
 1

Java-based Proactive Buffering for
Multimedia Streaming Continuity in the Wireless Internet

Paolo Bellavista, Antonio Corradi, Luca Foschini

Dipartimento di Elettronica Informatica e Sistemistica - Università di Bologna
Viale Risorgimento, 2 – 40136 Bologna – ITALY

Phone: +39-051-2093001; Fax: +39-051-2093073
{pbellavista, acorradi, lfoschini}@deis.unibo.it

Abstract

New challenging deployment scenarios are ac-

commodating portable devices with limited and het-
erogeneous capabilities that roam among wireless ac-
cess localities during service provisioning with session
continuity requirements, such as in multimedia stream-
ing. The paper proposes an original two-level buffer-
ing strategy to maintain streaming continuity inde-
pendently of client roaming at provision time. In par-
ticular, it focuses on a specific component of the pro-
posed support infrastructure, i.e., the pure Java buffer-
ing component, which has shown to outperform the
standard Java Media Framework in both streaming
initialization time and imposed overhead.

1. Two-Level Buffering for Streaming

Continuity during Handoffs
The popularity of wireless devices and the increas-

ing availability of Wi-Fi Internet Access Points (APs)
are stimulating the provisioning of distributed services
to a wide variety of mobile terminals, with heterogene-
ous and often limited resources. Even if device and
network capabilities are increasing and increasing, the
development and deployment of wireless applications
are going to remain a very challenging task, in particu-
lar when dealing with continuous services, i.e., appli-
cations that distribute time-continuous data flows to
their clients, such as in the case of audio/video stream-
ing.

Let us consider the common deployment scenario
where wireless solutions extend the accessibility to the
traditional Internet via APs working as bridges be-
tween fixed hosts and wireless devices [1]. A notable
example is the case of IEEE 802.11 APs that support
connectivity of Wi-Fi terminals to a wired local area
network. In the following, we indicate these integrated
networks with fixed Internet hosts, wireless terminals,
and wireless APs in between, as the Wireless Internet
(WI).

We claim the need of middleware solutions to dy-

namically build overlay support networks for the pro-
visioning of WI continuous services to portable de-
vices. Hence, we have developed the Mobile agent-
based Ubiquitous multimedia Middleware (MUM*), a
dynamic and flexible infrastructure to support both
streaming quality adaptation and session continuity,
independently of client roaming in the WI. A more
detailed MUM description is out of the scope of the
paper and can be found in [2].

This paper focuses on an essential aspect of our
middleware: avoiding provisioning interruptions when
a client roams from one wireless locality to one an-
other (wireless cell handoff) at runtime. Many research
efforts tend to solve this problem by working at the
network layer [3, 4]; a few techniques have been pro-
posed also at higher layers [5]. Our handoff technique
entirely works at the application layer by exploiting an
original two-level buffering solution that integrates
with our Wi-Fi mobility prediction approach [7].

Client-side data buffering is a usual approach in
multimedia streaming over wired networks to smooth
congestions that may occur on the client-server path.
Some recent research activities have started proposing
client buffering also to overcome short-duration dis-
connections during service delivery in wireless envi-
ronments [6]. They all assume that clients have enough
memory to maintain pre-fetched streaming data and
this assumption is often inapplicable in the WI sce-
nario, e.g., where the client is either a PDA or a cell
phone.

We propose an additional level of data buffering at
some intermediate nodes along the client-server path,
i.e., at the proxy nodes in the wireless localities where
the associated clients are currently connected. We
claim that proxy-based buffering can significantly con-
tribute both to minimize client-side resource usage and
to guarantee streaming continuity during handoff. In
fact, our previous research experiences have shown
that handoff completion time depends on several fac-

* Additional details and the code of the MUM prototype are avail-
able at http://www.lia.deis.unibo.it/Research/MUM/

 2

tors, e.g., proxy-server hop distance, number of active
components in the server-to-proxy path, and network
congestion state. In several deployment scenarios, that
time interval may be definitely not negligible, thus
making unfeasible buffering solutions only at the client
side [2]. Second-level proxy buffering exploits the
memory resources of workstations traversed by multi-
media flows on the wired network.

In addition, our middleware works to proactively
migrate proxy-located buffers to the expected next
wireless access localities of currently served clients,
before client handoffs. In particular, our handoff facil-
ity exploits the time saved thanks to proactive buffer
migration to perform time consuming operations, e.g.,
to activate/setup proxies in predicted localities and to
begin rebinding operations between proxies and remote
streaming servers. The handoff facility exploits an in-
novative technique for mobility prediction within Wi-
Fi environments called Received Signal Strength Indi-
cation-Grey Model (RSSI-GM for shortly) [7].

2. Buffering Mechanism Implementation

The section presents the primary core mechanism
of the MUM handoff facility, i.e., the proxy/client
buffering mechanism. Our buffering solution is strictly
coupled with the portable library adopted for multime-
dia streaming, i.e., the Java Media Framework (JMF).
We developed a proactive buffer prototype, imple-
mented in terms of a circular buffer, to verify the fea-
sibility of the MUM approach from the performance
point of view, also when adopting the application-level
Java-based JMF. In the following, we first present
some main elements of JMF, needed for the full under-
standing of the following, and then we detail the design
and implementation of the MUM buffer solution.

JMF is the SUN Java-based framework proposed
for multimedia object management. JMF adopts the
RealTime Protocol (RTP) for video streaming and the
RealTime Control Protocol (RTCP) to monitor the
network status at provision time. JMF processes the
frames of a multimedia flow by passing them through a
pipeline, called plug-in chain, composed of various
stages; each plug-in can perform a specific flow trans-
formation. JMF simplifies multimedia application de-
velopment by hiding frame transformations at the li-
brary level and by providing higher level APIs both to
abstract frame sources/sinks, e.g., Data-Source/
DataSink, and to encapsulate the construction and
usage of plug-in chains, e.g., Player and Processor.
JMF is also in charge of buffering functions and ex-
poses APIs for flow buffering control, e.g., the
BufferControl object that can be obtained from
Player or Processor via getControl().

Let us note that high-level JMF APIs simplify mul-

timedia application development, but do not always
offer the fine control granularity required to realize
advanced and customized services. In addition, the
MUM handoff facility needs functions to extract, set,
and manage directly the circular buffer; JMF does not
support this kind of functions. Moreover, from our
experience, JMF buffering sometimes exhibits quite
unpredictable performance, depending on the underly-
ing operating systems and Java Virtual Machine (JVM)
versions. For all these reasons, we have decided to
develop an original buffering mechanism outside JMF
both to control directly buffering functions and to op-
erate with finer granularity directly at the frame level.

The above reasons suggested us to deeply explore
and use the lower level mechanisms available in JMF
to directly and precisely control flow progress and
frame-level buffering. In particular, we have decided to
directly construct and manage plug-in chain stages and
all Java threads that contribute to transform frames and
move them towards the pipeline, as depicted in Figure
1. For the sake of simplicity, the figure exemplifies the
operations of the MUM buffer for the specific plug-in
chain built at the client to render an H263 presentation
transmitted over RTP. This chain consists of 4 stages:
the raw buffer parser collecting RTP packets, the H263
decoder, the YUV to RGB converter and the video
renderer.

Moreover, our buffer implementation does not en-
danger portability and can run over any JVM-equipped
host: in fact, MUM is completely JMF-compliant, does
not modify the JMF implementation, and only achieves
the flexibility and efficiency needed by accessing
lower-level JMF mechanisms, typically hidden when
using the higher-level JMF APIs.

Raw video buffer
stream parser

RTP
Flow

H263
Decoder

YUV to RGB
Converter

MUM Circular
Buffer

RendererRaw video buffer
stream parser

RTP
Flow

H263
Decoder

YUV to RGB
Converter

MUM Circular
Buffer

Renderer

Figure 1. Client Plug-in Chain

3. Experimental Results
The section presents experimental results about the

circular buffer implementation to point out how, by
controlling directly the circular buffer and plug-in
chain, it is possible to improve the usual JMF perform-
ance. First, the section analyzes the plug-in initializa-
tion phase; then, it considers the MUM behavior at
runtime and evaluates how the interposition of cli-
ent/proxy buffers affects CPU load.

The used testbed consists of Sun Blade 2000 work-
stations equipped with 900MHz processors, 1024MB
RAM, and connected by a 100 Mbps Ethernet LAN.

 3

The workstations are equipped with SunOS v5.9 oper-
ating system and JVM v1.4.2_03-b02, and exploit JMF
Performance Pack for Solaris v2.1.1e. Heterogeneous
clients with limited hardware/software capabilities are
represented by Asus laptops with IEEE802.11b con-
nectivity and Windows2000, the same JVM version,
and the JMF Performance Pack for Windows. In our
experiments we used a H263 encoded video stream
(length=20’24”, composed by 18244 frames, frame
dimension=176x144 pixels, frame rate=14,9 frames/s).
All experimental results reported in the following are
average values over a set of 100 runs.

The standard JMF plug-in chain initialization tends
to be as general as possible: when there is a new in/out
flow, JMF tries to apply all possible de/coders to the
flow. This produces long initialization times, due to
both the loading of all possible plug-in descriptors and
the control of all possible dependencies. MUM exploits
the knowledge of presentation descriptions and client
profiles to previously determine needed plug-ins for
the delivered multimedia presentation. Further details
about our distributed metadata storage are available in
[8]. Experimental results demonstrate that MUM direct
plug-in chain construction drastically reduces initiali-
zation time at both the client and the server, as reported
in Figure 2. In addition, the wide prototype testing and
performance evaluation have contributed to isolate the
main JMF library bottlenecks [2].

The average time for usual JMF chain initiation at
the server is 303ms, while our custom solution builds
the chain in only 94ms; similarly, at the client the de-
lay passes from 374ms to 110ms (including buffer ini-
tialization time). At the proxy, the performance im-
provement is reduced: the reason is that proxy plug-in
chain consists of only two stages, since proxies only
forward incoming RTP packets to clients, and do not
check neither packet payload nor plug-in dependen-
cies.

0 50 100 150 200 250 300 350 400

Proxy

Client

Server

Low level API
High level API

0 50 100 150 200 250 300 350 400

Proxy

Client

Server

Low level API
High level API

Figure 2. Plug-in chain initiation time

Moreover, we evaluated runtime CPU load by com-

paring classic JMF and MUM buffering solutions. Di-

rect plug-in chain programming reduces CPU load
from 14,65% to 11,42% at the server node, and from
5,23% to 3,25% at the client, while there are no sig-
nificant improvements at proxies. Our implementation
outperforms JMF at client and server nodes by elimi-
nating some control threads for either plug-in chain
dependences control or plug-in chain state change noti-
fication, e.g., to notify the end of the initialization
phase. Proxy plug-in chains, consisting of only two
stages, are less affected by these improvements.

In summary, our two-level buffering outperforms

commonly used, JMF-embedded, buffering mecha-
nisms. The promising performance results obtained are
stimulating further related research activities. We are
working on enabling the runtime adaptive decision of
buffer size at both the client and the proxy. In addition,
we are developing wide-scale handoff simulations to
extensively benchmark our proposal and to compare its
performance with the other primary research proto-
types in the field [3, 4].

Acknowledgments
Work supported by the MIUR FIRB WEB-MINDS and the
CNR Strategic IS-MANET Projects.

References
[1] M. S. Corson, J. P. Macker, V. D. Park, “Mobile and

Wireless Internet Services: Putting the Pieces Together,
IEEE Communications, Vol. 39, No. 6, 2001.

[2] P. Bellavista, A. Corradi, L. Foschini, “MUM: a Mid-
dleware for the Provisioning of Continuous Services to
Mobile Users”, IEEE Int. Symposium on Computers
and Communications, 2004.

[3] A.T. Campbell et alii, “Comparison of IP micromobil-
ity protocols”, IEEE Wireless Communications, Vol. 9,
No. 1, 2002.

[4] S. Debashis et alii, “Mobility Support in IP: A Survey
of Related Protocols”, IEEE Network, Vol. 18, No. 6,
2004.

[5] M.E. Wesley, “At What Layer Does Mobility Be-
long?”, IEEE Communications, Vol. 42, No. 10, 2004.

[6] F.H.P. Fitzek, M. Reisslein, “A Prefetching Protocol
for Continuous Media Streaming in Wireless Environ-
ments”, IEEE Journal on Selected Areas in Communi-
cations, Vol. 19, No. 10, 2001.

[7] P. Bellavista, A. Corradi, C. Giannelli, “Mobility Pre-
diction for Mobile Agent-based Service Continuity in
the Wireless Internet”, Int. Workshop on Mobility
Aware Technologies and Applications (MATA'04),
2004.

[8] P. Bellavista, A. Corradi, L. Foschini, “MUMOC: an
Active Infrastructure for Open Video Caching”, Int.
Conference on Distributed Frameworks for Multimedia
Applications (DFMA'05), 2005.

