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Abstract. AND/OR search spaceshave recently been introduced as a unify-
ing paradigm for advanced algorithmic schemes for graphical models. The main
virtue of this representation is its sensitivity to the structure of the model, which
can translate into exponential time savings for search algorithms. In this paper
we extend the recently introduced AND/OR Branch-and-Boundalgorithm [1] for
solving 0/1 Mixed Integer Linear Programming problems. We propose astatic
version based on pseudo-trees, as well as adynamicone based on hypergraph sep-
arators. Preliminary evaluation on problem instances fromMIPLIB2003 shows
promise that the new schemes are likely to improve over the traditional methods.

1 Introduction

Graphical models (e.g. constraint networks, belief networks) are a powerful represen-
tation framework for automated reasoning tasks. These models use graphs to capture
conditional independencies between variables, allowing for a concise representation of
the knowledge. Optimization tasks defined within this framework are typically tack-
led with eithersearch(e.g. branch-and-bound) orinference(e.g. variable elimination).
Search methods are time exponential in the number of variables and can operate in lin-
ear space. Inference algorithms are time and space exponential in the tree widthof the
problem. This potentially high space complexity makes the latter methods impractical
in many cases.

The AND/OR search space for graphical models [2] is a newly introduced frame-
work for search that is sensitive to the independencies in the model, often resulting
in exponentially reduced complexities. The AND/OR search is based on a pseudo-tree
which expresses independencies between variables, resulting in a search tree exponen-
tial in the depth of the pseudo-tree, rather than the number of variables.

The AND/OR Branch-and-Bound algorithm (AOBB) is a new search method that
explores the AND/OR search tree for solving optimization tasks in graphical models
[1]. In this paper we extend the algorithm for solving combinatorial optimization prob-
lems from the class of 0/1 Mixed Integer Linear Programs (MILP) [3]. First, we present
thestaticversion of the algorithm guided by a pseudo-tree arrangement of the constraint
graph. Second, we propose adynamicversion of AOBB which uses a dynamic decom-
position of the problem, based on hypergraph separators. Our preliminary evaluation of
several hard problem instances from the MIPLIB2003 libraryshows promise that the
new methods can improve significantly over the traditional OR tree search algorithms.
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Fig. 1. An AND/OR search tree.

2 Background

2.1 Constraint Optimization Problems

A finite Constraint Optimization Problem(COP) is a six-tupleP = (X ,D,F ,⊗,⇓, Z),
whereX = {X1, ..., Xn} is a set of variables,D = {D1, ..., Dn} is a set of finite
domains andF = {f1, ..., fm} is a set of constraints. Constraints can be eithersoft(cost
functions) orhard (sets of allowed tuples). Without loss of generality we assume that
hard constraints are represented as (bi-valued) cost functions. Allowed and forbidden
tuples have cost0 and∞, respectively. The scope of functionfi, denotedscope(fi) ⊆
X , is the set of arguments offi.⊗ifi is acombinationoperator,⊗ifi ∈ {

∏
i
fi,

∑
i
fi}

and⇓Y f is aneliminationoperator,⇓Y f ∈ {maxS−Y f, minS−Y f}, whereS is the
scope of functionf andY ⊆ X . The scope of⇓Y f is Y . Theconstraint graphof a
COP has a node for each variable and an arc connects any two variables appearing in the
same function’s scope. An optimization task is defined byg(Z) = ⇓Z⊗

m
i=1

fi, where
Z ⊆ X . A global optimizationis the task of finding the best global cost, namelyZ = ∅.

2.2 Mixed Integer Linear Programming

A Mixed Integer Linear Programming(MILP) problem is a linear program where some
of the decision variables are constrained to have only integer values at the optimal so-
lution. Hence, we define the MILP problem as follows:

min or max{cT x | Ax ≤ b, x ≥ 0, x has integer components}

wherec ∈ R
n, b ∈ R

m, A ∈ R
m×n andx ∈ R

n. Herec represents the cost vector andx

is the vector of variables. The vectorb and the matrixA define them linear constraints.
An important special case is a decision variablexi that is integer with0 ≤ xi ≤ 1. This
forcesxi to be either 0 or 1 at the solution. Variables likexi are called0/1 or binary
integer variables. Subsequently, a MILP problem with binary integer variables is also
called a0/1 Mixed Integer Linear Programmingproblem (for more details see [4, 3]).

2.3 AND/OR Search Spaces

In this section we briefly review the notion of AND/OR search spaces for COPs [2, 1].
Given a COP instance, the AND/OR search space is defined usinga backbonepseudo-



tree arrangement of the constraint graph. A pseudo-tree arrangementT of a graphG
[5, 6] is a rooted tree with the same set of vertices asG and the property that adjacent
vertices fromG must be in the same branch ofT .

Given a COP instance, its constraint graphG and a pseudo-treeT of G, the associ-
ated AND/OR search treeST has alternating levels of OR nodes and AND nodes. The
OR nodes are labeledXi and correspond to the variables. The AND nodes are labeled
〈Xi, xi〉 and correspond to value assignments in the domains of the variables. The root
of the AND/OR search tree is an OR node, labeled with the root of T .

The children of an OR nodeXi are AND nodes labeled with assignments〈Xi, xi〉,
consistent along the path from the root,path(xi) = (〈X1, x1〉, ..., 〈Xi−1, xi−1〉). The
children of an AND node〈Xi, xi〉 are OR nodes labeled with the children of variable
Xi in T . The size of the resulting search tree is bounded exponentially by the depth of
the pseudo-tree, which in practice may be far smaller than the number of variables.

Example 1.Figure 1(a) shows a binary COP instance. Figure 1(b) shows a pseudo-tree
of the constraint graph, together with the back-arcs (dotted lines). Figure 1(c) shows a
partial AND/OR search tree based on the pseudo-tree, for bi-valued variables (for AND
nodes we only denote the value, namely〈A, 0〉 is written as0 child of A).

3 Static AND/OR Branch-and-Bound

In [1] we introduced a novel Branch-and-Bound algorithm, called AOBB, that explores
the AND/OR search space for solving optimization tasks in graphical models. The idea
was supported by an extended empirical evaluation which wasconcentrated on two
common optimization problems, solving Weighted CSPs [7] and finding the Bayesian
MPE in belief networks [8], and demonstrated clearly the impact of the AND/OR tree
search over the traditional OR tree search.

3.1 AOBB for Constraint Optimization Problems

In this section we assume without loss of generality a COP instanceP = 〈X ,D,F)
with summationand minimizationas combination and elimination operators, and a
global optimization function defined byf(X ) = minX

∑
i=1

fi.
Given a pseudo-tree arrangement of the constraint graph ofP , algorithm AOBB

traverses the corresponding AND/OR search tree in a depth-first manner, expanding
alternating levels of OR and AND nodes. The arcs fromXi to 〈Xi, xi〉 are associated
with appropriatelabels of the constraints inP . The algorithm maintainsvaluesfor
each node, accumulating the result of the computation resulted from the subtree below.
The valuev(n) of a noden represents the optimal cost solution to the subproblem
rooted atn, subject to the current partial instantiation along the path from the root.
In particular, the value of the root node represents the costof the optimal solution to
the initial problem. OR nodes compute their value by minimizing the values of their
children, while AND nodes by summation.

In addition to their values, each node at the search frontieris also assigned asta-
tic heuristic lower-bound estimateh(n) of v(n), which is used for choosing the most



promising extension of the current partial solution subtree being explored and pruning
irrelevant portions of the search space. In [1] we discussedseveral approaches for com-
putingh, based on approximate inference as well as soft directionalarc-consistency.

During search, each noden along theactive path(i.e. current path from the root of
the search tree) roots a partially explored solution subtree of the corresponding subprob-
lem, calledactive partial subtree. Given an active partial treeAPT (n), we showed in
[1] that it is possible to compute recursively a tighterlower boundlb(n) onv(n), based
on the static heuristic functionsh(m) of the nodesm ∈ APT (n) at the search frontier
and the portion of the search space belown that has already been explored. In addition,
the current best cost solution subtree rooted atn provides anupper boundub(n) on
v(n). Consequently, we showed that searching below the tip node of the active path can
be safely terminated as soon as the updated lower bound exceeds the upper bound for
some node along the active path.

3.2 AOBB for 0/1 Mixed Integer Linear Programming

In general, we can view any linear program as a COP instance with linear constraints
(inequalities and equalities) and a linear objective function. Therefore, a 0/1 MILP prob-
lem can be defined as a quadruplePMILP = (X ,XI , C, f), whereX = {X1, ..., Xn} is
the set of variables,XI ⊆ X is the subset of binary integer variables,C = {C1, ..., Cm}
is the set of constraints andf(X ) =

∑n

i=1
ciXi is the objective function which has to

be optimized (i.e minimized or maximized). In the followingwe consider a minimiza-
tion problem defined byf(X ) = minX

∑n

i=1
ciXi.

Given a 0/1 MILP problemPMILP = (X ,XI , C, f) with constraint graphG, the
corresponding AND/OR search tree is based on astart pseudo-treeT ′ of G. The start
pseudo-tree has the following properties: (i) it has the same root and is a subgraph of
some pseudo-treeT of G; (ii) the nodes ofT ′ are all inXI , namely they correspond to
the integer variables ofPMILP .

The algorithm presented in Section 3.1 can be easily modifiedto solve 0/1 MILPs.
In this case, the valuev(n) of a noden in the search tree is the minimal cost solution
to the subproblemPn rooted atn. The noden can be an OR node labeled withn = Xi

or an AND node labeled withn = 〈Xi, xi〉. In either case,Pn is defined by the set
of constraints and constraint projections involving only the descendantsdescT (Xi) of
Xi in T , subject to the current instantiation along the active path, and the local cost
function that corresponds to the projection ondescT (Xi) of the globalf(X ). The static
lower-bounding heuristic estimateh(n) is computed by solving the linear relaxation
(i.e. relaxing the integrality restrictions) of the respective subproblem.

For illustration, consider a 0/1 MILP problem having the constraint graph in Figure
1(a), where every edge represents a linear inequality or equality between the corre-
sponding pair of variables. Variables{A, B, C, E} are integers restricted to the values
0 and 1. The objective is to minimize the cost functionf(X ) = 6A+4B +5C +3D+
7E + 9F . The pseudo-tree is given in Figure 1(b). The subproblem rooted at nodeC in
the search tree corresponds to minimizing the cost functionfC = 5C + 3D + 7E, sub-
ject to the constraints and constraint projections involving only the variables{C, D, E}.
Notice that the search algorithm needs only to explore the start pseudo-tree represented
by the integer variables.



problem n m nI h

dcmulti 548 290 75 44
egout 141 98 55 54
enigma 100 21 100 98
lseu 89 28 89 72
p0033 33 16 33 22
p0040 40 23 40 28
p0201 201 133 201160
p0282 282 241 282196
pk1 86 45 55 54
pp08a 240 136 64 63

Table 1. MIPLIB2003 problem instances.

In Table 1 we assess the structural properties of 10 real-world 0/1 MILP problem
instances from the MIPLIB20031 benchmarks library. For each test case we provide
the total number of variables (n), the number of constraints (m), the number of integer
variables (nI ) and the depth of the start pseudo-tree generated (h). We observe that in
many casesh ≪ nI (e.g. dcmulti, lseu, p0033, etc.). Since AOBB has a worst-case
time complexity bounded exponentially by the depth of the pseudo-tree rather than
the number of variables, we would expect impressive time savings on those problem
instances, as compared to the traditional OR tree search approach.

4 Dynamic AND/OR Branch-and-Bound

The AND/OR Branch-and-Bound algorithm discussed so far wasguided by astatic
variable ordering induced by a pseudo-tree arrangement of the underlying constraint
graph of the problem. We now propose a new AND/OR Branch-and-Bound algorithm
that uses adynamicvariable ordering generated by a dynamic decomposition of the
problem, based on hypergraph separators.

4.1 Hypergraph Separator Decomposition

Given a COP instanceP = (X ,D,F), its hypergraph representationH = (V, E) is a
hypergraph whose vertex setV consists of the constraints inF , and there is a hyper-
edge for each variable inX connecting all the constraints that contain that variable.

A hypergraph separator decompositionis a triple(H,S,R) where: (i)S ⊂ E, and
the removal ofS separatesH into k disconnected components (subgraphs)H1, ...,Hk;
(ii) R is a relation over the size of the disjoint subgraphs. Because the problem of com-
puting an optimal partition of a hypergraph is NP-complete,a multi-level hypergraph
partition algorithm package, such ashMETIS [9], can be used to find separators.

4.2 Dynamic Decomposition and AOBB

In this section we discuss briefly how to integrate hypergraph separator decomposition
into the AOBB algorithm for solving 0/1 MILP problems. Finding hypergraph separa-

1 Available at http://miplib.zib.de/



tors naturally leads to a divide-and-conquer strategy. Theseparator becomes the root of
the corresponding tree structure, while the subtrees become the subproblems induced
by the separator.

The dynamic version of the AOBB algorithm works as follows. It takes as input
the problem instancePMILP , the corresponding constraint graphG and the separator
S of G, whose initial value is∅. The algorithm expands alternating levels of OR and
AND nodes in a similar manner as its static predecessor. Whenexpanding a noden,
the algorithm computes the static heuristic estimateh(n) of v(n) by solving the linear
relaxation of the subproblem rooted atn. This process may result in one or more integer
variables have their values determined. These variables can therefore be removed from
the subproblem. Consequently, a new separatorS for the respective subproblem can
be computed, based on a simplified constraint graph. Then, the first variable fromS
is chosen for instantiation and the search continues. When computing a separator, care
must be taken to ensure that only integer variables belong tothe separator.

5 Conclusion

In this paper we extended the AND/OR Branch-and-Bound algorithm for solving the
class of 0/1 Mixed Integer Linear Programming problems. Thecontribution of the paper
is two-fold. First, we restricted the algorithm to a static variable ordering induced by a
start pseudo-tree of the constraint graph. Second, we allowed the algorithm to use a dy-
namic variable ordering based on hypergraph separators. Preliminary assessment of the
structural properties of several hard problem instances from the MIPLIB2003 library
showed promise that the new AND/OR search schemes can improve significantly over
the traditional OR tree search approach. Finally, we mention that more advanced strate-
gies developed in the recent years for integer programming,such asbranch-and-cut[3],
can be readily adapted to exploit the AND/OR structural paradigm.
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