Modeling Constraint Programs with Software
Technology Standards™*

Student name: Matthias Hoche
Supervisor name: Prof. Dr. Ing. Stefan J&dhnichen

Fraunhofer FIRST, Kekuléstr.7, 12489 Berlin, Germany mathoc@first.fhg.de

Abstract. There is no unified modeling standard available to the CP
community, so constraint programs can not be developed independently
from the used CP library. Without such standard, CP applications are
difficult to develop and to maintain as also no substantial tool support
can be enabled to help here. This hinders a wider use in business.

This paper targets platform independent modeling of constraint pro-
grams in an object-oriented way. It will be shown how models of con-
straint programs can be given using software technology standards and
further how this standards will enable automated transformations of
models into executable source code. Using existing well supported mod-
eling languages can help to increase the acceptance of CP in business
applications.

1 Introduction

In [6] Puget argued for a “model-and-run” paradigm for constraint program-
ming. He proposed to develop a standard file format to express CP models.
Such a standard will bring abstraction and independence from the used CP li-
brary. This increases maintainability and transparency of constraint programs
and can support the integration of CP in business applications. Currently no
such standard exists to the CP community.

This work proposes some initial ideas how a modeling standard for CP can
be achieved.

e Chapter 2 gives an introduction to Model Driven Architecture (MDA) as
a software technology standard for the definition of platform independent
models and also their transformation to a specific platform. It will be shown
how the Unified Modeling Language (UML) [5] can be extended with profiles
to define domain specific semantics.

e UML Profiles can be used to create “CP modeling profiles” for platform
independent modeling of constraint programs (chapter 3). The use of CP
modeling profiles enables the application of MDA transformation techniques.

This paper refines ideas presented in [9] already. There, Wolf et al. have
formally shown how standards like UML and OCL [8] can be used to create well
formed models of a constraint problem called Constraint Network Schemata
(CNS). This paper considers CNS modeling techniques in the context of MDA.

* This work is funded by the EU (EFRE) and the state Berlin, grant no. 10023515.

2 Model Driven Architecture - MDA

After the introduction of compilers making high-level programming languages
available, software technology targets modeling in a general approach. This leads
to a process of compiling models to programs, the same way programs can be
compiled to machine code.

The OMG had a great influence on this development with the proposal of
the Model Driven Architecture in 2001. This proposal addresses a full life-cycle
application development as an industry architecture standard, see [3]. The young
MDA process accelerated with the support of leading industry partners.

This chapter gives a short introduction to the MDA standard. The first part
summarizes what makes out a model in this context. The second part will focus
on the transformation of these models.

Meta-Models and UML Profiles In MDA, every model is defined by a
meta-model. All meta-models are specified conform to the Meta Object Facility
standard [2]. Models are further separated into Platform Independent Models
(PIM) and Platform Specific Models (PSM). The preferred modeling standard
for a PIM is the Unified Modeling Language (a meta-model for UML models).

UML is an approach for object oriented modeling. Its generality is a problem,
because it is hard to give precise models for software in all its facets. One way to
solve this is to add domain specific semantics. UML provides three extensibility
mechanisms to do this: stereotypes, tagged values and constraints.

Stereotypes and tagged values can be defined as new modeling elements. They
do not extend the structure but add semantics to existing model elements. While
stereotypes can be used as a meta-class to mark elements, a tagged value gives
an explicit definition of a name-value pair. A set of stereotypes and tagged values
will produce a UML Profile. A profile defines the semantics and usage of these
elements. Model constraints in form of a textual language enrich model elements
with semantic conditions or restrictions. The used language is arbitrary. At the
moment OCL is often used as a model constraint language.

These extensions help to create models with rich semantics for a considered
domain. Their usage in the CP context is explained in chapter 3.

Transformations and Code Generation Besides defining models MDA is
also a standard for model to model transformation. Several transformations can
be combined to a transformation-chain, see figure 1. After all, the process can
end up in the most platform specific model - the source code.

There is a growing number of tools providing an MDA framework (overview in
[4]). Example 1 summarizes how these tools handle code generation to illustrate
MDA transformations.

Example 1. First the meta-model elements are covered by patterns, see figure 2.
These patterns define what activity has to be invoked when a model element of

PIM

I transformation

/
[PSM] [PSM] [PSM]
Lo
[CODEJ [PSM j [PSIM j

Fig. 1. MDA transformation

transformation

transformation

the meta-model’s type is encountered. Dependent from the used tool, this can
be the application of a script, a template or an abstract template.

These procedures differ in behavior and generation power. Where a template
language will produce textual output directly, scripting languages (like Basic)
and abstract template languages can produce an in-memory-representation as a
model object at first. The in-memory-representation is more flexible because all
properties can be edited before textual output is produced.

apply invoke create

template -
meta-mode !
patterns @l\/'
: model-object

[abstract | / representation

template
language

Fig. 2. code generation procedures

3 CP Modeling Profiles

The last chapter gave a sketch of the MDA standard. Its application to the
domain of constraint programming is discussed now. Therefore the next exam-
ple shows, how constraint models can be given with UML and its extensibility
mechanisms.

Ezample 2. Figure 3 shows simple models of a factory (left) and a CP-library
(right). The factory model contains the structure elements of the problem repre-
senting real-world objects. Here we have available machine times (MachineTime)

factory cplLibrary
<<Entity=> 0
MachineTime <=CPConstraint==> ==CPDatatype==
{context MachineTime inv: resourcetasks = prodTasks task} SingleResource Variable
+machinelD : int{incex} +dom : Domain
+resource : SingleResource

1 -machine 1 [-resource
has
has
* -prodTasks
* | -tasks
=<Entity>> 0 <<CPDatatypes> <=CPDatatype==
ProductionTask Ta s:ype D i aype
{context ProductionTask as| omain
inv: task.start.dom = start and task.duration = duration} +start: Variable +min :int
- +duration : int +max :int
+name : String
+start: Domain{sourceType=Date, searchahle}
+duration : int
+ask: Task

Fig. 3. Models of a Factory using a CP - library

and production tasks (ProductionTask) to be scheduled in them. The CP-
library model is a template for available CP-elements. These CP-elements are
added as attributes to structure elements giving the specification of the con-
straint problem. In this case SingleResource!, Task and Domain are taken from
the CP-library template and are added to MachineTime and ProductionTask.

Now, the UML extensions are used as follows: Stereotypes separate the CP-
elements from the structure elements, expressed with <<CPConstraint>> and
<<Entity>> for example. The stereotype <<Entity>> is used to handle persis-
tent data storage? for this classes what specifies the input and output of the
constraint program. The relations between CP-elements and such input is es-
tablished by model constraints with OCL, used here to define invariants for
equalities between objects. The invariant: resource.tasks=prodTasks.task in
MachineTime expresses which tasks have to be constrained by resource. Fur-
ther the invariant: task.start.dom=start and task.duration=duration in
ProductionTask defines which elements of this class become the task property
and create the CP element task.

Tagged Values are added for further specifications. For example, the tag
index for machineID specifies that this attribute is an index for a database
table storing MachineTime-objects. Also the tag searchable for the attribute
start could mark this element for inclusion in an underlying search strategy.
In addition the tag sourceType can lead to automated transformation of input
values, here from type Date to a CP data type Domain.

1 SingleResource is a global constraint, which aligns tasks on a single resource without
overlapping
2 for example in databases or XML-files

A constraint model as defined in example 2 is very similar to a Constraint
Network Schema introduced in [9]. As an extension to CNS the explicitly given
CP-library, stereotypes and tagged values were added.

Obviously, this simple example provided some ideas only. Neither does it
cover all aspects of modeling constraint programs nor are transformations for all
of the given semantics available. The main problem here is the use of an existing
code base - the CP library. This requires the dynamic creation of library elements
during runtime. Modeling of such behavior is not fully supported in the current
UML standard and available transformation techniques. Anyhow, the explicit
knowledge of an underlying CP-library and the restriction to the domain of CP
can help to create expressive models of constraint programs. Furthermore, MDA
automation processes for parts of the model in example 2 are present already,
i.e. persistent data storage.

However, before transformation rules can be developed to generate executable
constraint programs a concise standardized model specification has to be defined
for the domain of CP. The author proposes to adopt UML profiling techniques
to create such model specification, see figure 4. Therefore a set of stereotypes,
tagged values and model constraints must be defined (as seen in figure 3). To-
gether with the model of a CP-library this can be used as a model template - a
CP modeling profile.

UML-Profile + CPlibrary
textual-language ‘ template
(stereotypes+tagged values+tOCL) (UML)
CP-modeling
profile

Fig. 4. modeling profile for CP

But having one such template to model all aspects of CP will complicate the
development process also. To simplify standardization CP modeling profiles can
be developed successively for specialized purposes. Take scheduling problems
for example. A CP modeling profile for scheduling will contain special global
constraints and search-strategies well suited to this application field, like the
SingleResource-constraint in figure 3. This does not restrict the model because
CP modeling profiles could be combined the same way UML profiles can be
combined already. Available MDA tools can then be used for the generation of
executable constraint programs out of models using these profiles.

It depends on the expressiveness of the model as also on the quality of the
used transformation rules, whether such improvements bring a “model-and-run”
functionality. If this can not be achieved in a first attempt, code generation will
bring at least a “model-generate-code-and-run” approach, what is a flexible solu-
tion for the beginning. As a great benefit of using available software technology
standards the process can participate from their advances in future.

4 Related Work and Conclusion

In [7] Schlenker and Ringwelski presented POOC as an object oriented pro-
gramming syntax for finite domain constraint solver. POOC can be used as a
Java package to develop constraint programs independently from a CP-library.
Libraries can be easily integrated by implementing POOC’s interface and will
then be bound during runtime.

Frank et al presented META-S in [1] as a unifying framework to combine
different solvers into one global solution strategy. This is very useful when prob-
lems require support from solvers of different CP-domains like linear equation
solvers or finite domain solvers.

Both META-S and POOC achieve abstraction with meta-programming where
META-S focuses more on strategy than platform independence. Although these
approaches differ from the ideas discussed here they demonstrate that abstrac-
tion from the used CP-library is possible what encourages the author’s hope for
a successful application of MDA techniques to CP.

As a summary, Model Driven Architecture can be seen as a chance to develop
a general modeling approach for Constraint Programming - making a “model-
and-run” paradigm possible. If this will be achieved, CP applications can be
developed with well supported and widely used modeling standards. Using such
standards can increase acceptance and usability of constraint programs in busi-
ness applications.

References

1. Stephan Frank, Petra Hofstedt, and Pierre R. Mai. Meta-S: A Strategy-oriented
Meta-Solver Framework. In Ingrid Russell and Susan Haller, editors, Proceedings of

the 16th International Florida Artificial Intelligence Research Symposium Confer-
ence (FLAIRS). The AAAT Press, May 2003.

2. OMG Object Management Group. Meta Object Facility.
http://www.omg.org/technology/documents/formal /mof.htm.
3. OMG Object Management Group. Model Driven Architecture.

http://www.omg.org/mda/.

4. Bernhard Merkle. Designermodelle. iX - Magazin fir professionelle Information-
stechnik, page 102, May 2005.

5. Object Management Group, Inc. OMG Unified Modelling Language Specification,
March 2003.

6. Jean-Francois Puget. Constraint Programming Next Challenge: Simplicity of Use.
In Marc Wallace, editor, Principles and Practice of Constraint Programming — CP
2004, 10th International Conference, Proceedings, number 3258, pages 5-8, Toronto,
Canada, September/October 2004. Springer-Verlag.

7. Hans Schlenker and Georg Ringwelski. POOC - A Platform for Object-Oriented
Constraint Programming. In ERCIM/CologNet Workshop on Constraint Solving
and Constraint Logic Programming. Springer LNCS 2627, 2002.

8. Jos B. Warmer and Anneke Kleppe. The Object Constraint Language, Second Edi-
tion. Object Technology Series. Addision-Wesley, 2003.

9. Armin Wolf, Henry Miiller, and Matthias Hoche. Towards an Object-Oriented Mod-
eling of Constraint Problems. In W(C)LP, pages 41-52, 2005.

