Java Spec-
ifications, 2003.

[14] R. Housley, “Cryptographic message syntax (cms),” IETF RFC
3852, July 2004.

[15] Y.-G. Kim, C.-J. Moon, D.-H. Park, and D.-K. Baik, “A mac-
based service bundle authentication mechanism in the osgi ser-
vice platform,” inDatabase Systems for Advanced Applications,
ser. LNCS, vol. 2973, 2004.

[16] M. Grechanik and D. E. Perry, “Secure deployment of compo-
nents,” in Second International Working Conference on Com-
ponent Deployment, ser. LNCS, no. 3083, 2004.

[17] A. Dearle, G. Kirby, A. McCarthy, and J. C. D. y Carballo,
“A flexible and secure deployment framework for distributed
applications,” inSecond International Working Conference on
Component Deployment, ser. LNCS, 2004, no. 3083.

[18] M. Gaedke, J. Meinecke, and M. Nussbaumer, “Supporting
secure deployment of portal components,” inInternation Con-
ference on Web Engineering, ser. LNCS, no. 3140, 2004.


