
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT #118785 1

Context-aware Middleware for Resource
Management in the Wireless Internet

Paolo Bellavista, Antonio Corradi, Rebecca Montanari, and Cesare Stefanelli, Members, IEEE
Computer Society

Abstract— The provisioning of Web services over the wireless Internet introduces novel challenging issues for service design and
implementation: from user/terminal mobility during service execution, to wide heterogeneity of portable access devices and
unpredictable modifications in accessible resources. In this scenario, there are frequent provision-time changes in the context,
defined as the logical set of accessible resources depending on client location, access terminal capabilities, and system/service
management policies. The development of context-dependent services requires novel middlewares with full context visibility. We
propose a middleware for context-aware resource management, called CARMEN, capable of supporting the automatic
reconfiguration of wireless Internet services in response to context changes without any intervention on the service logic. CARMEN
determines the context on the basis of metadata, which include declarative management policies and profiles for user preferences,
terminal capabilities, and resource characteristics. In addition, CARMEN exploits the mobile agent technology to implement mobile
middleware components that follow the provision-time movement of clients to support locally their customized service access. The
proposed middleware shows how metadata and mobile agents can favor component reusability and automatic service
reconfiguration, by reducing the development/deployment complexity.

Index Terms— C.2.8.e Mobile Computing/Support services, J.8.l Internet Applications/Middleware, J.9.a Mobile
Applications/Location-dependent and Sensitive, C.2.8.d Mobile Computing/Mobile Environments.

—————————— ——————————

1 INTRODUCTION

ET us start by considering a service scenario which will
be more and more usual in the next days. Alice with
her IEEE 802.11b palmtop is willing to access a Mobile

News Service (MNS) that permits the reading and browsing
of newspaper data resources available in the fixed Internet.
For instance, MNS allows the Alice’s palmtop to download
the news to read during the flight from an info-station at
the boarding gate; after plane landing, the palmtop can
automatically reconnect to a new info-station at the arrival
gate to obtain updated news, as well as locality-dependent
information, e.g., weather and traffic reports. The scenario
can require not only supporting the wireless connection of
Alice’s palmtop to the needed resources in the fixed net-
work via different IEEE 802.11b access points [1], but also
supporting the automatic re-qualification of accessed re-
sources depending on the client location, the currently en-
forced management policies in the hosting locality, and Al-
ice’s personal preferences. For instance, Alice is interested
in accessing also locality-dependent information but only if
in English; in the case of only Japanese news locally avail-
able, she would like to access either remote data resources
or a local Japanese-to-English service component automati-
cally translating the local news.

Then, let us follow Alice who leaves her palmtop at
home and goes to a gym in the late afternoon. Alice loves
doing her yoga exercises while listening to music from her

Bluetooth-enabled micro mp3 reader. The reader has a little
text-only display to visualize playing song information and
also short flowing messages. Also in the gym Alice would
like to access MNS via Bluetooth connectivity, but this time
only to receive short news excerpts tailored to her interests
and subscribed topics, e.g., to be notified of sport results
and abrupt modifications in the quotation of her stock ex-
changes.

The MNS scenario exemplifies how it is crucial to con-
sider both mobility and heterogeneity in service provision-
ing to wireless portable devices. On the one hand, mobility
requires tracking clients, suggests connecting them to the
most suitable resources, either local or remote, and moti-
vates the provisioning of new location-dependent services
[2]. In addition, mobility stimulates the possibility to con-
tinue service operations also asynchronously with regards
to clients, for instance when performing a time-consuming
complex query on geographically distributed news re-
sources, and to maintain the session state between client
disconnection and successive reconnection, possibly in a
different access locality, for instance in an MNS version tak-
ing into account the downloaded news to propose only un-
read new ones. On the other hand, the high heterogeneity
of portable access devices forces to consider not only the
support of different forms of wireless connectivity, but also
the change in the logical set of accessible resources during
service provisioning and the corresponding need for modi-
fying service management decisions, e.g., dynamically tai-
loring the MNS results to a very limited access device by
filtering only user-specific textual information.

MNS works in a common networking scenario where

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————
• P. Bellavista, A. Corradi, and R. Montanari are with the Department of

Electronics, Computer Science, and Systems (DEIS), University of Bolo-
gna, 40136 Bologna, Italy. E-mail: {pbellavista, acorradi, rmon-
tanari}@deis.unibo.it.

• C. Stefanelli is with the Department of Engineering, University of Ferrara,
44100 Ferrara, Italy. E-mail: cstefanelli@ing.unife.it.

L

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT #118785

wireless solutions can extend the accessibility of the fixed
Internet infrastructure via access points working as bridges
between fixed hosts and wireless devices [3]. An exemplar
case is the utilization of IEEE 802.11b access points to sup-
port the connectivity of Wi-Fi equipped laptops to a wired
local area network [1]. We will indicate these integrated
networks with fixed Internet hosts, wireless terminals, and
wireless access points in between, as the wireless Internet.

The MNS scenario significantly changes several aspects
of service provisioning because there is the need for full
visibility of the service provisioning context, defined as the
logical set of resources accessible to a client during a service
session depending on several factors, such as client loca-
tion, access device capabilities, management policies of the
access locality, subscribed services, user preferences, and
level of trust.

The flexible and effective management of context infor-
mation is a complex and challenging issue per se [4], and is
further complicated by the frequent context changes typical
of service provisioning in the wireless Internet. Mobility
forces to handle properly changes of client location, modifi-
cations in locally accessible resources, temporary discon-
nection, and changing network topology; users can change
portable access devices, with different wireless technolo-
gies, even at runtime, thus forcing to consider very dy-
namic aspects also due to the client heterogeneity.

The handling of context information and of its modifica-
tions at provision time significantly increases the complex-
ity and the costs of designing, developing and deploying
services in the wireless Internet, thus slowing down their
widespread acceptance and diffusion. There is the need for
non-traditional middleware infrastructures to support con-
text-dependent services to wireless portable devices: novel
middleware solutions should achieve full context visibility,
automate service reconfiguration depending on dynamic
context changes, and provide high-level ways to specify
context-aware behavior separately from application logic.

The paper proposes a novel middleware for context-
aware resource management, called CARMEN (Context-
Aware Resource Management ENvironment), capable of
supporting the automatic reconfiguration of Web services
for the wireless Internet in response to context changes,
without any intervention on the service application logic.
CARMEN allows service providers, system administrators
and final users to specify service management requirements
at a high level of abstraction in terms of different kinds of
metadata: declarative management policies for migration,
binding and access control, and profiles for the description
of user preferences, device capabilities, and service compo-
nent characteristics. In addition, a distinguishing key fea-
ture of CARMEN is the exploitation of mobile middleware
proxies that follow the provision-time movement of users,
where and when needed, not only to support locally their
service accessibility, but also to customize service provision-
ing, to maintain service session state, and to operate asyn-
chronously with regards to temporarily disconnected cli-
ents. CARMEN implements mobile proxies in terms of Mo-
bile Agents (MAs) because the MA programming paradigm
is particularly suitable to achieve crucial middleware prop-
erties such as mobility, autonomy, asynchronicity, and loca-

tion awareness [5].
The paper also presents the development and deploy-

ment of the CARMEN-based MNS. MNS clients can run
over heterogeneous portable devices, from fully equipped
laptops to very limited palmtops, with either Wi-Fi or Blue-
tooth connectivity. The CARMEN-based MNS shows the
usability and the effectiveness of the proposed middleware
and points out how the design and implementation of wire-
less Internet services is simplified and accelerated by the
adoption of middleware solutions based on metadata and
MAs.

The rest of the paper is organized as follows. Section 2
points out the crucial role of context-aware resource man-
agement in the wireless Internet and the suitability of
adopting metadata for its support. Section 3 describes mo-
bility and binding management issues, by proposing solu-
tion guidelines based on mobile middleware components.
Section 4 and Section 5, respectively, present the different
kinds of metadata exploited in the CARMEN middleware
and its layered architecture, while Section 6 is devoted to
describe the design and implementation of the CARMEN
mobile proxies. Section 7 shows the implementation of
MNS on top of CARMEN and reports some experimental
results. Related work, conclusive remarks and directions of
current work end the paper.

2 CONTEXT-AWARE SERVICE PROVISIONING
The wireless Internet scenario has several specific charac-
teristics to be considered in service provisioning. Mobility
of users and access devices is pushed to the extreme. Users
can connect to the network from ubiquitous points of at-
tachment and wireless portable devices can roam by main-
taining continuous connectivity [6]. Frequent disconnec-
tions of users/devices are rather common operating modes
that can occur either voluntarily to reduce connection costs
and to save battery or accidentally due to the loss of wire-
less connectivity. In addition, the wireless Internet exhibits
a high degree of heterogeneity of both access devices (in
terms of screen size/resolution, computing power, memory,
operating system, and supported software) and networking
technologies (IEEE 802.11b, the emerging IEEE 802.11g,
Bluetooth, GSM, GPRS, and UMTS).

The distinctive features of the wireless Internet pose new
challenges in retrieving and operating on distributed re-
sources, and undermine several assumptions of traditional
service provisioning. The main impact is on the notion of
context. Traditional service provisioning relies on a rela-
tively static characterization of the context, where resource
availability is independent of both the user current location
and the access device properties (location and heterogene-
ity transparency); changes in the set of accessible resources
are relatively small, rare, or predictable [7]. The location
and heterogeneity transparency leads to traditional mono-
lithic solutions that tend to suffer from insufficient flexibil-
ity and dynamicity when applied to the wireless Internet.

Service provisioning in the wireless Internet requires the
visibility not only of location information but also of other
system-level data, such as access device characteristics. This
information should be propagated up to the service level to

BELLAVISTA ET AL.: CONTEXT-AWARE MIDDLEWARE FOR RESOURCE MANAGEMENT IN THE WIRELESS INTERNET 3

dynamically determine the client context and to perform
service configuration and delivery accordingly. In addition,
mobility determines changes in the physical user location
and in the consequently perceived context. Context varia-
tions can be very frequent, especially when using wireless
portable devices. In the MNS example, Alice could connect
with her palmtop to different info-stations along the route
from home to the airport to access updated information
about traffic congestion in the proximity of her current loca-
tion. Let us observe that context and location, though inti-
mately related, are different notions: two mobile devices
may be at the same location but perceive different contexts
because of their different capabilities, of their belonging to
different administrative domains, or of their utilization by
users with different preferences [7].

2.1 Metadata-based Middleware Solutions for
Context Management

The above considerations call for the design of novel mid-
dleware solutions to support context-aware service provi-
sioning. Novel middleware should interact with the under-
lying execution environment to collect relevant information
for context determination, e.g., current location of us-
ers/devices, state of resources, user preferences, and device
characteristics. This information should be processed at
provision time to identify the context and its evolution, and
to propagate it up to the service level.

Let us note that the context changes due to the high dy-
namicity of the execution environment require proper man-
agement actions to adapt service provisioning. The wireless
Internet mobility and heterogeneity make service manage-
ment very complex a task, requiring novel appropriate
methodologies and tools to flexibly specify which man-
agement actions to perform and in which runtime condi-
tions, and to carry out promptly the desired service recon-
figuration. Reconfiguration requirements should be ex-
pressed at a high level of abstraction, by cleanly separating
service management from service logic. This separation of
concerns is crucial to reduce the complexity of developing
services for the wireless Internet and to favor rapid service
prototyping, run-time configuration and maintenance. In
the MNS scenario, when Alice switches from the palmtop to
the micro mp3 reader, the context change should determine
the corresponding MNS management operations to dy-
namically tailor the news format to the new access device.

To support context awareness and to perform service
management accordingly, we propose the adoption of
metadata for representing both the context characteristics
and the choices in service behavior at a high-level of ab-
straction, with a clean separation between service manage-
ment and service logic.

Metadata can describe both the structure/meaning of the
resources composing a system and the specification of
management operations expressed at a high level of ab-
straction [8]. Among the different possible types of meta-
data, profiles and policies are considered of increasing in-
terest and start to be widely exploited in open and dynamic
distributed systems. Profiles represent characteristics, capa-
bilities and requirements of users, devices, and service
components. Several research efforts are attempting to iden-

tify well accepted formats for the most common access de-
vices and spreading standard profile adoption for express-
ing user needs/requirements; profile standardization is
crucial for resource reusing and sharing in the open wire-
less Internet. Policies express the choices ruling system be-
havior, in terms of the actions subjects can/must operate
upon resources. Policies are maintained completely sepa-
rated from system implementation details and are ex-
pressed at a high-level of abstraction to simplify their speci-
fication by system administrators, service managers, and
even final users. Policy-based systems distinguish two dif-
ferent kinds of policies [9]: access control policies specify
the actions subjects are allowed to perform on resources
depending on various types of conditions, e.g., subject
identity and resource state; obligation policies define the
actions subjects must perform on resources when specified
conditions occur.

The effectiveness of the metadata adoption depends on
the characteristics of the language used for metadata speci-
fication and of the runtime environment for the metadata
support. Metadata specification should exploit declarative
languages to accommodate users of different expertise, to
simplify metadata re-use and modification, and to facilitate
the analysis of potential conflicts and inconsistencies. The
metadata runtime support should be responsible for meta-
data distribution/update and for policy activa-
tion/deactivation/enforcement, independently of service
logic.

3 RESOURCE MANAGEMENT FOR MOBILITY

Context changes force to consider the management issues
of updating dynamically the binding of clients to resources.
In the wireless Internet, user/device mobility is a very
usual source of context change. For instance, a mobile client
could bring the needed resources (or their copies) with it-
self, or it could discard the bindings to old resources upon
migration and re-bind to new suitable resources upon the
arrival at the new destination. In general, it is possible to
identify four different resource binding strategies when a
mobile entity (ME) moves in the network:

• resource movement strategy. When one ME moves,
its bounded resources are transferred along with it.
This type of binding is possible only if the resource
transfer is technically/semantically possible and re-
quires handling properly the case of resource sharing
between different clients;

• copy movement strategy. When one ME migrates,
copies of its bounded resources are created and
transferred along with it. This type of binding is
permitted only if the resource copy is techni-
cally/semantically possible and may require to re-
solve conflicts in case of concurrent modifications on
multiple resource copies;

• remote reference strategy. This strategy does not
move the resources and instead modifies the ME
bindings after migration to refer remotely the re-
sources. Any ME operation implies a network com-
munication with the remote environments hosting
the bounded resources;

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT #118785

• rebinding strategy. The ME movement triggers a re-
binding to equivalent resources available in the new
locality. This strategy typically applies to the case of
by-type bindings [5] and is fundamental anytime an
ME is interested in accessing resource instances that
provide service contents depending on the instance
location.

There is a wide variety of basic and heterogeneous imple-
mentation mechanisms that can help in realizing the above
binding strategies, from solutions for resource retrieval,
access and usage, e.g., the Bluetooth Service Discovery Pro-
tocol [10], the Service Location Protocol [11], and Jini [12], to
mechanisms for the description of service components and
the local/remote interaction with them, e.g., the Web Ser-
vices Description Language (WSDL) [13], the Java Remote
Method Invocation (RMI) [14], and the Service Object Ac-
cess Protocol (SOAP) [15]. In addition to the choice of the
most suitable binding mechanism, however, a very complex
aspect is the design of solutions to dynamically change
binding strategies depending on the management require-
ments of service providers, on the runtime conditions of the
execution environment, on user preferences, and on access
device properties. Traditional middleware approaches em-
bed a static binding strategy within the service logic, thus
limiting the flexibility of binding management [16]. Novel
middlewares should support binding strategies defined
and modified at provision time, depending on dynamic
conditions. For instance, when Alice is at the airport, wait-
ing for her flight, she should use all the accessible MNS
resources, either local or remote (remote reference binding).
Before boarding the plane, she should copy the needed re-
sources on her palmtop to work on them while discon-
nected (copy movement binding).

Several proposals recognize the importance of dynami-
cally extending the wireless Internet infrastructure with
proxies acting on behalf of (possibly disconnected) limited
devices [17], [18], [19]. Proxies can perform several service
management operations, e.g., disconnection support and
service result caching. We consider crucial that these prox-
ies are mobile to follow the client movements and to offer
the needed support only where and when needed. Adding
mobility to proxies requires technologies to support dy-
namic code/state migration, mobility-enabled communica-
tion and coordination, and also flexible management of
binding strategies. To this purpose, we claim the suitability
of mobile code programming paradigms in general, and in
particular of Mobile Agents (MAs) as the implementation
technology of mobile proxies in the wireless Internet.

3.1 Mobile Agents for the Design of Mobile Proxies
The properties of mobility, autonomy, asynchronicity and
local resource exploitation typical of the MA programming
paradigm are particularly suitable for the design and im-
plementation of mobile proxies [20]. MAs can autono-
mously operate to carry on operations on needed resources
even in case of temporary device disconnection and can
migrate dynamically, either to follow device movements or
to operate locally to the needed resources. With the adop-
tion of MA-based proxies, wireless portable devices need
limited network connectivity, for instance, only to inject in

the fixed network the responsible proxies acting on their
behalf.

In addition, the MA programming paradigm is typically
location-aware, intending that the location of MAs is raised
to the status of a first-class design concept. MAs can exploit
visibility of their execution environment to adapt their ac-
tions, primarily their migration, to the position of needed
resources. In the case of mobile proxies, there is the neces-
sity to modify proxy migration choices at runtime depend-
ing on user needs, network connectivity, etc. Mobility
strategies should be specified at a high level of abstraction,
with no need to modify the MA implementation.

Finally, MAs can provide full decentralization of man-
agement control, which is definitely important in global
scenarios to achieve scalability and to avoid management
bottlenecks. In particular, management decentralization is
crucial when dealing with significant discontinuities in
network resources, such as when passing from a wired at-
tachment point to wireless connectivity, which can require
performing system/service management operations locally
to the discontinuity.

4 METADATA IN CARMEN
CARMEN is a novel middleware for context-aware re-
source management that supports and facilitates the design,
development and deployment of context-dependent ser-
vices for the wireless Internet. CARMEN allows service
providers, system administrators and final users to specify
different kinds of metadata in a declarative way at a high
level of abstraction. CARMEN metadata influence the dy-
namic determination of context and, consequently, the con-
text-based service provisioning, without any intervention
on the application logic, according to the design principle of
separation of concerns.

CARMEN exploits two types of metadata: profiles to de-
scribe the characteristics of any resource modeled in the
system, and policies to manage migration, binding and ac-
cess control (see Fig. 1).

CARMEN profiles describe users, devices, service com-
ponents, and sites. In particular, user profiles maintain
information about personal preferences, interests, security
requirements, and subscribed services for any CARMEN
registered user. Device profiles report the hardware/software
characteristics of the supported access terminals. Service
component profiles describe the interface of available service
components as well as their properties relevant for binding
management decisions, e.g., whether a service component
can be copied and migrated over the network. Site profiles
provide a resource group abstraction, by listing all the re-
sources currently available at one CARMEN host.

CARMEN adopts XML-based standard formats for pro-
file representation to deal with the Internet openness and
heterogeneity: the World Wide Web Consortium Composite
Capability/Preference Profiles (CC/PP) for user/device
profiles [21], WSDL for the service component interface
description [13], and the Resource Description Framework
(RDF) for the site collections of resources [22]. For instance,
Fig. 1 shows the CC/PP-compliant profile for a PalmOS
device hosting the KVM/CLDC/MIDP software suite [23].

BELLAVISTA ET AL.: CONTEXT-AWARE MIDDLEWARE FOR RESOURCE MANAGEMENT IN THE WIRELESS INTERNET 5

CARMEN profiles are stored in a partitioned and partially
replicated directory service, compliant with the Light-
weight Directory Access Protocol (LDAP) and specialized
for profiles [20].

In addition to profiles, CARMEN expresses policies as
high-level declarative directives. CARMEN distinguishes
two types of policy metadata: access control policies to en-
sure secure resource usage and mobility handling policies to
guide the middleware decisions in response to provision-
time context variations.

Mobility handling policies, in their turn, include two
different types of policies for dynamic context
management, which derive from different management
goals. On the one hand, CARMEN migration policies specify
under which circumstances, where and which middleware
components and resources have to migrate triggered by the
user movements. A specific type of migration policy are co-
locality ones describing the circumstances under which it is
convenient to allocate a set of resources in the same site. In
the MNS example, suppose that Alice is interested in
reading the same political news from two opposite opinion
tabloids to compare viewpoints. Co-locating copies of the
two tabloid resources in the current Alice’s locality may be
convenient to improve performance and to increase overall
accessibility in case of network partitioning. On the other
hand, CARMEN binding policies define when and which
binding strategy to apply to update the set of needed
resources after any change of client context. CARMEN
supports all the four binding strategies introduced in
Section 3 (resource movement, copy movement, remote
reference, and rebinding). For instance, depending on the
chosen binding policy, Alice’s movement can either trigger
the copy of a remote MNS resource to her new access
locality or request the reconnection to an equivalent local
resource, e.g., to access location-dependent MNS
information. CARMEN adopts the Ponder language for policy
specification [24]. In particular, we use Ponder obligation
policy types for the definition of mobility handling policies,
and Ponder authorization policy types for access control. In
the following, we focus only on obligation policies, central
to the CARMEN context-aware resource management tasks,
whereas readers can refer to [25] for details about Ponder
authorization policies.

CARMEN obligation policies are expressed as declara-
tive event-action-condition rules defining the actions that
policy subjects must perform on target objects when spe-
cific events occur. Fig. 1 shows an example of a Ponder-
based binding policy for selecting the resource movement
strategy after the movement of a wireless portable device
identified as DeviceID. In particular, the ResourceMovement
policy states that when DeviceID arrives at a new execution
locality LocalityID (on clause), the DeviceID serving proxy
(subject clause) should command its myContext object
(target clause) to activate a resource movement binding
strategy (do clause), if the device has enough free space on
disk, as observed at runtime by the underlying CARMEN
Monitoring facility (when clause).

5 THE CARMEN ARCHITECTURE
The CARMEN middleware is designed according to the lay-
ered architecture shown in Fig. 2. The Metadata Manager
(MM) and the Context Manager (CM) compose the high-level
middleware facilities. MM supports the specification, modifi-
cation, check for correctness, installation and evaluation of the
different kinds of profiles and policies supported in CARMEN.
CM determines dynamically the context of a CARMEN client,
supports the accessibility of the resources included in the con-
text, and manages resource bindings in case of context modifi-
cations. MM and CM are the crucial components of the pro-
posed middleware and will be described more in detail in the
following.

The CARMEN low-level facilities provides mechanisms
and tools to address most common issues in context-aware
service provisioning to wireless clients, such as a rich and ar-
ticulated naming system (the Identification, Discovery and Direc-
tory facilities) [20], a Location facility integrating heterogeneous
tracking solutions for the different wireless technologies sup-
ported (IEEE 802.11b and Bluetooth), a Monitoring facility to
observe indicators at both the application level and at the sys-
tem one, in order to achieve full visibility of context changes
[26], and the Event Manager (EM), presented in the following..

5.1 Metadata Manager
MM supports the specification of the different kinds of
CARMEN metadata. It is in charge of supporting the speci-
fication/update of profile information, and of dynamically
installing/enforcing policies for access control and mobility
handling. In the following, we focus on the aspects related
to mobility handling policies (see [16], [19] for further de-
tails about the management of the other metadata types).
The enforcement of mobility handling policies involves the
detection of changes in the operating environment (via the
Monitoring and Location facilities), the notification of event
occurrence to the interested policy subjects (via the EM fa-
cility), and the MM interpretation of enforced policies so as
to activate the specified management actions.

MM is organized in three different logical modules: the
Specification Module (SM), the Obligation Coordinator
(OC), and the Obligation Enforcer (OE). SM exploits the
tools developed within the Ponder project for editing, dis-
tributing, updating, removing, and browsing obligation
policies [24]. In addition, it provides tools for transforming
high-level policy specifications into platform-enforceable
policy representations. In particular, SM generates individ-
ual Java policy objects for each Ponder obligation policy.
When a new policy object is created, it is registered in the
CARMEN Directory facility, stored in policy repositories,
and distributed to the interested policy subjects, e.g., the
CARMEN mobile proxies described in the following sec-
tion.

The OC module coordinates the policy enforcement. It re-
trieves newly instantiated Java policy objects from the reposi-
tories and parses them to retrieve relevant information:
events, subjects, targets and actions. Then, on behalf of policy
subjects, it registers the significant events to EM.

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT #118785

Fig. 1. CARMEN metadata: taxonomy and examples.

It is the OE module that actually enforces the policies.

When a subject is notified of policy event occurrences, the
subject delegates OE to interpret the triggered policy specifi-
cations. Policy interpretation consists in policy parsing, in
controlling the dynamic conditions for policy applicability, in
extracting the policy actions, and in activating bind-
ing/migration management operations accordingly, as de-
scribed for CARMEN mobile proxies in the following. Let us
note that OE implements a sequential policy enforcement:
OE starts enforcing a new policy only after having completed
all the management actions triggered by preceding events.

5.2 Context Manager
CM is responsible for dynamically establishing the context of
any CARMEN client, thus determining its resource visibility.
In particular, as more extensively described in Section 6,
CARMEN mobile proxies cannot directly use the available
resources and have to interrogate CM to obtain resource acces-
sibility via a proper context object. In addition, system admin-
istrators can query CM to retrieve and modify the context ob-
jects of any CARMEN client at provision time.

Fig. 2. The CARMEN layered architecture.

To calculate the context object for a client, CM firstly merges
the list of resources in the client access locality, obtained via the
Discovery facility, and the list of globally available resources,
retrieved via the Directory facility. Then, CM discards re-
sources from the merged set depending on the current client
location and the associated user/device profiles. For instance,
if the Alice’s profile requires English-language local news re-
sources, without considering the possibility of dynamic trans-
lation, non-compatible MNS service components are auto-
matically eliminated from the context.

The obtained resource set corresponds to the user desider-
ata and the access device capabilities; it is subject to further
restrictions and discarding due to access control policies to
apply depending on the requesting user. After this access con-
trol filtering, the final result is a context object listing all the
resources accessible to one client at the moment of the context
determination request. CM represents a context object as a
container of tuples, any tuple corresponding to an accessible
resource and including a unique resource identifier, a resource
descriptor, and information to properly manage the resource
binding in case of mobility (see Section 6).

5.3 Event Manager
EM plays the crucial role of delivering the events relevant
for triggering migration and binding policies. EM dis-
patches the registered events to interested policy subjects
independently of subject migration during service provi-
sioning, by exploiting the mobility-enabled naming facili-
ties available in the CARMEN middleware [20]. EM permits
also to define aggregated events by composing several low-
level monitoring indicators.

For instance, the CARMEN Monitoring facility is capable
of sensing when a new portable device with IEEE 802.11b
connectivity enters the area served by a Cisco Aironet 350
Access Point [27]. Similarly, CARMEN Monitoring exploits
the Java Native Interface to integrate with the native loca-
tion-tracking module of the Teleca distribution for Blue-
tooth access points [28]. In both cases, EM delivers the cor-
responding DomainArrival event to CM, which maintains
the information about locally available resources to deter-

Metadata

Policies Profiles

Binding Migration

Access Control User

Device

SiteService
Component

Mobility Handling

<?xml version=”1.0”?>
<RDF xmlns=http://www.w3.org/1999/02/22-rdf-syntax-ns#xmlns:rdf=
 http://www.w3.org/1999/02/22-rdf-syntax-ns#xmlns:ccpp=http://www.w3.org/
 2000/07/04-ccpp#xmlns:ccpp-client=2000/07/04-ccpp-client#
 <Description about=”ldap://lia.deis.unibo.it/MU/MyProfile”>
 <ccpp:component>
 <Description about=”ldap://lia.deis.unibo.it/MU/TerminalSoftware”>
 <type resource=”ldap://lia.deis.unibo.it/Schema#Software-Platform”>
 <ccpp-client: name>Palm OS</prf: OS>
 <ccpp-client: version>4.1</prf: OS>
 <ccpp-client: virtual machine>KVM</prf: Java>
 <ccpp-client: configuration>CLDC</prf: Java>
 <ccpp-client: profile>MIDP</prf: Java>
 </ccpp:component>
 </Description>
…

inst oblig ResourceMovement {
on DomainArrival(DeviceID,LocalityID);

subject s = DeviceID.getServingProxy();

target t = s.myContext;
do t.setAgentBindingType(“resource movement”);

when CARMEN.Monitoring.getFreeDiskSpace(DeviceID)

> threshold;
}

Heterogeneous Distributed System

Java Virtual Machine

C
A

R
M

EN

Lo
w

-L
ev

el
Fa

ci
lit

ie
s

SOMA Platform

Event Manager

Context
Manager

C
A

R
M

EN

H
ig

h-
Le

ve
l

Fa
ci

lit
ie

s

LocationIdentification

MonitoringDiscovery Directory

Metadata
Manager

BELLAVISTA ET AL.: CONTEXT-AWARE MIDDLEWARE FOR RESOURCE MANAGEMENT IN THE WIRELESS INTERNET 7

mine updated contexts, and to the other interested policy
subjects, such as to CARMEN mobile proxies.

6 THE CARMEN SHADOW PROXIES
The CARMEN middleware is centered on the distributed and
dynamic deployment of context-aware mobile proxies over the
fixed network to smooth the problems due to resource limits
of wireless portable devices, to support operation asynchronic-
ity/autonomy between client and service components, and to
reduce the user/device connection time.

CARMEN provides any user, at the starting of her service
session, with a personal mobile proxy, called shadow proxy, that
migrates over the fixed network infrastructure to follow the
user movements and that acts as the intermediary between the
user wireless device and her context. Shadow proxies access
any resource by passing through the context object, which is
responsible for metadata-dependent management of resource
bindings after the user movement.

Context awareness is crucial for CARMEN to choose dy-
namically the most suitable mobility strategy for the proxy in
response to user movements, and to apply the most suitable
binding strategy after the proxy migration. For instance, in the
MNS scenario, the visibility of Alice’s location is necessary to
trigger the migration of her proxy towards the current wireless
access locality, or to simply deliver the MNS results to the new
Alice’s position without moving the proxy. After migration,
the shadow proxy needs to obtain an updated context object
with the bindings to the newly accessible MNS resources. In
addition, binding policies can exploit the visibility of metadata
to achieve dynamic service adaptation, e.g., by choosing
among the available resources the one that better fits the
user/device profiles. For instance, in the case of the micro mp3
reader used for accessing MNS, the binding policy can specify
to connect either to a text-only based MNS component or to an
HTML-to-text distiller, in its turn connected to an MNS com-
ponent providing multimedia results.

We claim the suitability of the MA technology to implement
mobile shadow proxies for the wireless Internet. For this rea-
son, we have built CARMEN on top of the Secure and Open
Mobile Agent (SOMA) platform, which provides a wide range
of mechanisms and tools to support secure and interoperable
MAs for mobile computing [20]. More information and the
SOMA platform code are available for download at
http://lia.deis.unibo.it/Research/SOMA/. In particular,
CARMEN exploits SOMA to implement shadow proxies as
SOMA agents and to provide them with execution environ-
ments, called places, that offer the basic services for enabling
MA communication and migration. Places typically model
nodes and can be grouped into domains that correspond to
network localities, e.g., Ethernet-based Local Area Networks
with IEEE 802.11b/Bluetooth access points providing wireless
connectivity to WiFi/Bluetooth portable devices. CARMEN
middleware facilities are available in any CARMEN domain;
shadow proxies usually run on places in the domain where the
associated user and the corresponding wireless companion
devices are currently connected.

CARMEN shadow proxies are application-independent
middleware components that coordinate context management
operations and binding re-assessment on behalf of their re-

sponsible clients. CARMEN associates one shadow proxy for
each user, with a 1-to-1 mapping. Shadow proxies usually fol-
low their associated users in their movements among different
SOMA domains, carry the reached service state and make pos-
sible to migrate service sessions dynamically. Other different
mobility policies for shadow proxies can be specified and en-
forced, for instance to support disconnected asynchronous
operations, as described in the following section. It is the user
reconnection at a new SOMA domain that triggers the shadow
proxy migration. If the user does not reconnect before a time-
out expiration, the associated proxy is automatically garbage-
collected. The same holds if the new wireless access domain is
unreachable due to network partitioning.

Shadow proxies retrieve the profile of characteristics of
their companion devices and the profile of preferences of their
users at their instantiation via the CARMEN Directory facility
[20]. Let us note that the proxies need to interrogate the Direc-
tory only once, at the starting of the service session, being the
profiles part of their state, which is maintained even after mi-
gration. Only the modification of the associated profiles trig-
gers a corresponding event and a new profile request to the
Directory.

To support dynamic binding management, shadow proxies
are designed to refer, at start up, only to CM, without any di-
rect access to resources. They request their contexts by passing
profile information to the CM component in their current
CARMEN domain. After context determination, CM returns
back to the proxy a context object listing the identifiers of all
accessible resources, either active or passive. At the beginning,
all resources in the context are considered passive; a resource
becomes active when the proxy asks CM to access and use that
resource via a getResource(ResourceID) method.

For any active resource, the context object includes not only
the resource identifier (which is the only information main-
tained for passive resources), but also the corresponding re-
source descriptor, the identifier of the binding strategy to ap-
ply upon the proxy arrival at a new domain, and a reference
object that encapsulates the specific mechanism for imple-
menting the associated binding strategy. The resource descrip-
tor is an object with the same methods and constructor inter-
face of the needed resource, returned back to the proxy by the
getResource() invocation. CARMEN supports different
mechanisms for reference objects, from Jini-based stubs for
rebinding to RMI stubs for remote reference; further details
about CARMEN reference objects can be found in [16].

Afterwards, shadow proxies can operate on active re-
sources directly via the obtained resource descriptors. When a
proxy arrives at a new locality, the local CM transparently up-
dates the identifiers of the binding strategies for the context
active resources to reflect possible changes in binding choices;
if a binding strategy has changed, CM instantiates and adds
new proper reference objects for the involved active resources
in the context object.

Any context modification produces the notification to CM
of a monitoring event with the data describing the change and,
by default, of a context change event to the associated shadow
proxy, which typically reacts by interrogating CM again to
update its context object. Depending on service-specific re-
quirements, the proxy can ask CM to transparently update its
context with no need of explicit request, as it usually happens

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT #118785

after a proxy migration to a new domain.
Shadow proxies interact with two types of additional mid-

dleware components to provide wireless portable devices with
full service accessibility: device-specific clients and service
adapters [19].

Device-specific clients are the only service components re-
quired to run on the portable devices. These clients announce
the device entering/exiting into a CARMEN domain and ex-
ploit the responsible shadow proxies to send service requests
and to receive service results. We have currently implemented
three different types of lightweight device-specific clients. One
runs on the KVM/CLDC/MIDP suite for Pocket PC hand-
helds with IEEE 802.11b connectivity. One is Bluetooth-based
and written in C within the Ericsson Bluetooth Application
and Training programming environment [29]. The third client
is specific for Palm OS devices. Let us observe that, apart from
the already described de-coupling benefits, the choice of
adopting shadow proxies over the fixed network and light-
weight clients on the portable devices permits to exploit the
MA-based CARMEN middleware also when providing ser-
vices to limited devices that cannot host MA execution envi-
ronments on them.

Service adapters are application-specific middleware compo-
nents in charge of dynamically performing data transcoding
over the fixed network. In particular, depending on the
user/device profiles and the binding policies, CM can connect
a shadow proxy either directly to the needed service compo-
nent or to a suitable service adapter that filters service results
from the service component before returning them back to the
proxy. One shadow proxy can concurrently command several
different adapters to carry on parallel service requests for the
same user. Service adapters are implemented as SOMA agents
that follow the movements of their shadow proxy. It is possible
to specify various migration policies for the service adapters in
response to the migration of the associated proxy, such as
adapter immediate termination (the proxy will rebind to new
adapters in the new destination domain) or adapter persis-
tence in the locality until the end of the service session (to save
processed service results on local persistent storage). For in-
stance, the latter case can be useful in case of adapter filtering
operations on location-dependent information that the proxy
is interested to collect asynchronously at the following user
reconnection in that locality. The default migration choice,
however, consists in automatic migrating all service adapters
jointly with the shadow proxy they are working for.

7 THE CARMEN-BASED MOBILE NEWS SERVICE
We have designed and implemented the context-dependent
MNS, used as the running case study in the paper, on top of
the CARMEN middleware. This section provides some de-
sign and implementation insights about MNS and shows
the different CARMEN components at work during an ac-
tual service session. In addition, it exemplifies how CAR-
MEN facilitates the realization of context-dependent ser-
vices for the wireless Internet and reports some experimen-
tal results to quantitatively evaluate the effectiveness of the
CARMEN middleware.

We have deployed MNS in a distributed environment
consisting of several LANs with either IEEE 802.11b or

Bluetooth access. Each LAN is modeled as a SOMA domain
that hosts the CARMEN middleware facilities and provides
news service components called “newspapers” represent-
ing local tabloids with general and district-specific informa-
tion (local cinemas, events, restaurants, etc.). In addition,
each domain provides execution environments for shadow
proxies and service adapters of the MNS users currently in
the locality.

In our example, Alice can access MNS by using her wire-
less access device equipped with a device-specific client,
currently implemented for the most diffused access solu-
tions (portable devices with either the J2ME/CLDC/MIDP
suite and Wi-Fi connectivity, or PalmOS and Bluetooth
support). The device-specific client allows Alice to sub-
scribe to MNS, to specify news preferences, and to succes-
sively modify the provided profile information. In order to
start her MNS service session, Alice must pass an authenti-
cation phase that associates her with both a unique user
identifier and a unique device identifier corresponding to
the currently used access terminal. The device identifier
information is necessary for the CARMEN middleware to
adapt service provisioning to the device profile, as illus-
trated in the following; user and device identifiers are
cleanly separated to allow Alice to change her access device
even during the same MNS session.

The device-specific client is the interface between Alice
and her shadow proxy that CARMEN instantiates after her
successful authentication. Fig. 3A shows an excerpt from
the simple and reusable code of the MNSProxy. At its instan-
tiation the shadow proxy executes the init() method that
retrieves the profiles of Alice and of her device from the
CARMEN Directory facility, commands CM to determine
the context object myContext by passing the user/device
profile information, and invokes the getRe-

source(“newspaper”) method on myContext. If the context
object includes a resource called “newspaper”, the invoca-
tion makes that resource active in the context, sets its bind-
ing strategy identifier to the "remote reference" default
value, and returns back the resourceID resource descriptor
to the proxy. After the initialization and after any migration
to a new domain, the proxy executes its run() method: if
the Alice’s device is connected (isConnected set), the proxy
forwards user-entered queries to resourceID and then in-
vokes visualizer() to push the received results to the cli-
ent. Fig. 3A shows that the update of an MNS resource trig-
gers the same above described actions (onMNSResourceUp-
date() method). Other proxy threads, not shown in the
code excerpt, serve in the insertion of new queries and in
maintaining the history of already browsed service results.

BELLAVISTA ET AL.: CONTEXT-AWARE MIDDLEWARE FOR RESOURCE MANAGEMENT IN THE WIRELESS INTERNET 9

Fig. 3. A code excerpt from MNSProxy (A), migration policies for controlling proxy mobility (B), a binding policy for disconnected operations
together with the related co-locality constraints (C), a binding policy for automatically updating the MNS client context after change of
domain (D), and a migration policy update at service provision time (E).

Without any modification of the MNSProxy implementa-

tion, it is possible to dynamically specify different migra-
tion/binding management policies to adapt MNS to work
in different operating scenarios. Fig. 3B shows two exam-
ples of different migration policies to govern the shadow
proxy migration in response to Alice’s movement. When
she connects to the new domain LocalityID, triggering the
NewLocation event, the CloseByMigration policy commands
her shadow proxy to migrate to a fixed host in the Locali-
tyID domain and to execute there. In this case, the shadow
proxy follows Alice’s movements to maintain co-locality.
On the contrary, the enforcement of the NoMigration policy
does not trigger any movement of the proxy, which contin-
ues to run in the domain of the previous Alice’s connection,
but produces the invocation of the proxy storeMNSRe-
sults() method. The method commands the proxy not to
forward the received MNS results to the device-specific
client on the companion device, but to redirect them to a
disk file in the CARMEN place where the proxy is execut-
ing. This behavior is useful, for instance, to support the
asynchronous collection of MNS results independently of
Alice’s connection/disconnection. Note that Alice can spec-
ify the MNS/AsynchronousOps attribute in her user profile to
select between asynchronous/synchronous operations; the

attribute is evaluated at runtime and determines the choice
of the migration strategy to enforce.

CARMEN also supports the definition of different bind-
ing strategies, with no impact on the implementation of
clients, service components and shadow proxies. For in-
stance, Alice can set the MNS/CopyOnBoard attribute in her
profile if she desires to host an on-board copy of active re-
sources on her portable device to continue reading news
while disconnected. If Alice selects the disconnection menu
option in the client interface (DisconnectRequest event), the
CopyMovement policy in Fig. 3C commands the following set
of actions. The proxy pops up a warning in the companion
device-specific client while the resource copy is in progress,
to signal Alice when she can safely disconnect. To execute
the copy process, the proxy isConnected state variable is set
to false and the binding type is set to "copy movement" for
any active resource in the proxy context object. Finally, the
updateReferenceObject() method checks the binding
strategy type for any active resource in the context, copies
resources on board, and updates the reference objects ac-
cordingly.

In the case of copy movement of the newspaper resource
R1, it could be convenient to move also other resource cop-
ies, e.g., R2, strictly related to R1, along with it. At the R1

inst oblig Alarm {

on BatteryAlarm(DeviceID)

subject s = DeviceID.getServingProxy();

target t = DeviceID.getServingProxy();

do t.go(CARMEN.Directory.getSafeStoragePlace();

}

E

class MNSProxy extends ShadowProxy {
…
void init() {
… UserProfile prof1 = CARMEN.Directory.getProfile(userID);
DeviceProfile prof2 = CARMEN.Directory.getProfile(deviceID);
Context myContext = CARMEN.CM.getContext(prof1,prof2);
DataResource resourceID = myContext.getResource(“newspaper”);

… }
void run() {
… if (isConnected==true) results = resourceID.query(search);
visualizer(results);
… }

void onMNSResourceUpdate() {
… if (isConnected==true) results = resourceID.query(search);
visualizer(results);
… }

… }

A

inst oblig NoMigration{

on NewLocation(userID,LocalityID)

subject s = ProxyID;

target t = ProxyID;

do t.storeMNSResults();

when t.prof1.getProperty(“MNS/AsynchronousOps”) == 1;

}

B
inst oblig CloseByMigration{

on NewLocation(userID,LocalityID)

subject s = ProxyID;

target t = ProxyID;

do t.go(LocalityID.getOneFixedSOMAPlace());

when t.prof1.getProperty(“MNS/AsynchronousOps”) == 0;

}

inst oblig Rebinding {
on DomainArrival(ProxyID,LocalityID);
subject s = ProxyID;
target t = ProxyID;
do t.setIsConnected(true) ||

t.myContext.setAgentBindingType(“rebinding”);
when CARMEN.Monitoring.isDiscoveryAlive() == true;
}

D

inst oblig CloseByResource {
on CopyMovement(R1,ProxyID);
subject s = ProxyID;
target t = ProxyID;
do t.myContext.setAgentBindingType(R2,“copy movement”) ||

t.myContext.updateReferenceObject(R2);
}

C
inst oblig CopyMovement {

on DisconnectRequest(ProxyID);

subject s = ProxyID;

target t = ProxyID;

do t.showWaitingMessage() ||

t.setIsConnected(false) ->

t.myContext.setAgentBindingType(“copy movement”) ->

t.myContext.updateReferenceObject() ->

t.removeWaitingMessage();

when t.prof1.getProperty(“MNS/CopyOnBoard”) == 1;

}

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT #118785

copy movement, the CARMEN EM facility notifies a Copy-
Movement event and triggers the evaluation of the related
ClosebyResource co-location policy, reported in Fig. 3C.
ClosebyResource requests to move a copy of R2 anytime
R1 (or one of its copies) migrates. If, when enforcing the
ClosebyResource policy, the R2 profile specifies that R2 can
be copied and transferred, a new entry for R2 is added in
the ProxyID context object (setAgentBindingType()
method) and the R2 copy movement is forced by the update
of the corresponding reference object (updateReferenceOb-
ject() method).

CARMEN facilitates also the deployment of location-
dependent MNS provisioning by simply specifying the Re-
binding policy shown in Fig. 3D. When Alice enters a new
domain of attachment followed by her shadow proxy (Do-
mainArrival event), Rebinding sets isConnected and the
binding strategy type to "rebinding" for any active resource
in the ProxyID context object. The Rebinding policy actions
are performed if and only if the CARMEN Discovery facil-
ity is working in the new domain of attachment. It is worth
noting that if several instances of the same resource type are
locally available, the user/device profiles drive the choice
of which instances to bind. In fact, the reference object for
the rebinding strategy performs simple parsing and proc-
essing operations on the attribute-value pairs contained in
the profiles, and increments a score counter anytime a re-
source profile attribute is compatible with the correspond-
ing user/device one. Then, the reference object chooses the
resource with the maximum score and is updated with the
dynamically downloaded Jini stub for that resource [16].

The flexibility and dynamic adaptability of MNS is even
more evident in the case of policy modifications during
service provisioning. CARMEN permits to disable old poli-
cies and to substitute them with new ones, or simply to add
new policies to cope with previously unforeseen situations.
CARMEN propagates policy changes to shadow proxies
with no impact on their implementation. As an example, let
us consider the case of extending the already deployed
MNS with new operations to perform in case of battery
shortage. The CARMEN MM facilitates the introduction of
the new Alarm policy in Fig. 3E. After that, in case of De-
viceID battery shortage (BatteryAlarm event), Alarm com-
mands the associated proxy to migrate, together with the
reached execution state, to a safe storage place retrieved via
the Directory facility. Only after Alice’s reconnection, possi-
bly with a different device, the proxy will migrate again
close to Alice to continue her MNS session.

7.1 MNS Experimental Evaluation
In addition to the flexibility and simplification of service
implementation allowed by the adoption of metadata, a
relevant factor that facilitates wireless Internet service de-
velopment in CARMEN is code re-utilization. In particular,
the CARMEN framework provides two different possibili-
ties of reuse, reuse of framework facilities and reuse of
metadata, which we have measured in the MNS case to
give some quantitative assessment of CARMEN effective-
ness.

We have adopted the definition of Framework Facilities
Reuse Level (FFRL) as the ratio between the size (in number

of classes) of the code reused from the framework facilities
and the size (in number of classes) of the overall service
code (application-specific clients, servers, shadow proxies,
and the whole framework) [30]. In the MNS case, FFRL re-
sults to be 67%. This FFRL value is achieved because MNS
largely exploits both the CARMEN low-level facilities and
the high-level ones, e.g., Directory for profile retrieval,
event subscription/notification for obligation policies, Dis-
covery in the Rebinding policy enforcement, Monitoring in
the Alarm policy enforcement.

Relevant state-of-the-art researches have specifically fo-
cused on evaluating the reuse level in framework-based
application development, and have shown that, for frame-
works of small/medium size, the reuse level tends to be
settled around 80%, by considering the average of a wide
set of applications of different nature [31]. Let us observe
that our FFRL measurement, specific and limited to MNS, is
lower than 80% mainly because CARMEN is sensibly larger
in size than the framework considered in [31] and, there-
fore, CARMEN-based applications typically reuse a smaller
subset of the framework facilities.

A CARMEN-specific reuse aspect relates to profile and
policy metadata. All application-independent profiles rep-
resented in a standard format are highly reusable, e.g.,
CC/PP-compliant device profiles directly provided by de-
vice vendors (as the PalmOS one in Fig. 1). In addition,
CARMEN supports the specification of policy templates
that encode sets of common binding/migration strategies,
from which policy instances can be created when needed.
The adoption of templates in CARMEN promotes the reuse
of existing binding/migration policies.

Given the very different representation formats and
specification complexity of profiles/policies in CARMEN,
we have decided to define and measure two different types
of metadata reuse levels, the Profile Reuse Level (ProRL)
and the Policy Reuse Level (PolRL). In fact, profiles typi-
cally consist of several hundreds of CC/PP, WSDL, or RDF
lines of code, while policies are composed only by a dozen
of Ponder lines on average. We have defined ProRL/PolRL
as the ratio between the size (in number of lines) of the pro-
file/policy specifications reused from the framework and
the size (in number of lines) of the total number of pro-
file/policy specifications required in an application. Let us
observe that also the above ProRL definition could be con-
sidered arguable because different types of CARMEN pro-
files are expressed in different formats with different ex-
pressive power; however, there are still no simple and
widely accepted metrics for profiles.

The MNS prototype involves 6 device profiles, 1 user
profile, 10 news resource profiles, and 18 different policies.
Alice’s profile, the news resource profiles, and the Alarm
policy have been defined from scratch in MNS; the 6 device
profiles were already available in CARMEN, as well as the
policy templates from where the other 17 policies have been
instantiated. In this specific case, ProRL results to be 70.6%
and PolRL 78.7%, mainly because of the high reusability of
device profiles and the large exploitation of existing policy
templates.

Let us note that not only the reuse level, but also the
complexity of learning how to implement framework-based

BELLAVISTA ET AL.: CONTEXT-AWARE MIDDLEWARE FOR RESOURCE MANAGEMENT IN THE WIRELESS INTERNET 11

applications significantly impacts on development produc-
tivity, and represents a relevant factor in evaluating a
framework from the software engineering point of view
[31]. To reduce the framework learning effort, we have in-
tegrated CARMEN with a wide set of graphical tools to
simplify metadata specification and reuse. These tools hide
the complexity of profile/policy representation formats
from developers by providing pre-defined schemas to fill in
with the needed application-specific data, e.g., subjects,
targets, and triggering events in the case of migra-
tion/binding policies [24].

The exploitation of a flexible context-aware framework
for wireless Internet services, such as CARMEN, introduces
different forms of runtime overhead, depending on the per-
formance of the different framework functions involved,
from monitoring to event distribution, from profile parsing
to policy interpretation, from proxy migration to active re-
source reference update. During the testing of CARMEN-
based MNS, we have conducted a number of measurements
to give a quantitative estimation of the overhead intro-
duced by several CARMEN components, also to verify the
feasibility of our framework-based approach. Measure-
ments have been taken on a 10Mbps Ethernet LAN of 1.7-
GHz PentiumIV PCs. In particular, being metadata the pri-
mary distinguishing feature of CARMEN, in the following
we specifically focus on the experimental evaluation of the
performance related to the adoption of metadata for proxy
migration/binding.

For the sake of simplicity, here we present the experi-
mental results for the CloseByMigration, CopyMovement and
Rebinding policies, by comparing the migration and bind-
ing/rebinding costs for two different shadow proxy im-
plementations: the proxy version of Section 7 with migra-
tion and binding/rebinding strategies separately specified
in terms of policies (MNSProxy), and an alternative imple-
mentation of a proxy with the same behavior but with mi-
gration and binding/rebinding strategies directly hard-
coded into its code (HardCodedMNSProxy). The bytecode size
of HardCodedMNSProxy results to be 93.6KB while the
MNSProxy size, with all the 18 needed policies on-board, is
99.2KB. In addition, in the testing deployment scenario, the
proxies have two profiles (the Alice’s profile and the Pal-
mOS device one) included in their state and two active
news resources in their context objects, with each resource
size of 100KB.

We have decided to measure the response time, defined
as the time interval between an event notification received
at the shadow proxy and the completion of the consequent
management action of migration and binding/rebinding.
Table 1 reports the average response time for MNSProxy and
HardCodedMNSProxy. For instance, the HardCodedMNSProxy
CloseByMigration cell reports the costs for parsing the user
profile and for moving the proxy between two places
(mainly, the time to establish a connection between the ori-
gin and the destination place, and to serialize/deserialize
the proxy). The same strategy driven by metadata exhibits a
slightly higher response time due to the additional time
spent, at event notification, for selecting the triggered pol-
icy and parsing it to extract constraints and actions. Similar
considerations apply to the other strategies, CopyMovement

and Rebinding (note that the Rebinding cases do not in-
volve any proxy/resource serialization/deserialization). In
general, as expected, migration and binding/rebinding ac-
tions introduce a slightly larger overhead when driven by
metadata. However, we claim that this difference is coun-
terbalanced by the augmented flexibility and reusability.

Finally, we have also evaluated the performance of an al-
ternative MNSProxy version that does not carry the migra-
tion/binding policies on-board, but retrieves them when
needed by exploiting the CARMEN Directory. In this case,
the response time also includes additional factors due to
Directory interrogation, which depends on several deploy-
ment choices and CARMEN-independent aspects, such as
the degree of replication/partitioning of the directory com-
ponents, the directory size and the current load. For this
reason, we have decided to report in Table 1 the response
times for MNSProxy and HardCodedMNSProxy because they
best point out the CARMEN costs associated with meta-
data-specific management.

Table 1. Average response times for MNSProxy and HardCod-
edMNSProxy.

8 RELATED WORK
Several research efforts have addressed the general issue of
middleware solutions to support user/device mobility, by
facing very different aspects, from the provisioning of vir-
tual home environments to roaming users in 3G communi-
cations, to the effective synchronization of data replicas on
mobile devices, and to profile-based content tailor-
ing/adaptation [7], [32], [33], [34]. It is relevant to observe
that, notwithstanding the very different issues addressed,
most solutions propose the adoption of some forms of
metadata to drive the service/middleware behavior at run-
time. For instance, industry-driven initiatives such as the
Synchronous Markup Language (SyncML) and the Syn-
chronized Multimedia Integration Language (SMIL) pro-
pose metadata, respectively, to maintain replica modifica-
tion flags and to describe multimedia presentations with
alternative contents [35], [36]. We do not intend to provide
here a general survey of the state-of-the-art middleware for
dynamic service management in mobile scenarios, but only
to focus on the research that explicitly deals with the re-
source management aspects specifically addressed by
CARMEN, i.e., flexible context-dependent management of
binding/mobility strategies at provision time.

By focusing on mobility strategies, few solutions have
been recently proposed for dynamically deciding when,
where, and which software components to allocate in order
to adapt to possible variations in the execution environ-
ment. All proposals follow the key design choice of separat-
ing mobility and computational concerns. The approach in
[37] focuses on MA-based applications and suggests the
separation of MA applications into three aspects: the func-
tional, the mobility and the management ones, by suggest-

Response Time (ms)
CloseByMigration CopyMovement Rebinding

HardCodedMNSProxy 386 453 36
MNSProxy 415 488 61

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT #118785

ing a separate programming of the three parts. Each MA is
associated with an array of three elements: the first contains
the MA code, the second includes all the data referred by
the MA, and the third describes the MA path of successive
execution environments to visit. Another interesting ap-
proach is FarGo, which supports the specification of poli-
cies driving the runtime allocation of mobile software com-
ponents [38]. However, in the current FarGo implementa-
tion, allocation policies are encoded within the application
by using a specific Application Programming Interface. The
exploitation of an event-based scripting language for speci-
fying allocation policies separately from the application
logic is still under development. The MAGE project, in-
stead, introduces the mobility attribute programming ab-
straction to describe the mobility semantics of application
components. Programmers can associate components with
mobility attributes to control their dynamic allocation [39].
However, MAGE leaves to the programmer the burden of
manually implementing the proper binding between appli-
cation components and needed resources, depending on
the specified mobility attributes. The DACIA framework
for developing and deploying re-configurable mobile ap-
plications represents another interesting research activity
[40]. DACIA provides mechanisms to dynamically alter the
rules for application reconfiguration. However, it does not
integrate with any high-level language for the specification
of service reconfiguration policies clearly separated from
the service logic. A relevant proposal at a very preliminary
stage is the RAM infrastructure, suggesting to exploit re-
flection for the mobility management of object clusters,
each one associated with a meta-object governing its mobil-
ity behavior [41]. RAM adopts a reflective language that
supports the linking of meta-objects to the application logic
at compile time and their dynamic modification.

Reflection represents an interesting design guideline to
achieve context awareness in middleware solutions, but it is
difficult to integrate with legacy systems typically imple-
mented by non-reflective programming languages. On the
contrary, policy-based approaches, as the CARMEN one,
require the availability of monitoring and event facilities to
trigger the policy enforcement anytime relevant context
changes occur, but can apply also to legacy services, inde-
pendently of their implementation language.

By focusing on flexible binding management, the design
principle of separation of concerns has ruled the design of a
few recent proposals in the literature. They differ on how to
achieve the separation between binding concerns and ap-
plication logic. The approach in [42] uses reflection to de-
fine customizable binding strategies implemented as basic
reusable meta-objects attached to any mobile application
component. However, the linking between application
components and binding strategies is performed at the be-
ginning of the execution, and cannot change at provision
time without an execution re-start. Another interesting ap-
proach is the FarGo system (already presented above),
which supports the programming of different binding rela-
tionships as a separate component of the application code

[38]. However, similarly to [42], the binding strategies are
decided and associated to FarGo entities only at application
loading. It is worth noting that the CARMEN support for
mobility/binding management has different points in
common with the above approaches; the main distinctive
point is the CARMEN possibility to specify migra-
tion/binding strategies in terms of high-level obligation
policies and to modify them even during service provision-
ing, without any impact on service implementation.

Finally, several research activities are exploiting the idea
of proxies to smooth the heterogeneity/discontinuities in
available resources between the fixed Internet and the wire-
less access environment. For instance, in [43], [44] middle-
ware components are statically placed at the wired-wireless
edges to perform local monitoring of the offered quality
and SMIL-based content adaptation in case of multimedia
streaming.

Due to the novelty of the MA technology, few researches
have proposed middleware solutions that exploit MAs to
implement mobile proxies. The ACTS OnTheMove project
has adapted an existing MA platform with a Mobile Appli-
cation Support Environment to provide a statically installed
proxy to support laptop mobility between fixed and wire-
less networks [45]. Dartmouth Agent TCL provides a dock-
ing station abstraction (a sort of fixed proxy available in
any domain) in charge of forwarding MAs/messages to
mobile laptops independently of their current location [46].
Other MA proposals mainly concentrate on proxy solutions
for profile-based realization of virtual home environments
[47]. To our knowledge, apart from our approach, Grass-
hopper is the only MA platform addressing the specific
issues of limited portable devices that access wireless Inter-
net services. However, Grasshopper focuses on providing a
lightweight version of the MA execution environment that
can be suitably accommodated in access devices with either
Personal Java or the Java 2 Micro Edition [48]. The CAR-
MEN middleware, instead, is original in addressing the
issues of Web service accessibility from wireless portable
devices without any version of the JVM, by adopting MA-
based mobile proxies working in the fixed network.

9 CONCLUSIONS AND ON-GOING WORK
The development and deployment of wireless Internet ser-
vices motivate flexible and mobile middleware solutions
with full context visibility and capable of properly handling
context modifications during service provisioning. In addi-
tion, the complexity of the wireless Internet scenario sug-
gests a clear separation of concerns between resource bind-
ing/mobility strategies and service logic implementation,
to achieve the requested level of dynamicity, flexibility and
reusability of both middleware and service components.
Novel programmable middleware solutions, integrated
with different types of high-level metadata, can provide the
needed management configurability while hiding low-level
mechanisms and implementation details from service de-
velopers and system administrators.

First experiences with CARMEN have shown that our

BELLAVISTA ET AL.: CONTEXT-AWARE MIDDLEWARE FOR RESOURCE MANAGEMENT IN THE WIRELESS INTERNET 13

middleware can simplify service design and implementa-
tion, can provide effective service reconfiguration in re-
sponse to runtime context changes, and can favor compo-
nent reusability in different deployment conditions. These
encouraging results are stimulating further research to ex-
tend the current middleware prototype and to develop
other mobile services on top of it. In particular, we are
working on the integration of the CARMEN middleware
with additional multimedia-specific service adapters, which
we have implemented for the dynamic QoS adaptation (fil-
tering, downscaling, transcoding, etc.) of video-on-demand
flows in the context of other research projects [49].

ACKNOWLEDGMENT
Work supported by the Italian Ministero dell'Istruzione,
dell'Università e della Ricerca (MIUR) in the framework of
the FIRB WEB-MINDS Project "Wide-scale Broadband
Middleware for Network Distributed Services" and by the
Italian Consiglio Nazionale delle Ricerche (CNR) in the
framework of the Strategic IS-MANET Project "Middleware
Support for Mobile Ad-hoc Networks and their Appli-
cation".

REFERENCES
[1] W. Stallings, Wireless Communications and Networks, Pearson Education,

Aug. 2001.
[2] S. Agarwal, A. Agrawala, S. Banerjee, T. Bao, K. Kamel, A. Kochut, C.

Kommareddy, R. L. Larsen, T. Nadeem, P. Thakkar, A. Udaya Shankar, A.
Youssef, M. Youssef, “Rover: Scalable Location-aware Computing,” Com-
puter, Vol. 35, No. 10, pp. 46-53, Oct. 2002.

[3] M. S. Corson, J. P. Macker, V. D. Park, “Mobile and Wireless Internet Ser-
vices: Putting the Pieces Together,” IEEE Communications Magazine, Vol. 39,
No. 6, pp. 148-155, June 2001.

[4] G. D. Abowd, M. R. Ebling, H.-W. Gellersen, H. Lei, G. Hunt (eds.), Special
Section on Context-aware Pervasive Computing, IEEE Wireless Communi-
cations, Vol. 9, No. 5, Oct. 2002.

[5] A. Fuggetta, G. P. Picco, and G. Vigna, “Understanding Code Mobility,”
IEEE Transactions on Software Engineering, Vol. 24, No. 5, pp. 342-361, May
1998.

[6] L. Bos, S. Leroy, “Toward an All-IP-based UMTS System Architecture,”
IEEE Network, Vol. 15, No. 1, pp. 36-45, Jan.-Feb. 2001.

[7] G.-C. Roman, G. P. Picco, A. L. Murphy, “Software Engineering for Mobil-
ity: A Roadmap,” 22nd Int. Conf. on Software Engineering (ICSE’00), pp. 241-
258, June 2000.

[8] H. Huber, M. Jarke, M. A. Jeusfeld, H. W. Nissen, G. V. Zemanek, “Manag-
ing Multiple Requirements Perspectives with Metamodels,” IEEE Soft-
ware, Vol. 13, No. 2, pp. 37-48, Mar. 1996.

[9] J. Moffett, M. Sloman, “Policy Hierarchies for Distributed Systems Man-
agement,” IEEE Journal on Selected Areas in Communications, Vol. 11, No. 9,
pp. 1404-1414, Dec. 1993.

[10] S. Avancha, T. Finin, A. Joshi, “Enhanced Service Discovery in Bluetooth,”
Computer, Vol. 35, No. 6, pp. 96-99, June 2002.

[11] IETF SVRLOC Working Group – Service Location Protocol (SLP),
http://www.srvloc.org

[12] K. Arnold, R. Scheifler, J. Waldo, B. O'Sullivan, A. Wollrath, Jini Specifica-
tion, Addison-Wesley, June 1999.

[13] F. Curbera, M. Duftler, R. Khalaf, N. Mukhi, W. Nagy, S. Weerawarana,
“Unraveling the Web Services: an Introduction to SOAP, WSDL, and
UDDI,” IEEE Internet Computing, Vol. 6, No. 2, pp. 86-93, Mar.-Apr. 2002.

[14] R. Riggs, J. Waldo, A. Wollrath, “Java-centric Distributed Computing,”
IEEE Micro, Vol. 17, No. 3, pp. 44-53, May-June 1997.

[15] J. Snell, K. MacLeod, D. Tidwell, P. Kulchenko, Programming Web Services
with SOAP, O’Reilly & Ass., Dec. 2001.

[16] P. Bellavista, A. Corradi, R. Montanari, C. Stefanelli, “Policy-driven Bind-
ing to Information Resources in Mobility-enabled Scenarios,” 4th Int. Conf.

on Mobile Data Management (MDM'03), Springer-Verlag LNCS, Australia,
Jan. 2003.

[17] A. Karmouch (ed.), Special Section on Mobile Agents, IEEE Communica-
tions Magazine, Vol. 36, No. 7, July 1998.

[18] F. Eliassen, et al., “Next Generation Middleware: Requirements, Architec-
ture and Prototypes,” 7th IEEE Workshop on Future Trends in Distributed
Computing Systems (FTDCS’99), pp. 60-65, 1999.

[19] P. Bellavista, A. Corradi, C. Stefanelli, “The Ubiquitous Provisioning of
Internet Services to Portable Devices,” IEEE Pervasive Computing, Vol. 1,
No. 3, pp. 81-87, July-Sep. 2002.

[20] P. Bellavista, A. Corradi, C. Stefanelli, “Mobile Agent Middleware for
Mobile Computing,” IEEE Computer, Vol. 34, No. 3, pp. 73-81, Mar. 2001.

[21] W3 Consortium - Composite Capability/Preference Profiles (CC/PP),
http://www.w3.org/ Mobile

[22] S. Decker, P. Mitra, S. Melnik, “Framework for the Semantic Web: an RDF
Tutorial,” IEEE Internet Computing, Vol. 4, No. 6, pp. 68-73, Nov.-Dec. 2000.

[23] C. E. Ortiz, E. Giguere, Mobile Information Device Profile for Java 2 Micro
Edition (J2ME): Professional Developer's Guide, Wiley Inc., Dec. 2001.

[24] Imperial College – Ponder, http://www-dse.doc.ic.ac.uk/Research/
policies/ponder.shtml

[25] R. Montanari, C. Stefanelli, N. Dulay, “Flexible Security Policies for Mobile
Agent Systems,” Microprocessors and Microsystems, Elsevier Science, Vol. 25,
No. 2, pp. 93-99, May 2001.

[26] P. Bellavista, A. Corradi, C. Stefanelli, “Java for On-line Distributed Moni-
toring of Heterogeneous Systems and Services,” The Computer Journal, Vol.
45, No. 6, pp. 595-607, Nov. 2002.

[27] Cisco Systems – Cisco Aironet 350 Series, http://www.cisco.com/en/
US/products/hw/wireless/ps458/index.html

[28] Teleca AB - Bluetooth Local Infotainment Point (BLIP),
http://www.teleca.com

[29] Ericsson - Bluetooth Application and Training Tool Kit,
http://www.ericsson.com/bluetooth

[30] J.S. Poulin, Measuring Software Reuse: Principles, Practice and Economic Mod-
els, Addison Wesley, 1997.

[31] M. Morisio, D. Romano, I. Stamelos, “Quality, Productivity, and Learning
in Framework-based Development: an Explanatory Case Study,” IEEE
Transactions on Software Engineering, Vol. 28, No. 9, pp. 876-888, Sep. 2002.

[32] C. Mascolo, L. Capra, W. Emmerich, “Middleware for Mobile Comput-
ing,” Networking 2002 Tutorial Papers, Springer-Verlag LNCS 2497, pp. 20-
58, Nov. 2002.

[33] N. Davies, H.-W. Gellersen, “Beyond Prototypes: Challenges in Deploying
Ubiquitous Systems,” IEEE Pervasive Computing, Vol. 1, No. 1, pp. 26-35,
Jan.-Mar. 2002.

[34] J.A. Moura, J.M. Oliveira, E. Carrapatoso, R. Roque, “Service Provision
and Resource Discovery in the VESPER VHE,” IEEE Int. Conf. on Commu-
nications (ICC’02), IEEE Computer Society Press, USA, Apr. 2002.

[35] S. Agarwal, D. Starobinski, A. Trachtenberg, “On the Scalability of Data
Synchronization Protocols for PDAs and Mobile Devices,” IEEE Network,
Vol. 16, No. 4, pp. 22-28, July-Aug. 2002.

[36] D.C.A. Bulterman, “SMIL 2.0: Examples and Comparisons,” IEEE Multi-
media, Vol. 9, No. 1, pp. 74 –84, Jan.-Mar. 2002.

[37] D. Johansen, K. J. Lauvset, K. Marzullo, “Factoring Mobile Agents,” IEEE
Int. Conf. on Engineering of Computer-Based Systems (ECBS’02), Sweden,
pp.253-257, 2002.

[38] O. Holder, I. Ben-Shaul, H. Gazit, “Dynamic Layout of Distributed Appli-
cations in FarGo,” 21st Int. Conf. on Software Engineering (ICSE'99), pp. 163-
173, 1999.

[39] E. Barr, M. Huangs, R. Pandey, “MAGE: a Distributed Programming
Model,” 21st IEEE Int. Conf. on Distributed Computing Systems (ICDCS’01),
USA, pp. 303-312, 2001.

[40] R. Litiu, A. Prakash, “DACIA: A Mobile Component Framework for
Building Adaptive Distributed Applications,” Int. Middleware Symp. on
Principles of Distributed Computing (PODC’00), USA, July 2000.

[41] T. Ledoux, N. M. N. Bouraqadi-Saâdani, “Adaptability in Mobile Agent
Systems using Reflection,” Int. Workshop on Reflective Middleware in Mid-
dleware'00, USA, Apr. 2000.

[42] E. Tanter, J. Piquer, “Managing References upon Object Migration: Apply-
ing Separation of Concerns,” 21st Int. Conf. Chilean Computer Science Society
(SCCC'01), pp. 264-272, 2001.

[43] T. Yoshimura, T. Ohya, T. Kawahara, M. Etoh, “Rate and Robustness
Control with RTP Monitoring Agent for Mobile Multimedia Streaming,”

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT #118785

IEEE Int. Conf. on Communications (ICC’02), IEEE Computer Society Press,
USA, Apr. 2002.

[44] T. Yoshimura, Y. Yonemoto, T. Ohya, M. Etoh, S. Wee, “Mobile Streaming
Media CDN Enabled by Dynamic SMIL,” 11th Int. World Wide Web Confer-
ence (WWW’02), ACM Press, USA, May 2002.

[45] E. Kovacs, K. Rohrle, M. Reich, “Integrating Mobile Agents into the Mo-
bile Middleware,” Mobile Agents Int. Workshop (MA'98), Springer-Verlag
LNCS, pp. 124-35, 1998.

[46] S. Chawla, G. Cybenko, R. Gray, D. Kotz, S. Nog, D. Rus, “Agent TCL:
Targeting the Needs of Mobile Computers,” IEEE Internet Computing, Vol.
1, No. 4, pp. 58-67, July 1997.

[47] S. Lipperts, A. Park, “An Agent-based Middleware: a Solution for Termi-
nal and User Mobility,” Computer Networks, Vol. 31, Sep. 1999, pp. 2053-62.

[48] IKV++ Technologies AG - enago mobile, http://www.ikv.de
[49] P. Bellavista, A. Corradi, “Active Middleware for Internet Video on De-

mand: the QoS-aware Routing Solution in ubiQoS,” Elsevier Microproces-
sors and Microsystems, Vol. 27, No. 2, pp. 73-83, Mar. 2003.

Paolo Bellavista received the Laurea degree in Electronics Engineer-
ing and the PhD degree in Computer Engineering from the University
of Bologna. He is currently a research associate of computer engineer-
ing, and is with the Department of Electronics, Computer Science, and
Systems (DEIS), University of Bologna. His research activities span
from mobile agents and pervasive computing to systems/service man-
agement, location/context-aware services, and adaptive multimedia.
He is member of the IEEE, the ACM, and the Italian Association for
Computing. His web page is at http://lia.deis.unibo.it/Staff/PaoloBel-
lavista/.

Antonio Corradi received the Laurea degree in Electronics Engineer-
ing from the University of Bologna, and the MS degree in Electrical
Engineering from Cornell University. He is currently a full professor of
computer engineering, and is with the Department of Electronics,
Computer Science, and Systems (DEIS), University of Bologna. His
research interests include distributed systems, object and agent sys-
tems, network management, and distributed and parallel architectures.
He. He is a member of the IEEE, the ACM, and the Italian Association
for Computing. His web page is at http://lia.deis.unibo.it/Staff/Antonio-
Corradi/.

Rebecca Montanari received the Laurea degree in Electronics Engi-
neering and the PhD degree in Computer Engineering from the Uni-
versity of Bologna. She is currently a research associate of computer
engineering, and is with the Department of Electronics, Computer Sci-
ence, and Systems (DEIS), University of Bologna. Her research pri-
marily focuses on policy-based networking and systems/service man-
agement, mobile agent systems, security management mechanisms
and tools in both traditional and mobile systems. She is a member of
the IEEE and the Italian Association for Computing. Her web page is at
http://lia.deis.unibo.it/Staff/RebeccaMontanari/.

Cesare Stefanelli received the Laurea degree in Electronics Engineer-
ing and the PhD degree in Computer Engineering from the University
of Bologna. He is currently an associate professor of computer engi-
neering, and is with the Department of Engineering, University of
Ferrara. His research interests include distributed and mobile comput-
ing, mobile code, network and systems management, and network
security. He is a member of the IEEE and the Italian Association for
Computing. His web page is at http://www.ing.unife.it/docenti/Cesar-
eStefanelli/.

