Bounds-Consistent Local Search*

Student: Stefania Verachi
Supervisor: Steven Prestwich

Cork Constraint Computation Centre
Department of Computer Science
University College, Cork, Ireland

{s.verachi,s.prestwich}@cs.ucc.ie

Abstract. This paper describes a hybrid approach to solving large-scale
constraint satisfaction and optimization problems. It describes a hybrid
algorithm for integer linear programming which combines local search
and bounds propagation, inspired by the success of a randomized al-
gorithm for Boolean Satisfiability (SAT) called Unit-Walk. A dynamic
prioritization heuristic has been developed to improve the algorithm,
inspired by another algorithm called Squeaky Wheel Optimization.

1 Introduction

Several algorithms have been proposed to solve both Constraint Satisfaction
Problems (CSPs) and optimization problems. Basically two class of algorithms
have been used to solve specifically the two classes of problems: complete and
constructive algorithms such as backtrackers, and random and incomplete ones
such as local search algorithms. Backtrackers are complete and therefore always
find a solution or prove the unsolvability. They can also exploit the structure
of the problem by using constraint propagation, improving search efficiency.
Unfortunately, they sometimes scale poorly to large problems [6].

Local search algorithms are typically non-constructive as they search a space
of total but inconsistent assignments, but they often scale up much better to
large problems. A drawback of these algorithms is that they usually do not ex-
ploit pruning techniques, making them uncompetitive on some highly-structured
problems. However, it is possible to make them more efficient on such problems
by incorporating constraint propagation techniques [7].

The aim of our project is to study and solve hard large-scale problems by
using a new class of algorithms that combines techniques such as local search,
constraint propagation and relaxation. Our first hybrid algorithm combines a
form of local search with a simple but powerful form of constraint reasoning:
bounds consistency applied to linear inequalities on integer variables. We are
developing this hybrid by applying it to Multiple Sequence Alignment (MSA)
problems from Bioinformatics, for which we have an Integer Linear Programming
(ILP) model [8].

* This work has been supported by Science Foundation Ireland under Grant
04/BR/CS0355.



2 Preliminaries

Most incomplete randomized algorithms for SAT are local search algorithms [1]
and they often perform well on optimization problems. A local search algorithm
chooses an initial configuration at random and then modifies it step by step.
Usually the configuration is a total variable assignment, but in some cases [6, 1,
2] (including our new algorithm) partial assignments are used.

The form of constraint reasoning we chose is Bounds Consistency (BC) on
ILP models, for several reasons:

— ILP is a simple, well-known and expressive constraint language that has been
used for decades to model optimization problems. In particular, it subsumes
SAT. We therefore expect it to be sufficient for modelling our problems.

— BC on linear inequalities is equivalent to hyper-arc consistency, or arc-
consistency (AC) on non-binary CSPs, which should be sufficiently powerful
for a wide range of applications.

— When solving very large problems, memory becomes an important issue.
Enforcing BC requires only two values to be maintained for each integer
variable: an upper and a lower bound. In contrast, maintaining AC on arbi-
trary constraints requires maintaining information for every variable domain
value, which may become impractical for problems with many variables and
large domains. In [10] it has been shown that using a weaker propagation
method as BC does not increase the size of the search space when the do-
mains contain no “holes”.

An efficient BC algorithm for linear constraints is given in [11]. Note that BC
can also be applied to non-linear constraints such as all-different, and we plan
to implement some of these constraints in future work.

To combine BC with local search, our first idea was to use Incomplete Dy-
namic Backtracking (IDB) [6]. IDB has previously been combined with forward
checking for some (binary and non-binary) CSPs, and with arc-consistency for
binary CSPs. It uses a technique similar to those used for Dynamic CSPs to
maintain variable domains during randomized search. However, we believe that
combining IDB with BC on linear inequalities will require a complex implemen-
tation that uses a great deal of memory, so instead we turn to another approach
used in at least two previous algorithms: Unit-Walk and Squeaky Wheel Op-
timization. Both of these behave like backtrackers until a dead-end is reached,
then they restart the search but use information from previous iterations. This
is a less incremental approach than IDB, but has given good results.

2.1 The UnitWalk algorithm

UnitWalk [1] is a simple algorithm that performs well on different instances of
hard SAT problems. It combines local search and unit clause elimination, and
gave best results in the “industrial problem class” in a recent SAT competition.
It also has been proved to be Probabilistically Approximately Complete (PAC),



meaning that as time tends to infinity the probability of finding a solution tends
to 1. This implies that, at least in principle, random restarts are not required.
The Unit-Walk procedure is divided into periods. During one period at least
one flip is made. A period starts with choosing a random permutation of vari-
ables. Then the algorithm takes the input formula and modifies it step by step,
sometimes also modifying the current assignment. At each step, the algorithm
substitutes the value of one variable in the current formula. If there are unit
clauses, then the variable v is taken from one of them; if the value of v does not
satisfy the unit clause and satisfies no other unit clause, it is flipped before the
substitution. If there are no unit clauses, the algorithm substitutes the value to
the next variable in the chosen permutation (taking the value from the current
assignment). If a period finishes (i.e, all variables are processed), but no vari-
able was flipped during it, the algorithm chooses a variable at random and flips
it (in fact, this is a very rare situation). After a period finishes, the algorithm
chooses a new random permutation, replaces the current formula by the input
formula, and starts a new period. After a MAXPERIODS number if no satisfy-
ing assignment is found, the random walk restarts from another random initial
assignment. And if the algorithm fails after MAXTRIES periods, it terminates.

2.2 Squeaky Wheel Optimization

The basic idea of the Squeaky Wheel Optimization algorithm [2] is to restart the
search whenever a dead-end is reached. But now an informed search runs every
time. A greedy algorithm, with no backtracking, is used to construct a solution.
This ”solution” may violate hard constraints. Its failure yields information about
the “trouble spots”. This information is used to adjust the variable ordering in
the next iteration, via dynamic variable priorities. The ”trouble makers” thus
get high priority, a version of the well-known “fail-first” technique.

3 The Algorithm

We have developed a slightly different version of Unit-Walk, and we are still
testing other options. At the beginning the algorithm, like Unit-Walk, starts
with a random value sequence that we shall call the suggested assignments for the
variables is generated, and a random permutation of the variables to be used as a
variable ordering. First it applies BC to the problem (terminating if inconsistency
is detected), possibly reducing the domain sizes. It then proceeds by selecting
a variable (guided by the permutation), assigning a value to it (guided by the
suggested value), and propagating bounds. If the suggested value is not currently
in the domain then another value must be chosen; we are currently experimenting
with heuristics to guide these aspects of the algorithm.

Unlike in Unit-Walk, if domain wipe-out occurs during propagation (not only
on reaching a value for which all possible assignments which cause wipe-out) the
search restarts with a new permutation, with the troublesome variables promoted
to a higher position in the permutation (as in Squeaky Wheel Optimization), but



with the same suggested assignments. This contrasts with another randomized
algorithm called Iterative Sampling proposed in [4], which starts the new search
by using new random assignments. However, sometimes the algorithm, like most
local search algorithms, can become trapped in an endless loop. In order to avoid
this, a new random value for each variable is generated after N iterations if no
one flip occurs during a search. N is tuned depending on the specific problem.
A similar technique is used in Unit-Walk.

3.1 Multiple Sequence Alignment

The algorithm aims to solve large-scale optimization problems, one example
being Multiple Sequence Alignment (MSA). Aligning DNA or protein sequences
is one of the dominant problem in computational molecular biology. The task
of comparing several sequences simultaneously has been formalized in different
ways.

Initially researchers compared pairs of DNA or protein sequences to check
whether or not they were homologues. The number of all possible alignments for
two sequences of length N is equal to \/2% Thus the complexity of the problem
is exponential in the problem size. The MSA problem is NP-complete, and a
challenging combinatorial problem for researchers interested in both Constraint
Programming (CP) and Operations Research (OR) [8].

Dynamic programming (DP) was the first approach to the problem in order
to find an optimal alignment, but is known to scale poorly to more than a few
sequences. Kececioglu [3] introduced in 1991 a formulation of the problem for
multiple sequences, based on a graph-theoretic approach that can be modelled as
an ILP problem. This is called the Complete Mazimum Weight Trace (CMWT)
formulation. The symbols are viewed as vertices in an alignment graph G =
(V,E). Each vertex (i,j) denotes a position ¢ in sequence j. An edge e is a
connection between two vertices; each edge has a weight w representing the
value of the alignment between two symbols. The set of the realized edges is a
trace. The goal is to maximize the total weight.

The problem with only two sequences is solved by DP in polynomial time,
but the number of edges rapidly increases as the number of sequences and their
lengths grow. Another formulation exploits this sparsity: the Sparse Maximum
Weight Trace (MWT). In this formulation only some sub-graphs are used in the
model, and the meaningful sub-graphs are chosen in order to reduce the size of
the complete model.

With the CMWT or MWT formulations, branch-and-bound and branch-
and-cut algorithms have been proposed to solve the ILP to optimality [9,5]. A
linear model of MSA, called a hybrid ILP model has been proposed in [8]. The
problem is to maximize _ w.v., with € € E, and where v, is a binary variable
and w, is the weight of each edge ¢, representing the usefulness of aligning its
two symbols, as in the MWT formulation. This model has two sets of variable:
integer variables pij representing the position of the symbol in the alignment
matrix, and boolean variables v, saying whether an alignment is realized or not.




Two sets of linear constraints are employed: ordering constraints: p;; — p;jr > 1
to maintain the order of symbols in each sequence, and channelling constraints:
Dij — Pirjr T e < ¢, Py — Py + cve < ¢ to relate position variables p;; and
boolean variables v.. We are currently testing the algorithm and we hope that
our new bounds-consistent local search approach will be well-suited to this linear

MSA model.

4 Conclusion

The work described is still in progress. The aim is to find new hybrid methods to
solve constrained optimization problems, with an emphasis on large structured
problems such as those encountered in real applications. We call our approach
bounds-consistent local search. It combines a local search algorithm (related to
previous algorithms such as Unit-Walk, Squeaky Wheel Optimization and Iter-
ative Sampling) with bounds consistency on integer linear inequalities.

At the time of writing, we are developing our prototype algorithm, using
examples of MSA and Social Golfer problems. Results obtained so far are en-
couraging but the heuristics require further experimentation. Experiments were
made on some instances of the Social Golfer problem. The algorithm solves a
few cases such as 2 groups of 2 golfers for 3 weeks, which has 42 variables and 78
constraints. On MSA examples it takes longer than was expected. We are trying
to improve these results by experimenting with heuristics for both the variable
permutation and the set of suggested assignments.

In future work we shall improve both the heuristics and the implementation,
in order to speed up the search. We will also extend the algorithm to non-
linear constraints such as all-different, enabling other problems to be modelled
effectively; bounds consistency can be applied to such constraints. We will also
experiment with alternative models for the MSA problem, and investigate other
interesting problems.

References

1. E. A. Hirsch, A. Kojevinkov. UnitWalk: A new SAT solver that uses local search
guided by unit clause elimination. In PDMI preprint 9/2001, Steklov Institute of
Mathematics at St.Petersburg, 2001.

2. D. E. Joslin, D. P. Clements. "Squeaky Wheel” Optimization. Proceedings of the
Fifteenth National Conference on Artificial Intelligence (AAAI-98). Madison, WI,
1999.

3. J. D. Kececioglu. Exact and Approximation Algorithms for DNA Sequence Recon-
struction. PhD thesis, University of Arizona, 1991.

4. P. Langley. Systematic and Nonsystematic Search Strategies. First International
Conference on Artificial Intelligence Planning Systems, 1992.

5. S. Minton, A. Philips. Minimizing Conflicts: A Heuristic Repair Method for
Constraint-Satisfaction and Scheduling Problems. et al. Artificial Intelligence. 1993.

6. S. Prestwich. Local Search and Backtracking vs Non-Systematic Backtracking.
AAAT 2001 Fall Symposium on Using Uncertainty within Computation. To appear.



7. S. Prestwich. Combining the Scalability of Local Search with the Pruning Techniques
of Systematic Search. Annals of Operations Research (to appear).

8. S. Prestwich, D. Higgins, O. O’Sullivan. A SAT-Based Approach to Multiple Se-
quence Alignment. Poster, Ninth International Conference on Principles and Prac-
tice of Constraint Programming, Kinsale, Ireland, 2003, pp. 940-944.

9. K. Reinert, H. P. Lenhof, P. Mutzel, K. Mehlhorn, J. D. Kececioglu. A Branch-
and-Cut Algorithm for Multiple Sequence Alignment. Proceedings of the 1st Annual
International Conference on Computational Molecular Biology (RECOMB). 1997.

10. C. Schulte, P. J. Stuckey. When Do Domain Propagation Lead to the Same Search
Space. Transactions on Programming Languages and Systems. ACM Press, (to ap-
pear). 2005.

11. Y. Zhang, R. H. C. Yap. Arc Consistency on n-ary Monotonic and Linear Con-
straints. In Proceedings of CP-00, pp. 470-483, Singapore, 2000.



