
GOOSE – A generic object-oriented search

environment (extended abstract)⋆

Student: Henry Müller, Supervisor: Prof. Dr. Ing. Stefan Jähnichen

Fraunhofer FIRST, Kekuléstr. 7, D-12489 Berlin, Germany
henry.mueller@first.fraunhofer.de

Abstract. The constraint programming community keeps on creating
numerous search algorithms. It is an as desirable as difficult task to imple-
ment a variety of search algorithms in a single unifying framework. This
design proposal states an object-oriented environment which supports
development of generic search algorithms. GOOSE is abstract enough to
house dissimilar search approaches and separates abstract generic logic
from domain details. The presentation addresses multidimensional search
structures, behaviour distribution and control flow. Implementing search
algorithms according to GOOSE will make them easier to understand
and compare, the code will be flexible and reusable.

1 Introduction

A lot of different search algorithms exist in the world of constraint program-
ming. There are some more or less different fundamental search approaches (local
search, global search, genetic algorithms, etc.), and each one offers own meth-
ods and heuristics. Attempts have been made to categorise search algorithms
to make them comparable and understandable [7, 8]. It is desirable to express
the different approaches in a unifying frame, what turns out to be quite difficult
on a theoretic level. But it is also difficile to manage algorithmic variants on
implementation level.

What is the appeal of a unifying framework from the implementation perspec-
tive? At the worst each special algorithm is realised as a monolithic unit. Their
code is complicated, vast and difficult to grasp. Monoliths often suffer from dupli-
cated code and complex conditional constructs impeding maintenance. Address-
ing these difficulties, this paper proposes the object-oriented GOOSE framework
to support implementation of generic constraint-directed search algorithms:

• At first we consider the basics and origins of this proposal (section 2).
• GOOSE is presented in terms of UML and design patterns (section 3). The

goal is to improve reuse and flexibility. GOOSE knows 3 component types:

(a) Search facade simplifies assembly of GOOSE components and usage of
compound search algorithms (section 3.1).

⋆ This work is funded by the EU (EFRE) and the state Berlin, grant no. 10023515.



(b) A general search algorithm is presented and is exemplary extended to a
concrete generic backtracking algorithm (section 3.2).

(c) Generic logic operates on compatible search spaces (section 3.3). GOOSE
provides a search dimension concept to simplify cooperation between
logic and space and to streamline control flow.

• Finally we discuss related work and draw some conclusions (section 4).

As a proof of concept GOOSE was implemented within our object-oriented
firstcs [5] solver. Up to now the concept handles variants of backtracking
search and deals with topics like constraint-based scheduling, static and dynamic
variable ordering, justifications and backjumping, optimisation, randomisation
and restarting. GOOSE is part of the author’s effort to create an intelligent CSP
solving system. A high-level intelligent reasoning instance shall provide progress
judgement, gathering of experiences and dynamic adaptive configuration. It’s of
particular interest to react rationally on unknown problem types.

2 Basics and origins

The main influence on GOOSE is Prosser’s categorisation [8] of backtracking
search algorithms (section 3.2). Prosser defines a general search procedure, which
uses two functions label() and unlabel() representing the algorithm’s for-
ward and backward move in the search tree. Combination of different algorithms’
label() and unlabel() functions creates new hybrid algorithms.

This design proposal explicitly goes for an efficient object-oriented design,
which enforces code reuse and flexibility by the correct use of class inheritance
and object composition [3]. It considers Prosser’s view [8] in a generic way and
allows for a plug & play like exchange of components. The study of design pat-
terns [3], which offer solutions to standard problems of object-oriented software
design, was of great help. Used patterns are mentioned for further research, and
their effects are discussed for each application (section 3).

GOOSE’s design provides a base for search variants. Algorithmic variations
are handled with object composition in the first place, as it is generally to be
favoured over class inheritance [3]. There are many wrong ways to express algo-
rithmic variations in OOP. The author recommends applying the flexible Strat-
egy or Decorator pattern instead. [3] describes a decorator as a skin over an
object that changes its behaviour, a strategy is said to change an object’s guts.
The flexible strategy and decorator objects are exchangeable at runtime.

3 GOOSE design overview

Generic programming makes algorithms reusable for different data types. In
order to create a generic search algorithm, abstract common logic has to be
extracted from the entirety of concrete search algorithms. Only common high-
level behaviour is to be divided from low-level behaviour, which is relevant to
the specific domain and thus stays with the data. Figure 1 shows the design:



Abstract and generic search logic classes called labellers operate on search space

classes to do a labelling process. An optional facade encapsulates labellers and
spaces, it shields the programmer from subsystem details offering easy access.

Search algorithm partitioning is refined into a two-step abstraction: A gen-
eral search procedure is offered by the AbstractLabeller class. A special-
isation like GenericLabeller, which defines backtracking search, completes
the high-level generic search logic. A generic labeller knows which primitive data
manipulation methods are available via polymorphism: The search space imple-
mentation has to fit prepared logic compatible interfaces like Backtrackable.

3.1 Search facade (optional)

GenericSearchFactory simplifies composition of single elements into a mean-
ingful aggregation. It is conducted from the Abstract Factory pattern and relieves
the developer from combining search components himself. AbstractSearch is
an implementation base for derived search algorithms and offers mainly methods
to initiate a search process. The only deriving class is GenericSearch, which
is an envelope for other components: Search queries and maintenance requests
are delegated to its labeller, which calls on its part search space methods.

3.2 Search logic

AbstractLabeller represents abstract general search intelligence. It realises
with processLabelling() an iterative process of making (label()) and
retracting (unlabel()) decisions. AbstractLabeller follows the Template
Method pattern. It defines an algorithmic framework in abstract steps and leaves
label() and unlabel() open for implementation by derived labellers. Thus
the invariant part of search logic is abstractly factored out as a general algorithm,
giving subclassing labellers the chance to differ in their decision process.

A generic subclass of AbstractLabeller defines label() and unlabel()
corresponding to a specially-tailored search space interface. Collaboration be-
tween generic logic and concrete search space is ensured by polymorphism: A
special labeller expects a space of a given type, as its decision methods have to
know available search space methods. Specialisation of decision making reflects
basic search categories like local search, global search or evolutionary search.

3.3 Search spaces

We want a concrete search logic class to work with every compatible search space.
E.g. GenericLabeller processes spaces of type Backtrackable, which con-
tains three other interfaces: Searchable defines methods necessary for the ab-
stract search process. Storable defines methods concerning state maintenance.
Finally methods in Movable enable movement over a search space. Different
search logic components accessing a search space will mostly need only appointed
aspects: The AbstractMover component for example needs only movement be-
haviour and thus requires the Movable part. AbstractLabeller needs the



Fig. 1. Core interfaces and classes of GOOSE



logic handling portion, and that is Searchable. The point is to decouple logic
components from behaviour elements they don’t need.

Search dimensions A flexible concept of backtrackable spaces evolved while
working with them. A backtrackable space is seen by GenericLabeller’s logic
as an abstract search dimension, which is an ordered scope of variation where the
variations allow movement over this scope. The dimension has a pointer, which
indicates the current position. The dimension pointer is moved explicitly. If logic
initiates a state change on the space, it will happen at the indicated position.

Even basic search algorithms will use telescoped iterative control structures.
For example a set of variables constitutes a search dimension, which in turn
includes an entangled domain dimension. The outer loop iterates over variables
trying to find a problem solution, the inner loop iterates over values trying to find
consistent variable assignments. Thinking of a search tree, the variable dimen-
sion corresponds to vertical movement and the domain dimension to horizontal
movement in the tree. GOOSE is chiefly about code reuse, so it suggests itself
to represent an inner loop with an appropriate labeller and search space.

Control flow and distributed behaviour There are two ways to organise
control flow of entangled dimensions: The first approach models a parallel control
flow, where the outer labeller knows of the inner one and controls it. The second
approach hides the inner labeller in the outer search space building a linear
control chain. GOOSE uses linear control flow, because it makes the outer logic
more general. How is behaviour correctly distributed among search dimensions?
A good sign that behaviour is in the right dimension is the absence of long
reference chains, which point out misplaced code. Generally the developer may
either choose to manage an entangled situation with a single labeller-space-pair
or to resolve inner loops by boxing logic and space components.

4 Related work and Conclusion

Gent and Underwood formulate in [4] scheme code for a general search algorithm,
which can be modified to realise special algorithms by implementing certain
service functions. The algorithm is formulated with instruments of constructive
type theory and gives GOOSE a theoretical base regarding correctness.

In [7] Jussien and Lhomme propose the generic PLM algorithm for systematic
and non-systematic search, it uses the components Propagation, Learning and
Moving. It remains theoretical when arguing with sets and predicates. GOOSE
in contrast accents implementation but includes the three components implicitly.

In [2] Givry and Jeannin present the ToOLS library, which supports CP
programmers in building complex search algorithms. [2] makes no statements
about generic search or concrete design measures. In contrast to GOOSE ToOLS
commits itself to partial search and local/global search hybrids. The library is
search tree centred while GOOSE stays general. ToOLS is part of the constraint
solver Eclair, GOOSE can be implemented in any object-oriented system.



Van Hentenryck presents in [9] search capabilities of OPL, a modelling lan-
guage for combinatorial optimisation combining algebraic and set notations, a
constraint language and instruments to specify search procedures. GOOSE is an
object-oriented design proposal, OPL abstracts and hides object-oriented details.

Chatzikokolakis et al. combine in [1] methods of global constructive search
and local repair search and present the generic Construction-Repair algorithm.
AbstractLabeller resembles the CR algorithm, what implies that GOOSE
can handle both repair algorithms and construction-repair hybrids.

Conclusion GOOSE is an object-oriented design proposal for generic constraint-
directed search. The few works explicitly stating a generic search algorithm for
CSP either stay abstract [6, 7] or formulate rather a general algorithm, which re-
sembles AbstractLabeller, instead of a generic one [1, 6, 7]. GOOSE focuses
problems on implementation level and considers both the general and the generic
element. Future work will cover the introduction of non-systematic generic search
algorithms and dynamic adaptive search configuration, e.g. switching dynami-
cally from chronological tree movement to backjumping or from global to local
search etc. The author hopes that GOOSE may serve interested developers as a
large design pattern to create sophisticated search algorithms easily.

References

1. Konstantinos Chatzikokolakis, George Boukeas, and Panagiotis Stamatopoulos.
Construction and repair: A hybrid approach to search in csps. In George A. Vouros
and Themis Panayiotopoulos, editors, SETN, volume 3025 of Lecture Notes in Com-

puter Science, pages 342–351. Springer, 2004.
2. S. de Givry and L. Jeannin. Tools : A library for partial and hybrid search methods,

2003. Paratre dans CP-AI-OR 2003.
3. E. Gamma, R. Helm, R. Johnson, and J. Vissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1994.
4. Ian P. Gent and Judith L. Underwood. The logic of search algorithms: Theory and

applications. In Principles and Practice of Constraint Programming, pages 77–91,
1997.

5. Matthias Hoche, Henry Müller, Hans Schlenker, and Armin Wolf. firstcs - A Pure
Java Constraint Programming Engine. Juli 2003. submitted to the 2nd International
Workshop on Multiparadigm Constraint Programming Languages (MultiCPL’03) at
the 9th International Conference on Principles and Practice of Constraint Program-
ming, CP 2003.

6. M.S. Fox J.C. Beck. A generic framework for constraint-directed search and schedul-
ing. AI Magazine, 19(4):101–130, 1998.

7. N. Jussien and O. Lhomme. Unifying search algorithms for csp, 2002. Research
Report 02-3-INFO, Ecole des Mines de Nantes, Nantes, France.

8. Patrick Prosser. Hybrid Algorithms For The Constraint Satisfaction Problem. Com-

putational Intelligence, 9(3):268, 1993.
9. Pascal van Hentenryck, Laurent Perron, and Jean-François Puget. Search and strate-

gies in OPL. ACM Transactions on Computational Logic, 1(2):285–320, 2000.


