
Solving the Car-Sequencing Problem as a
Non-binary CSP

Student name: Mihaela Butaru
Supervisor name: Zineb Habbas

Université de Metz, Laboratoire d’Informatique Théorique et Appliquée,
UFR M.I.M., Ile du Saulcy, F-57045 Metz Cedex 1, France

butaru@univ-metz.fr, zineb.habbas@univ-metz.fr

Abstract. A search algorithm based on non-binary forward checking
(nFC) is used to solve the car-sequencing problem. The choice of value
ordering heuristics having a dramatic effect on solution time for this
problem, different ordering heuristics were implementented. The results
obtained by using these methods are compared on the instances reported
in the CSPLib.

1 Introduction

The car-sequencing problem arises from the manufacture of cars on an assembly
line (based on [1]). A number of cars are to be produced; they are not identical,
because different options are available as variants on the basic model. The assem-
bly line has different stations which install the various options (air-conditioning,
sun-roof, etc.). These stations have been designed to handle at most a certain
percentage of the cars passing along the assembly line. Furthermore, the cars
requiring a certain option must not be bunched together, otherwise the station
will not be able to cope. Consequently, the cars must be arranged in a sequence
so that the capacity of each station is never exceeded. Among the methods pro-
posed in literature to solve this problem, the exact methods such as the linear
programming [2] and the solving methods for constraint satisfaction problems
(CSPs) [3], [4], [5] represent good alternatives for certain instances of the prob-
lem. Many scheduling and similar problems can be expressed as CSPs, in which
there is a set of variables, each with a finite set of possible values, (its domain),
and a set of constraints. Each constraint links a subset of the variables and re-
stricts the values that those variables can simultaneously take. A solution to a
CSP is an assignment of a value to each variable such that every constraint is
satisfied. Constraint programming tools such as CHIP [6] and ILOG Solver [7]
use a search algorithm based on Forward Checking (FC) [8] to solve CSPs. FC
is one of the most common look-ahead algorithms (that is, they check for incon-
sistencies that involve future variables as well as the current and past variables).
This algorithm involves two choices at each iteration: the next variable to assign,
and the value to assign to it. The order in which the variables and their values
are considered can be decided in advance (a static ordering) or dynamically,
using information available at the time that the choice is made.



In this article, we undertake an experimental study for the instances of the
car-sequencing problem in CSPLib1, encoded as a n-ary CSP using an imple-
mentation with constraints of fixed arity 5. By applying value ordering heuristics
based on fail-first principle, a great number of these instances can be solved in
little time.

2 The Car-Sequencing Problem Encoded as a CSP

The problem described by Parrello et al. [1] was subsequently considered by
Dincbas et al. [9] who showed that it could be formulated as a constraint satis-
faction problem, using CHIP. In their basic formulation the assembly line has 5
possible options. The car-sequencing problem can be encoded as a CSP (see [3])
in which slots in the sequence are variables, cars to be built are their values.
Following [9], the first step is to group the cars into classes, such that the cars
in each class all require the same option. A matrix of binary elements of size
the number of classes multiplied by the number of options specifies which are
the options present in each class. Given the specifications (in terms of options
required) we have to arrange the cars to produce into a sequence such that none
of the capacity constraint is violated. These capacity constraints are formalized
using constraints of the form qi/pi, which indicate that the unit is able to pro-
duce at most qi cars with the option i out of each sequence of pi cars (this should
be read qi outof pi). The constraints already stated are sufficient to express the
problem; it seems that the only important thing about the options capacities is
not to exceed them, and going below the capacity does not matter. This is not
true, because of the fact that a certain number of cars requiring each option have
to be fitted into the sequence, so that going below the capacity in one part of
the sequence could make it impossible to avoid exceeding the capacity elsewhere.
In [9], the authors suggest adding implied constraints in order to allow failures
to be detected earlier than would otherwise be possible.

3 Variable and Value Ordering Heuristics

A search algorithm based on forward checking involves two choices at each iter-
ation, concerning the next variable to assign, and the value to assign to it. The

Table 1. Value ordering heuristics

Maximize MinimizeFormula
Heuristic Type Heuristic Type

Static/Dynamic
P

i∈Opt(cls) Utili MaxUtil fail-first MinUtil succeed-first D

Reqcls MaxCars succeed-first MinCars fail-first D
nbOptcls MaxOpt fail-first MinOpt succeed-first SP

i∈Opt(cls) 1/ci MaxP Q fail-first - - S

ordering of variables and values was studied by Smith [3]. More specifically, the
effects of the fail-first and the succeed-first were tested for the car-sequencing
1 http://4c.ucc.ie/~tw/csplib/



problem. The fail-first principle consists in choosing a variable or a value which
has the greatest pruning effect on the domains of the future variables, while
the succeed-first priciple consists in choosing the variable or the value which is
likely to lead to a solution, and so reduce the risk of having to backtrack to
this variable and try an alternative value. In [3] the author suggests that for the
car-sequencing problem the variables should be assigned consecutively; since any
possible solution is a permutation of a fixed set of values and the only question is
which variable gets which value, a succeed-first strategy for value ordering only
postpones the assignment of the difficult classes. Table 1 presents the formu-
las of computation for the different value ordering heuristics. By maximizing or
minimizing these formulas we obtain seven heuristics, four of them are based on
fail-first priciple and three of them on succeed-first principle. In these formulas
the following notations are used: nbCars represents the number of cars to be
produced; for each options i, ci = qi/pi is the capacity constraint, Reqi estab-
lishes the request and Utili = Reqi/(nbCars ∗ ci) represents the utilization; for
each class cls, Reqcls establishes the request, nbOptcls is the number of options
it requires and Opt(cls) is a function which returns these options.

4 Experimental Results

4.1 Implementation and Experimental Framework

In our implementation, we generate the car-sequencing problem as a non-binary
CSP with n variables (the slots in the sequence), d values (the cars to be built)
and m = n − 4 constraints of fixed arity 5 are posted on any 5 consecutive
variables. The relations corresponding to the constraints are explicitly built as

Algorithm 1: Procedure for the implied constraints

Procedure CheckImplied: Boolean
begin

i← 1
OK ← TRUE
while OK ∧ i ≤ 5 do

possiblei ← nbPos ∗ qi
pi

if possiblei < Reqi then OK ← FALSE
i← i + 1

return OK
end

allowed combinations of values, i.e. valid tuples. These tuples are generated re-
specting the capacity constraints for the options and the total production for
each car. In our research project [10] we implemented five versions of n-ary
FC algorithms, namely nFC0, nFC2, nFC3, nFC4, nFC5. These versions differ
between them in the extent of look-ahead they perform after each variable as-
signment [5]. On the data file generated in the fashion described above, we can
apply all the n-ary algorithms of FC developed, not only some algorithms spe-
cific to car-sequencing problem. Of course, we take into account the presence of
the implied constraints in the problem, i.e. if the domain of an unassigned vari-
able becomes empty or one of the implied constraint is violated (the procedure



CheckImplied in Algorithm 1 returns false), the current assignment is undone,
the previous state of the domains is restored and an alternative assignment is
tried, if necessary backtracking to a previous variable. In the Algorithm 1 nbPos
represents the number of available positions in the sequence; if the remaining
production Reqi of cars requiring a certain option i exceeds the possible pro-
duction possiblei, an inconsistency is detected. The heuristics introduced in the
Section 3 are evaluated on two groups of instances of car-sequencing problem in
the CSPLib. The first group includes 70 instances of 200 cars gathered by the
utilization percentage varying between 60% to 90%; all these instances concern
satisfiable problems because it was proven that there was a sequence not violat-
ing any capacity constraint. The second group contains 9 instances of 100 cars
for which it was shown that 4 of them were satisfiable, 4 other were infeasible and
only one remains with no solution known. For solving each of these instances,
the execution time was restricted at 900 seconds. The n-ary algorithms have
been developed in C++ using a Unix CC compiler and executed on a SGI3800
machine of 768 R1400 processors 500 MHz. We noticed that nFC0 was much
slower than the others and the winner was nFC2, that is why we present below
the results corresponding to the last one.

4.2 Results for the First Group of Instances

The number of instances of the first group solved by using the different value or-
dering heuristics is presented at the Figure 1. We notice that the use of the

0

10

20

30

40

50

60

70

8

nFC2
©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©

©©

70

MaxUtil

39

MinCars

54

MaxOpt
©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©

©©

70

MaxPQ

0

MinUtil

0

MaxCars

0

MinOpt

Fig. 1. Number of successful for the first group

algorithm nFC2 allowed solving only 8 of the 70 instances. The use of the
value ordering heuristics makes possible to increase the number of solved prob-
lems. Indeed, the heuristics of fail-first type, MaxUtil, MinCars, MaxOpt and
MaxPQ, solved respectively 70, 39, 54 and 70 instances of problems. Regard-
ing the heuristics of succeed-first type, MinUtil, MaxCars and MinOpt, they
did not succeed in solving any instance of problem. We can thus conclude, as
Smith [3] had underlined it, that the value ordering heuristics based on fail-
first principle perform better than those of succeed-first type. In particular, the
MaxUtil and MaxPQ heuristics obtain interesting results for these problems,
even if MaxUtil is a dynamic heuristic. Table 2 presents the detailed results
by using the heuristics MaxUtil and MaxPQ for solving the instances of 200
variables gathered by the utilization percentage of the options and we count 10
instances for each of them. The results in table correspond to the average results



Table 2. Results of MaxUtil and MaxPQ heuristics for the first group.

MaxUtil MaxP Q

Pb. Tmax D tD #nodes #ccks #BT #OK Pb. Tmax D tD #nodes #ccks #BT #OK
60 3.15 200 3.15 200 525705 0 10 60 3.37 200 3.37 300 527670 100 10
65 3.97 200 3.97 200 805918 0 10 65 4.44 200 4.44 302 806229 102 10
70 4.70 200 4.70 200 1029707 0 10 70 4.91 200 4.91 268 1021358 68 10
75 5.65 200 5.65 200 1326867 0 10 75 5.75 200 5.75 257 1281343 57 10
80 6.82 200 6.82 200 1682611 0 10 80 6.91 200 6.91 239 1705391 39 10
85 8.35 200 8.35 200 2292852 0 10 85 8.24 200 8.24 226 2205163 26 10
90 10.73 200 10.73 200 3078951 0 10 90 10.93 200 10.93 240 3034675 40 10

Avg: 6.20 200 6.20 200 1534659 0 Total=70 Avg: 6.36 200 6.36 261 1511647 61 Total=70

obtained for each utilization percentage. Let us note that the column Tmax indi-
cates either the necessary time to solve the problem or, in the case of a unsolved
problem, the maximum time spent to seek a solution. The column D shows the
number of positions in the sequence which it was possible to affect during the
execution (i.e. the maximum depth in the search tree), tD represents the neces-
sary time to reach this depth in the search tree, #nodes, #ccks and #BT count
respectively the number of visited nodes, constraint checks and backtracking to
reach the maximum depth in the search tree. Finally, #OK indicates the number
of problems solved by the algorithm. The last row of the table gives an average
for each column as well as the total number of successful instances. A compari-
son between these two heuristics enables us to conclude that MaxUtil remains
the best heuristic. Moreover, it is surprisingly backtrack-free.

4.3 Results for the Second Group of Instances

For the second group of problems, including very difficult instances, none of them
is solved without heuristic in 900 seconds. However, using MaxUtil the problems

Table 3. Results of MaxUtil and MaxPQ heuristics for the second group.

MaxUtil MaxP Q

Pb. Tmax D tD #nodes #ccks #BT yes/no Pb. Tmax D tD #nodes #ccks #BT yes/no
4 72 900 90 1 152 732450 62 no 4 72 900 91 320 41124 48467390 41033 no
6 76 900 70 2 398 652343 328 no 6 76 900 58 0 74 434567 16 no
10 93 900 75 6 406 2565764 331 no 10 93 900 76 34 2662 98008555 2586 no
16 81 155.085 100 155.085 35966 15391983 35866 yes 16 81 900 95 12 1664 2077529 1570 no
19 71 900 91 29 6559 3577762 6468 no 19 71 900 90 71 9162 12538120 9072 no
21 90 900 91 3 874 641208 783 no 21 90 900 88 7 1532 1133881 1444 no
36 92 900 70 2 387 682380 317 no 36 92 900 75 23 3653 3922874 3578 no
41 66 0.903 100 0.903 101 310180 1 yes 41 66 1.225 100 1.225 179 355985 79 yes
26 82 900 95 20 6412 2284875 6317 no 26 82 900 85 764 108937 110949640 108852 no

Avg: 717.33 87 24.33 5632 2982105 5545 2 Avg: 800.13 84 147.88 18775 21076505 18691 1

16 81 and 41 66 (known as satisfiables) are solved, while the MaxPQ heuristic
solves the problem 41 66 (see Table 3, where the column “yes/no” indicates if the
problem was solved). Let us note that the instance 41 66 was solved in less than
one second with MaxUtil and 1.22 seconds with MaxPQ. For this category of
problems the approach developed in [11] did not solve any instance.

5 Conclusions and Future Work

In this article, a comparison of the performances for different value ordering
heuristics making possible to guide the search for solutions for car-sequencing



problem was presented. The problem was encoded as a non-binary CSP and
the filtering method is based on n-ary Forward Checking. The results obtained
showed the superiority of a strategy of fail-first type against to a succeed-first
strategy. Moreover, the MaxUtil and MaxPQ heuristics allowed a better explo-
ration of the space of solutions and solved all the instances of problems with 200
variables, whereas the same heuristics in [11] solved 12 respectively 51 instances
among the 70. It should be underlined the fact that these problems were solved
in little time (6 seconds on average) and the longest time is 13 seconds for the in-
stance 90 09, whereas for ILOG Solver the least powerful time exceeds 1 minute.
This result can be justified by our encoding. Indeed, we encoded the maximum
of constraints (the capacity of each option, the request for each class) inside
an explicit 5-ary constraint with very high tightness (close to 0.95). MaxUtil
remains the best heuristic because it is surprisingly backtrack-free. Within the
future work, the filtering method will be improved in order to solve a greater
number of instances of problems and, in particular, those with 100 variables. A
hybridization of the optimization methods represents another way of interesting
research. The use of parallelism also seems an interesting direction for solving
this type of problem and the works in this direction are in progress.

References

1. Parrello, B.D., Kabat, W.C., Wos, L.: Job-shop schedulind using automated rea-
soning: a case study of the car-sequencing problem. Journal of Automated Rea-
soning 2 (1986) 1–42

2. Gravel, M., Gagné, C., Price, W.L.: Review and comparison of three methods for
the solution of the car sequencing problem. Journal of the Operational Research
Society (2004)

3. Smith, B.M.: Succeed-first or fail-first: A case study in variable and value ordering.
Report 96.26, University of Leeds (1996)

4. Régin, J.C., Puget, J.F.: A filtering algorithm for global sequencing constraints.
Constraint Programming (1997) 32–46

5. Bessière, C., Meseguer, P., Freuder, C., Larossa, J.: On forward checking for non
binary constraint satisfaction. Artificial Intelligence 141 (2002) 205–224

6. van Hentenryck, P.: Constraint Satisfaction in Logic Programming. MIT Press,
Cambridge (1989)

7. Puget, J.F.: A c++ implementation of clp. In: Proceedings of SPICIS94 (Singapore
International Conference on Intelligent Systems). (1994)

8. Haralick, R.M., Elliot, G.L.: Increasing the search efficiency for constraint satis-
faction problems. Artificial Intelligence 14 (1980) 263–313

9. Dincbas, M., Simonis, H., van Hentenryck, P.: Solving the car-sequencing problem
in constraint logic programming. In: Proceedings ECAI-88. (1988) 290–295

10. Butaru, M., Habbas, Z.: Problèmes de satisfaction de contraintes n-aire: une étude
expérimentale. In: Actes des Premières Journées Francophones de Programmation
par Contraintes (JFPC05), Lens, France (8-10 Juin, 2005)

11. Boivin, S., Gravel, M., Krajecki, M., Gagné, C.: Résolution du problème de car-
sequencing à l’aide d’une approche de type fc. In: Actes des Premières Journées
Francophones de Programmation par Contraintes (JFPC05), Lens, France (8-10
Juin, 2005)


