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Abstract. AND/OR search spacdsave recently been introduced as a unify-
ing paradigm for advanced algorithmic schemes for graphicalels. The main
virtue of this representation is its sensitivity to the stuwe of the model, which
can translate into exponential time savings for searchrigfgos. In this paper
we extend the recently introduced AND/OR Branch-and-Baaigdrithm [1] for
solving 0/1 Mixed Integer Linear Programming problems. Weppse astatic
version based on pseudo-trees, as welldgamicone based on hypergraph sep-
arators. Preliminary evaluation on problem instances fMALIB2003 shows
promise that the new schemes are likely to improve over tuitional methods.

1 Introduction

Graphical models (e.g. constraint networks, belief nekspare a powerful represen-
tation framework for automated reasoning tasks. These made graphs to capture
conditional independencies between variables, allonimgfconcise representation of
the knowledge. Optimization tasks defined within this framek are typically tack-
led with eithersearch(e.g. branch-and-bound) mference(e.g. variable elimination).
Search methods are time exponential in the number of vasabid can operate in lin-
ear space. Inference algorithms are time and space expalriarthetree widthof the
problem. This potentially high space complexity makes #teet methods impractical
in many cases.

The AND/OR search space for graphical models [2] is a newtipduced frame-
work for search that is sensitive to the independenciesénntibdel, often resulting
in exponentially reduced complexities. The AND/OR seaschdsed on a pseudo-tree
which expresses independencies between variables,ingsinlia search tree exponen-
tial in the depth of the pseudo-tree, rather than the number@ables.

The AND/OR Branch-and-Bound algorithm (AOBB) is a new shamethod that
explores the AND/OR search tree for solving optimizatiosk&in graphical models
[1]. In this paper we extend the algorithm for solving con#iarial optimization prob-
lems from the class of 0/1 Mixed Integer Linear Programs (R)I[3]. First, we present
thestaticversion of the algorithm guided by a pseudo-tree arrangeaidéime constraint
graph. Second, we propose&gnamicversion of AOBB which uses a dynamic decom-
position of the problem, based on hypergraph separatorg@liminary evaluation of
several hard problem instances from the MIPLIB2003 librstmpws promise that the
new methods can improve significantly over the traditionglt®e search algorithms.



Fig. 1. An AND/OR search tree.

2 Background

2.1 Constraint Optimization Problems

A finite Constraint Optimization Proble§COP) is a six-tupl® = (X, D, F,®, |, Z),
whereX = {Xy,..., X, } is a set of variablesD = {D,...,D,} is a set of finite
domainsandt = {f1, ..., fm } iS @ set of constraints. Constraints can be eiiofi(cost
functions) orhard (sets of allowed tuples). Without loss of generality we assuhat
hard constraints are represented as (bi-valued) costifunsctAllowed and forbidden
tuples have cost andoo, respectively. The scope of functigi, denotedscope(f;) C
X, is the set of arguments ¢f. ®; f; is acombinatioroperator®; f; € {[1, fi,>.; fi}
and|y f is aneliminationoperator,|}y f € {maxs_y f,mins_y f}, whereS is the
scope of functionf andY C X. The scope of}, f is Y. Theconstraint graphof a
COP has a node for each variable and an arc connects any tiablearappearing in the
same function’s scope. An optimization task is defineg;by) = |} ,®™, f;, where
Z C X. A global optimizatioris the task of finding the best global cost, nam&ly= (.

2.2 Mixed Integer Linear Programming

A Mixed Integer Linear Programmin@ILP) problem is a linear program where some
of the decision variables are constrained to have only érteglues at the optimal so-
lution. Hence, we define the MILP problem as follows:

min of maz{c’ x| Az < b,z > 0,z has integer components

wherec € R",b € R™, A € R™*™ andz € R". Herec represents the cost vector and
is the vector of variables. The vectipand the matrix4 define then linear constraints.
An important special case is a decision variahl¢hat is integer with) < x; < 1. This
forcesz; to be either 0 or 1 at the solution. Variables likeare called0/1 or binary
integer variablesSubsequently, a MILP problem with binary integer varigbkealso
called a0/1 Mixed Integer Linear Programmingroblem (for more details see [4, 3]).

2.3 AND/OR Search Spaces

In this section we briefly review the notion of AND/OR seargiases for COPs [2, 1].
Given a COP instance, the AND/OR search space is defined asiagkbon@seudo-



tree arrangement of the constraint graph. A pseudo-tree armegel” of a graphG
[5, 6] is a rooted tree with the same set of verticegsaand the property that adjacent
vertices fromG must be in the same branch’Bf

Given a COP instance, its constraint grapland a pseudo-treéE of G, the associ-
ated AND/OR search treg; has alternating levels of OR nodes and AND nodes. The
OR nodes are labelell; and correspond to the variables. The AND nodes are labeled
(X, x;) and correspond to value assignments in the domains of thebles. The root
of the AND/OR search tree is an OR node, labeled with the rb@t.o

The children of an OR nod&; are AND nodes labeled with assignme(l§;, x;),
consistent along the path from the roptth(z;) = (X1, 21), ..., (X;-1,2;-1)). The
children of an AND nod€X;, z;) are OR nodes labeled with the children of variable
X, inT. The size of the resulting search tree is bounded expoftigritiathe depth of
the pseudo-tree, which in practice may be far smaller thamtimber of variables.

Example 1.Figure 1(a) shows a binary COP instance. Figure 1(b) showssado-tree
of the constraint graph, together with the back-arcs (ddites). Figure 1(c) shows a
partial AND/OR search tree based on the pseudo-tree, fealbied variables (for AND
nodes we only denote the value, namely 0) is written ag0l child of A).

3 Static AND/OR Branch-and-Bound

In [1] we introduced a novel Branch-and-Bound algorithnilschAOBB, that explores

the AND/OR search space for solving optimization tasks apf@ical models. The idea
was supported by an extended empirical evaluation which c@asentrated on two
common optimization problems, solving Weighted CSPs [d fimding the Bayesian

MPE in belief networks [8], and demonstrated clearly theantmf the AND/OR tree

search over the traditional OR tree search.

3.1 AOBB for Constraint Optimization Problems

In this section we assume without loss of generality a CORunt®P = (X, D, F)
with summationand minimizationas combination and elimination operators, and a
global optimization function defined bf{X') = minx >, , fi.

Given a pseudo-tree arrangement of the constraint gragh, aeigorithm AOBB
traverses the corresponding AND/OR search tree in a dethrfianner, expanding
alternating levels of OR and AND nodes. The arcs fr&into (X;, «;) are associated
with appropriatelabels of the constraints ifP. The algorithm maintaingaluesfor
each node, accumulating the result of the computationtezstiom the subtree below.
The valuev(n) of a noden represents the optimal cost solution to the subproblem
rooted atn, subject to the current partial instantiation along thendadm the root.

In particular, the value of the root node represents the @btte optimal solution to
the initial problem. OR nodes compute their value by minimizthe values of their
children, while AND nodes by summation.

In addition to their values, each node at the search froigtiatso assigned sta-
tic heuristic lower-bound estimatgn) of v(n), which is used for choosing the most



promising extension of the current partial solution subtreing explored and pruning
irrelevant portions of the search space. In [1] we discussedral approaches for com-
puting i, based on approximate inference as well as soft directamgatonsistency.

During search, each nodealong theactive path(i.e. current path from the root of
the search tree) roots a partially explored solution selmif¢he corresponding subprob-
lem, calledactive partial subtreeGiven an active partial tredP7 (n), we showed in
[1] that it is possible to compute recursively a tightarer boundb(n) onwv(n), based
on the static heuristic functiorigm) of the nodesn € APT (n) at the search frontier
and the portion of the search space belothat has already been explored. In addition,
the current best cost solution subtree rooted g@rovides anupper boundub(n) on
v(n). Consequently, we showed that searching below the tip nbithe @active path can
be safely terminated as soon as the updated lower bounddscttez= upper bound for
some node along the active path.

3.2 AOBB for 0/1 Mixed Integer Linear Programming

In general, we can view any linear program as a COP instaniteliwear constraints
(inequalities and equalities) and a linear objective fiomctTherefore, a 0/1 MILP prob-
lem can be defined as a quadruplg;.p = (X, X5,C, f), whereX = {X;,..., X, } is
the set of variablest; C X is the subset of binary integer variablés= {C, ...,C,,}

is the set of constraints an.X') = Y., ¢; X; is the objective function which has to
be optimized (i.e minimized or maximized). In the following consider a minimiza-
tion problem defined by (X) = minx > ., ¢; X;.

Given a 0/1 MILP problenPyr.p = (X, X5, C, f) with constraint grapldz, the
corresponding AND/OR search tree is based atest pseudo-tred” of G. The start
pseudo-tree has the following properties: (i) it has theesamot and is a subgraph of
some pseudo-treE of G; (ii) the nodes off” are all inX;, namely they correspond to
the integer variables &Py 1. p.

The algorithm presented in Section 3.1 can be easily modifiedlve 0/1 MILPs.
In this case, the value(n) of a noden in the search tree is the minimal cost solution
to the subproblerf®,, rooted at:. The noder can be an OR node labeled with= X;
or an AND node labeled with = (X;, z;). In either caseP,, is defined by the set
of constraints and constraint projections involving orilg tescendant&scy (X;) of
X, in T, subject to the current instantiation along the active patid the local cost
function that corresponds to the projectiondecr (X;) of the globalf (X). The static
lower-bounding heuristic estimatgn) is computed by solving the linear relaxation
(i.e. relaxing the integrality restrictions) of the restpe&e subproblem.

For illustration, consider a 0/1 MILP problem having the swaint graph in Figure
1(a), where every edge represents a linear inequality oalgyglpetween the corre-
sponding pair of variables. Variablés!, B, C, E} are integers restricted to the values
0 and 1. The objective is to minimize the cost functjgit) = 6A+4B+5C+3D +
TE 4+ 9F. The pseudo-tree is given in Figure 1(b). The subproblertecbat node” in
the search tree corresponds to minimizing the cost fungiioa: 5C + 3D + 7F, sub-
ject to the constraints and constraint projections invajwnly the variable$C, D, E'}.
Notice that the search algorithm needs only to explore @ gseudo-tree represented
by the integer variables.



problem n m nr h
dcmulti (548 290 75 44
egout |141 98 55 54
enigma|100 21 100 99
Iseu 89 28 89 72
p0033 |33 16 33 22
p0040 |40 23 40 28
p0201 |201 133 201160
p0282 |282 241 282196
pkl 86 45 55 54
pp08a |240 136 64 63

Table 1. MIPLIB2003 problem instances.

In Table 1 we assess the structural properties of 10 redBv@dt MILP problem
instances from the MIPLIB20G3enchmarks library. For each test case we provide
the total number of variables), the number of constraints), the number of integer
variables ;) and the depth of the start pseudo-tree generdigdNe observe that in
many case$ < nj (e.g. demulti, Iseu, p0033, etc.). Since AOBB has a worseca
time complexity bounded exponentially by the depth of theug®-tree rather than
the number of variables, we would expect impressive timéngavon those problem
instances, as compared to the traditional OR tree searcbagp

4 Dynamic AND/OR Branch-and-Bound

The AND/OR Branch-and-Bound algorithm discussed so far guded by astatic
variable ordering induced by a pseudo-tree arrangemeriteotibderlying constraint
graph of the problem. We now propose a new AND/OR Branch®maiRd algorithm
that uses alynamicvariable ordering generated by a dynamic decompositiomef t
problem, based on hypergraph separators.

4.1 Hypergraph Separator Decomposition

Given a COP instancP = (X, D, F), its hypergraph representatidh= (V, E) is a
hypergraph whose vertex sit consists of the constraints i, and there is a hyper-
edge for each variable it connecting all the constraints that contain that variable.
A hypergraph separator decompositima triple (H, S, R) where: (i)S C E, and
the removal ofS separate®t into £ disconnected components (subgraghs)..., Hy;
(i) R is a relation over the size of the disjoint subgraphs. Bez#es problem of com-
puting an optimal partition of a hypergraph is NP-compleateulti-level hypergraph
partition algorithm package, suchlasETI S [9], can be used to find separators.

4.2 Dynamic Decomposition and AOBB

In this section we discuss briefly how to integrate hyperfisaparator decomposition
into the AOBB algorithm for solving 0/1 MILP problems. Fimgj hypergraph separa-

! Available at http://miplib.zib.de/



tors naturally leads to a divide-and-conquer strategy.sEparator becomes the root of
the corresponding tree structure, while the subtrees be¢bensubproblems induced
by the separator.

The dynamic version of the AOBB algorithm works as followstakes as input
the problem instanc®,,; . p, the corresponding constraint graghand the separator
S of G, whose initial value ig). The algorithm expands alternating levels of OR and
AND nodes in a similar manner as its static predecessor. VéRpanding a node,
the algorithm computes the static heuristic estinigte) of v(n) by solving the linear
relaxation of the subproblem rootedatThis process may result in one or more integer
variables have their values determined. These variabtetheaefore be removed from
the subproblem. Consequently, a new separ&téor the respective subproblem can
be computed, based on a simplified constraint graph. Thenfjrst variable fromS
is chosen for instantiation and the search continues. Wbepating a separator, care
must be taken to ensure that only integer variables belotiteteeparator.

5 Conclusion

In this paper we extended the AND/OR Branch-and-Bound &lgarfor solving the
class of 0/1 Mixed Integer Linear Programming problems. ddr&ribution of the paper
is two-fold. First, we restricted the algorithm to a statariable ordering induced by a
start pseudo-tree of the constraint graph. Second, we edidle algorithm to use a dy-
namic variable ordering based on hypergraph separataiaritrary assessment of the
structural properties of several hard problem instanca® fthe MIPLIB2003 library
showed promise that the new AND/OR search schemes can impigrificantly over
the traditional OR tree search approach. Finally, we merttiat more advanced strate-
gies developed in the recent years for integer programmiurdy asranch-and-cuf3],
can be readily adapted to exploit the AND/OR structural gigra.
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