
Adaptation as a New Requirement for Software Engineering

Vincenzo De Florio and Chris Blondia

University of Antwerp

Department of Mathematics and Computer Science

Performance Analysis of Telecommunication Systems group

Middelheimlaan 1, 2020 Antwerp, Belgium, and

Interdisciplinary institute for BroadBand Technology

Gaston Crommenlaan 8, 9050 Ghent-Ledeberg, Belgium

Abstract

The so-called wireless revolution is producing new
services based on the concept of mobile computing. We
remark how mobile computing technologies call for ef-
fective software engineering techniques to design, de-
velop and maintain mobile services, i.e., services that
are prepared to continue the distribution of a �xed,
agreed-upon quality of service despite of the changes
in the location of the client software and the character-
istics of the environment. Hence novel paradigms are
required for software engineering so as to provide e�ec-
tive system structures for mobile services while keeping
the design complexity under control. In this paper we
discuss the problem and propose one such structure.

1. Introduction

Aim of this text is providing a personal vision on
some key pre-requirements for any mobile computing
services design, namely dependability and adaptability,
and introducing some ideas we are currently developing
at the University of Antwerp.

The Computer Era may well be thought of as a series
of �revolutions�:

• The 19th-century concept of computer was that
of a mechanical engine, initially intended to com-
pute, quickly and reliably, tables of polynomials.
That which now sounds like a silly achievement,
in times past was but a dream whose ful�lment
had puzzled mankind nearly since the beginning
of its history. This dream came true only in 1855
through the design of Babbage and the craft of the
Scheutzes. And this marked indeed an actual revo-

lution, that of mechanical computing1, which may
be well summarized by Babbage's famous quote
�I wish calculations had been executed by steam�:
for the �rst time in human history, a tool to per-
form calculations more quickly and reliably than
a human being had been realized.

• The 20th Century witnessed a variety of those rev-
olutions, soon to provide a new meaning for the
word �computer�. One of such revolutions was
brought about by the advent of vacuum tubes, in
the Forties. The supercomputer of those times was
the ENIAC, with a weight of about 30 tons and
an availability quite disappointing when consid-
ered out of the historical context the ENIAC had
made its appearance 2. Clearly there was room

1To fully appreciate the extent of this revolution, let us reprint
here an excerpt from an article by Brisse [2] celebrating the 1855
Paris Universal Exhibition, where the Scheutzes' machine was
shown to the public for the �rst time: �This machine solves
equations of 4th and even greater degree; operates in any nu-
merical system [. . . ] The scientists, boosting their computation
capabilities as a miracle of natural law, will be soon taken over
by a simple machine that, under the nearly blind guidance of
a common man and by means of custom movement, is going
to dig the in�nite outer space with a security and depth way
greater than that of scientists. Any man able to formulate a
problem and having at his disposal Mr. Scheutz's machine will
have no need for Archimedes, Newtons, or Laplaces [. . . ] This
quasi-intelligent machine not only computes in a few seconds
what normally would require hours; it also prints the obtained
results, adding the advantages of a neat calligraphy to those of
computations with no chance for errors�. See also [3, 1].

2This excerpt from a report on the ENIAC activity [10] gives
an idea of how dependable computers were in 1947: �power line
�uctuations and power failures made continuous operation di-
rectly o� transformer mains an impossibility [. . . ] down times
were long; error-free running periods were short [. . . ]�. After
many considerable improvements, still �trouble-free operating
time remained at about 100 hours a week during the last 6 years
of the ENIAC's use�, i.e., an availability of about 60%!

1



for improvements and several further �revolutions�
were expected3.

• Further revolutions sprang from new concepts,
now concisely represented by terms such as �com-
piler�, �virtual machine�, or �object orientation�.
Each of these concepts brough about a sheer revo-
lution, as it modi�ed the meaning and the use we
make of computers.

Each of these revolutionary steps marks a fundamen-
tal leap in the history of computing and of the in�uence
of computers in human society. Each step allowed new
services to be conceived, while in turn, these services
called for additional requirements and adjustments of
our �view� of the computer.

Hence each of those steps also marks the need for
new models, both for the computer and for its system
software.

We are currently in the middle of another important
step in this progression of revolutions, namely the one
marked by the spread of personal computing facilities
that can provide their services moving with us and our
goods: it is the so-called �wireless revolution�. In this
paper we investigate on some of the key requirements
for software components meant to sit on top of a mo-
bile system and describe the main ideas of a prototypic
system that we are currently designing as a tool to sup-
port the development and execution of mobile services.

The structure of the paper is as follows: on Sect. 2
we introduce our target problem. Adaptive mobile sys-
tems are discussed in Sect. 3. An example is given in
Sect. 5 while Sect. 6 concludes this text.

2. Services and Programs

In the following we consider a service as a set of
manifestations of external events that, if compliant to
what agreed upon in a formal speci�cation, can be con-
sidered by a watcher as being �correct�. Moreover we
refer to a program as a physical entity, stored as volt-
age values in a set of memory cells, that is supposed
to drive the production of a service. Goal of software
engineering is being able to set up of a robust homo-
morphism between a service's high-level speci�cation,
and a low-level computer design (the program).

More formally, we say that for some functions f and
g

Service = f(program),program = g(speci�cation),

3See for instance the following statement from Popular Me-
chanics, 1949: �In the future computers will weigh at most 1.5
tons�!

Figure 1. An expansion of the dependence re-
lation.

Service = g · f(speci�cation).

Building robust versions of f and g is well known as
being a though job.

We now concentrate on the range of g (the software
set) and for any two systems a and b, if a relies on b to
provide its service, we say

a → b.

We call this relation as the �dependence� between two
systems. Clearly it is true that e.g. Service→ program,
program → CPU, and program → memory. Figure 1
provides a possible expansion of the dependence rela-
tion.

As evident from that picture, dependences call for
dependability, i.e., a fundamental property to achieve
dependable services, which has been de�ned by Laprie
as �the trustworthiness of a computer system such that
reliance can justi�ably be placed on the service it de-
livers� [6]. A dependable service is then one that per-
sists even when, for instance, its corresponding pro-
gram experiences faults�to some agreed upon extent.
From the above de�nitions we propose to consider F -
dependable services (resp. F -dependable programs,
systems, etc.) is those that persist despite the occur-
rence of faults as described in F , F being a set called
the fault model.

What is F exactly? It is a set of events that we
consider as possible and that may hinder the service
distribution. An important property of F is that it is a
model of an environment E where the service (or bet-
ter, its corresponding program) is operating. Clearly
an F -dependable service may tolerate faults in E′ and
may not those in E′′: an airborne service may well
experience di�erent events than, e.g., one meant in a
primary substation [9].

Clearly the choice of F is an important aspect to
a successful service dependability. Imagine for in-
stance what may happen if our fault model F matches

2



the wrong environment, or if the target environment
changes its characteristics (e.g. a rising of tempera-
ture due to a �ring). But the key point we remark
herein is�what if the service moves? In all these cases,
lacking provisions to accomodate for the change in the
environment and in the corresponding fault model, a
failure may occur, i.e., an interruption of the service
may take place. We summarize the above reasoning
with a one-shot sentence by James Horning:

What is the most often overlooked risk in
software engineering? That the environment
will do something the designer never antici-
pated [5].

In other words, if in the early days of modern com-
puting it was to some extent acceptable being the main
role of computers basically that of a fast solver of nu-
merical problems, the criticality associated with many
tasks nowadays appointed to computers does require
high values for properties such as availability and data
integrity.

At the same time and for similar reasons nowadays
provisions are required to accomodate for the changes
occurring �around� a service, i.e., in all the components
that the service is dependent on. We call this property
adaptability.

3. Adaptive Mobile Systems

As a consequence of the advent of mobile computing,
a system's environment has become a variable, which
translates in a strong need for adaptability. In what
follows we provide our personal vision to adaptive ser-
vices and the current state in our quest for an e�ective
solution to this problem.

Ideally, we would require our services to be struc-
tured as �X-dependable services�, where X = f(E)
can change dynamically when e.g., the service is moved
to another environment or the environment mutates.
It makes sense to consider as an important prereq-
uisite for an e�ective crafting of these services that
the expression of adaptability and dependability con-
cerns should not increase complexity too much so as
to avoid �bottlenecks of system development� [7]. In
other words, whatever solution we may come up with,
it must keep complexity under control.

Our proposal is then to consider an adaptive system
as a triple

AP = (F,FT,E),

where F expresses the functional concerns (the service),
FT is some fault tolerance provision to withstand the

faults in a fault model FFT and E is a set of environ-
ments (to be described later on).

Let us suppose that program (F,FT) distributes
a certain FFT -dependable service and that a family
of fault tolerance strategies, (FT(k))k∈K be available.
Furthermore, let us assume that program (F,FT(j))
distributes a FFT(j)-dependable service.

Then we can translate the problem of crafting
an adaptive system into that of designing an archi-
tecture that senses the environment and, each time
the environment changes, changes program (F, FT (j))
into a program (F, FT (k)). If the resulting FFT(k)-
dependable service matches the new environmental
condition, and this is true for a set of environments E,
then we have realized an adaptable service. In the fol-
lowing section we brie�y sketch the main components
of an architecture for adaptable services.

4. Components of an architecture for

adaptability

Our conjecture is that any e�ective architecture for
adaptable applications should be structured on top of
two basic services, namely change detection and change
reaction. Our approach is summarized in Figure 2. We
assume to have detection components, ranging from
simple sensors providing raw data like temperature or

scenario detectors able to correlate raw data and
provide higher level, more structured information
about the state of the elder being monitored. As soon
as a relevant change is detected, we publish the event
in a shared space and check whether the change brings
in a new scenario (e.g., the patient has fallen and is
in need). The next phase is executing the actions at-
tached to the detected scenario: this is done in our pro-
totypic architecture by the Reactive component, a vir-
tual machine interpreting a simple programming lan-
guage called ariel.

We are currently designing this architecture in
the framework of IST project �ARFLEX� (Adaptive
Robots for Flexible Manufacturing Systems, IST-NMP
2-016680) and IBBT project �End-to-end Quality of
Experience�.

Change detection E.g.: Number of connections
overcome threshold t

Reactivity E.g.: Switch to proactive routing strategy

In practice, we envision the availability of a mid-
dleware component (MW) to update dynamically the
(FT(k))k∈K programs (we call them �recovery codes�),
aided in this by a set of �change detectors� monitoring

3



Figure 2. Main architectural components of a system to support adaptive services...

Figure 3. Main architectural components of
a system to support adaptive services. “F”
stands for functional component, while “FT”
are the fault tolerance components in the ar-
chitecture.

e.g., available energy, network load, or local or overall
CPU usage. Figure 3 shows one such system.

A prototype of a compliant architecture is currently
being developed and has been described in [4]. In
the following we propose an example to clarify how
our vision of adaptive systems may provide a solution
to seemingly contradicting quality of service require-
ments.

5. Adaptive Voting Sensors

Systems such as Body Area Networks (BANs) of
wireless sensors are becoming more and more impor-
tant for many reasons ranging from health care e�ec-

Figure 4. The change detector sensing a
change in the environment E signals the mid-
dleware MW to push a new recovery code to
match the new environment.

tiveness to social security costs. In such systems pa-
tients are constantly monitored by mobile units that
continuously transfer and publish the value of a set of
vital parameters between a patient's location and the
clinic or the doctor in charge [8]. As remarked in [4],
a true e�ective service like this is based on the con-
temporary ful�llment of two seemingly contradicting
requirements:

R1: (Hard) guarantees are required so that, whenever
the patient is in need, the system is to trigger a
system alarm (e.g., dispatching medical care to the
patient).

R2: (Soft) guarantees are required, such that no false

4



alarm is triggered when the patient is not in real
need�the latter to reduce the service costs.

Clearly R1 triggers the system alarm whenever any
one of the sensors alerts or disconnects while R2 does
so only when the condition is con�rmed by the occur-
rence of several sensor alerts. As explained in [4], a
possible solution may be trading o� between R1 and
R2 through m-out-of-n majority voting, and trigger
the system alarm after m out of the n sensor alerts.
Whatever the choice of m, this approach is too un�ex-
ible because the choice of m is �xed ahead of the run-
time. An alternative solution would be to set up a se-
ries of strategies, (FT(k))k∈K , each of which may con-
sider a di�erent environment (for instance �heartbeat
= 70, temperature = 38◦C, arterial pressure = 120�)
and compute an m(k)-out-of-n majority voting. The
consequence of this strategy would be that we would
decompose the space of events into a set of blocks with
known characteristics (we call them �scenarios� in the
cited paper) and provide the best strategy matching
each of these blocks, basically decomposing an unsta-
ble environment like our sensor networks into a set of
quasi-stable environments.

6. Conclusions

We have introduced the problem of adaptability as
a fundamental requirement for a system where the en-
vironment and hence the fault model varies over time.
A model focussing on the anticipation of changes in
the environment has been proposed. We have shown
with an example the potential of adaptive services as
means to achieve a dynamic trade-o� between seem-
ingly contradicting requirements. The concepts in this
paper will be the basis for the adaptive communica-
tion system at the basis of recently started IST Project
ARFLEX �Adaptive Robots for Flexible Manufactur-
ing Systems�.

References

[1] Calculating by machinery. The Manufacturer and
Builder, 2(8):225�227, August 1870.

[2] Léon Baron de Brisse. Album de l'Exposition uni-
verselle de Paris en 1855. 1875.

[3] Vincenzo De Florio. Advanced Computer Architec-
tures course notes, part I, 2002.

[4] Vincenzo De Florio and Chris Blondia. A system
structure for adaptive mobile applications. In Pro-
ceedings of the Sixth IEEE International Sympo-

sium on a World of Wireless, Mobile and Multime-
dia Networks (WoWMoM 2005), pages 270�275,
Taormina - Giardini Naxos, Italy, June 2005.

[5] James J. Horning. ACM Fellow Pro�le � James
Jay (Jim) Horning. ACM Software Engineering
Notes, 23(4), July 1998.

[6] Jean-Claude Laprie. Dependable computing and
fault tolerance: Concepts and terminology. In
Proc. of the 15th Int. Symposium on Fault-
Tolerant Computing (FTCS-15), pages 2�11, Ann
Arbor, Mich., June 1985. IEEE Comp. Soc. Press.

[7] Michael R. Lyu. Reliability-oriented software en-
gineering: Design, testing and evaluation tech-
niques. IEE Proceedings � Software, 145(6):191�
197, December 1998. Special Issue on Dependable
Computing Systems.

[8] Philip E. Ross. Managing care through the air.
IEEE Spectrum int.'l edition, 41(12):14�19, 2004.

[9] Unipede. Automation and control apparatus for
generating stations and substations � electro-
magnetic compatibility � immunity requirements.
Technical Report UNIPEDE Norm (SPEC) 13,
UNIPEDE, January 1995.

[10] Martin H. Weik. The ENIAC story. ORDNANCE
� The Journal of the American Ordnance
Association, January-February 1961. Available
at URL http://ftp.arl.mil/∼mike/comphist/eniac-
story.html.

5


