
A Mobile Agent Infrastructure for the Mobility Support

Paolo Bellavista
Dip. Elettronica, Informatica e Sis-
temistica – Università di Bologna

Viale Risorgimento, 2
Bologna - Italy

Ph.: +39-051-2093087
pbellavista@deis.unibo.it

Antonio Corradi
Dip. Elettronica, Informatica e Sis-
temistica – Università di Bologna

Viale Risorgimento, 2
Bologna - Italy

Ph.: +39-051-2093083
 acorradi@deis.unibo.it

Cesare Stefanelli
Dipartimento di Ingegneria

Università di Ferrara
Via Saragat, 1
Ferrara - Italy

Ph.: +39-0532-768602
cstefanelli@ing.unife.it

ABSTRACT
The mobility of terminals and users is a crucial issue in the open
global system represented by the Internet. Supporting terminal
and user mobility requires a middleware infrastructure capable of
efficiently answering the needs of scalable resource discovery, of
security and interoperability, of Quality of Service (QoS) moni-
toring and adaptation. Some proposals address mobility at the
network level and some others focus on application-level solu-
tions. By following the latter approach, the paper proposes the
adoption of the mobile agent technology to model and implement
mobility. In particular, the paper concentrates on the components
and modules implemented in the SOMA mobile agent program-
ming framework to specifically support terminal and user mobil-
ity. The SOMA tracing and discovery system extends the SOMA
basic naming service to identify and keep track of all mobile enti-
ties in the environment. The SOMA QoS adaptation support ex-
ploits the functionality of the SOMA monitoring tools and permits
to dynamically adjust service provision in response to the chang-
ing network and nodes conditions. These features are integrated in
a mobility add-on module that pursues also the goals of security
and interoperability when moving users and roaming terminals.

Keywords

Mobile and Nomadic Computing, Mobile Agents, Mobile Trac-
ing, Resource Discovery, QoS Adaptation.

1 INTRODUCTION
Several proposals in the area of mobility are directed towards the
extension of the traditional Internet architecture to accommodate
portable computing devices and to support user roaming. In par-
ticular, terminal mobility permits mobile devices to roam in the
global system while maintaining the same ability of service access
and provision, and user mobility provides users a uniform vision
of their preferred working environment independently of their
current points of attachment [20, 26].

The mobility support requires a flexible distributed infrastruc-
ture that is capable not only of identifying and tracing any mobile
entity (i.e. terminals, users and software components), but also of
adapting the system to dynamically evolving network conditions.
In addition, mobility in open environments focuses on the neces-
sity of both granting an adequate security level and overcoming
systems heterogeneity. On the one hand, the openness of the sys-
tem and the potential presence of malicious intruders require pre-
venting attacks and providing suitable security tools. On the other
hand, the variety of devices, operations and systems forces to con-
sider interoperability issues by introducing practices and method-
ologies to define standards and to integrate legacy components.

We claim that providing support to mobility can take advantage
of a middleware solution that covers several different layers of
abstraction. Although network and transport protocols for mobile
hosts can transparently maintain network connectivity, they lack
expressive capacity when working at the application level. At the
application level, typical services require resource management,
naming, security and interoperability, and these services call for
distributed and coordinated infrastructures. In this area, many
proposals have recognized the central role of mobile code, be-
cause code mobility significantly simplifies the dynamic upgrade
of hosting environments, depending on the evolution of the sys-
tem and with no need to suspend service provision [22, 23, 24,
28]. This extendibility has mainly motivated the increasing inter-
est in new mobile code technologies, and, in particular, in the
Mobile Agent (MA) one, which allows the migration of comput-
ing entities together with their state and while in execution.

This paper presents the distributed infrastructure of the

SOMA* (Secure and Open Mobile Agents) programming envi-
ronment, and particularly focuses on its mobility add-on module.
SOMA allows all entities to move autonomously and to adapt to
the current system situation, to the current position of the in-
volved users, and to the current characteristics of their points of
attachment to the network. The SOMA mobility support is capa-
ble of recognizing the dis/connection of a mobile terminal and of
adapting to its current position by reconfiguring the needed serv-
ices and resources. From the point of view of user mobility, the
SOMA mobility infrastructure permits to recognize dynamic
dis/connections of any identified user and to rearrange the service
infrastructure accordingly.

The mobility add-on module consists of two basic components:
the tracing and discovery service, and the Quality of Service
(QoS) adaptation service. The SOMA tracing and discovery serv-
ice identifies and keeps track of any mobile entity in the environ-
ment; in addition, it provides a resource discovery functionality
that allows mobile entities to interrogate their current hosting en-
vironment in order to find and exploit locally available resources.
The SOMA QoS adaptation service is basic for the mobility sup-
port since the nomadicity of users and devices forces to consider
rapid changes of resource availability in an absolutely unpredict-
able manner. The QoS adaptation permits to dynamically modify
the service quality offered, depending on the current properties of
the involved terminals, of the user desiderata, and of the network
and intermediate nodes that take part in service provision.

The paper is structured as follows. Section 2 motivates the
adoption of mobile agents as an enabling technology to provide
the support for mobility. Section 3 describes the general organi-
zation of the SOMA programming environment, while Section 4
gives details about the SOMA mobility add-on. Related work sets
our project in the context of current research on terminal and user
mobility. Concluding remarks follow.

2 MOBILE AGENT TECHNOLOGIES
FOR MOBILITY

Several research projects propose mobile agents as a promising
mobile code technology to support enhanced user and terminal
mobility [4, 22, 23, 24, 28]. In fact, the requirements induced by
mobility are very similar to the ones addressed by the MA tech-
nology, and it is not only convenient but also natural to extend the
MA infrastructure to support mobility.

Any infrastructure for the mobility support should take into ac-
count the specific network scenario where mobility takes place.
Mobile users have often to work in critical network conditions,
especially in the case of terminal mobility. Wireless connections,
for example, impose constraints on the available bandwidth and
on the reliability of communications, thus requiring to minimize
the expensive connection time; mobile users should be capable of
starting computations by launching them in the network without
having to rely on stable connections for the duration of the re-
quested operation. Several intrinsic properties of the MA technol-
ogy, such as mobility and autonomy, represent solutions to the
intrinsic problems of this scenario. Agent mobility permits the
optimization of the connection time required between mobile ter-

*
 SOMA is available at http://lia.deis.unibo.it/
Research/SOMA/.

minals and the network [24]. In addition, autonomy permits asyn-
chronicity between user actions and MA-performed tasks. Agents
can operate also when the user is temporarily disconnected, and,
only at the completion of their duty, they wait for the user con-
nection to yield back results. Differently from a traditional cli-
ent/server model, stable connection is needed only for the time
required to inject the agent into the network and to receive the
service results [23].

Mobility also stresses interoperability issues, because terminals
tend to move to non completely known environments where they
interact with locally available resources. This requires a local di-
rectory service to discover available resources [32] and standard
interfaces to overcome possible heterogeneity of implementations.
Agents have already shown their capacity of acting as proxy to
encapsulate resources and legacy systems, thus providing stan-
dardized interfaces to service components [5]. Moreover, mobility
introduces additional security problems and forces to reconsider
solutions for authentication of mobile users and terminals, for
authorization in accessing system resources, and for granting se-
crecy and integrity when needed in communications. Security
tools are usually available at the application level and some MA
infrastructures already provide mechanisms and policies to grant
the needed level of security. For instance, MA systems easily in-
tegrate with public key infrastructures that permit distributed
authentication of mobile users and terminals.

Finally, a further relevant property of the MA paradigm for the
realization of mobility infrastructures is location-awareness. Mo-
bile agents tend to maintain full visibility of the underlying sys-
tem resources and can propagate this visibility at the service level.
Location-awareness is a basic property for application-level opti-
mization of the usage of available resources [8]. Only a mobility
infrastructure can offer to applications the expressive capacity of
adapting to the current network environment, by trading off be-
tween volume of transferred data (and its granted quality of serv-
ice) and requested time. For instance, a support for terminal mo-
bility must react to any change in the device that a mobile user is
currently using (e.g. from a laptop to a light PDA), to better adapt
its demands to the network situation (e.g. to include/discard at-
tachments in the download of e-mail messages).

3 THE SOMA INFRASTRUCTURE
We have concentrated our efforts on the design and the imple-
mentation of an MA-based integrated infrastructure to support
terminal and user mobility. The infrastructure is based on the
SOMA programming framework and is implemented in the JAVA
language [15].

The SOMA programming environment offers to mobile entities
(i.e. agents, terminals and users) a hierarchy of locality abstrac-
tions to model and describe any kind of open and global distrib-
uted system, ranging from simple LANs to the Internet, as de-
picted in Figure 1. Any node owns at least one place that consti-
tutes the agent execution environment. A specialization of the
place abstraction, called mobile place, models nomadic terminal
mobility and permits place migration with no suspension of serv-
ice provision (apart from temporary disconnection from the net-
work) and with no impact on local agent execution. Several places
can be grouped into a domain abstraction that corresponds to a
network locality. In each domain, a default place hosts a gateway
to perform inter-domain functionality.

Place2

Default
PlacePlace1

Domain A Place1

Default
Place

Place2

Domain B

Place2

Default
Place

Place3

Place1

Domain C

Mobile
Place 1

Mobile
Place 1

Mobile
Place 2

Place3

Figure 1. The SOMA locality abstractions.

In addition to these locality abstractions, the suitability of SOMA
to support user and terminal mobility stems from its distributed
MA-based infrastructure composed by a mobility add-on module
built on top of a set of basic facilities. Figure 2 shows the SOMA
layered architecture, with the basic facilities structured in two
different layers. The SOMA lower layer of facilities provides:
• the migration facility to support the mobility of agents and re-

sources. Resource reallocation in SOMA is achieved by encap-
sulating resources within agents that can move in the network
either via native migration method or via CORBA Internet In-
ter-ORB Protocol [30] and the MASIF standard interface [16];

• the naming facility to associate entities with globally unique
identifiers (GUID) and to organize these identifiers in name
systems able to trace entities even if they move. This facility
allows to put together a set of different naming systems (DNS-,
CORBA-, and LDAP-compliant), characterized by different
policies, and is currently implemented by a coordinated set of
dedicated agents;

• the monitoring facility to observe the state of local resources
and services and to provide this information to the application
level. SOMA agents can monitor both system indicators (e.g.,
CPU load, file system occupation, printers status, available
network bandwidth and collision rate) and application indica-
tors (e.g., available services, program versioning, local agent
states). SOMA agents exploit platform-dependent mechanisms
to obtain the monitored indicators (e.g. the psapi.dll on
Windows NT and pstat on Unix); they invoke this function-
ality provided by the hosting operating system via the JAVA
Native Interface [15]. Their description is detailed in [5, 6];

• the communication facility to provide tools for coordination
and communication between possibly mobile entities. Within
the same place, agents interact by means of shared objects, such
as blackboards and tuple spaces for tight cooperation. Outside
the scope of the place, agents can perform coordinated tasks by
exchanging messages that are delivered to agents also in case of
migration;

• the persistency facility to temporarily suspend executing agents
and to store them on a persistent medium. The facility allows
agents not to waste system resources while they are waiting for
external events such as the reconnection of one user or terminal
where they have to yield back the results of their operations.

The SOMA upper layer of facilities provides a rich set of mecha-
nisms and tools for interoperability and security, which we con-
sider crucial properties to greatly widen the application opportu-
nities of the MA technology.

Java Virtual Machine

Heterogeneous Distributed System

SOMA
Facilities

Migration

Information
Retrieval

Multimedia
Distribution

Systems
Management

Mobile
Services

Naming Monitoring Communic. Persistency

Discovery
& Tracing

Mobility
Add-on
Module

QoS
Adaptation

Interoperability Security

Figure 2. SOMA architecture: facilities and mobility module.

The interoperability facility allows SOMA agents to interwork
with existing software and hardware components via compliance
with CORBA [30]. SOMA agents can play the role of CORBA
clients through either static (IDL stub) or dynamic (Dynamic In-
vocation Interface) invocations. In an analogous way, SOMA
agents can register themselves as CORBA servers to offer access
points to an application outside the SOMA system via either static
IDL skeletons or dynamic skeleton interfaces. In both cases, the
interoperability facility simplifies the duties of the SOMA devel-
oper by providing a set of tools to facilitate the implementation of
CORBA clients/servers. Our interoperability implementation is
based on the Inprise VisiBroker ORB [18]. However, it is port-
able, with no modification at all, on any other ORB implementa-
tion compliant to the CORBA 2.2 specification. In fact, we have
only used the portable functions provided by the Internet Inter-
ORB Protocol and the Portable Object Adapter [30], introduced
by OMG to overcome product incompatibility. In addition,
SOMA is compliant with the OMG work on the Mobile Agent
System Interoperability Facility (MASIF) [16], which standard-
izes the basic functions an MA framework should offer for agent
management and transfer to external systems, whether MA-based
or not. Any external system can control agents of a MASIF-
compliant MA system via the MAFAgentSystem interface:
MASIF defines methods for suspending/resuming/terminating
agents and for moving agents from one MA system to another.
Agent tracking functions permit the tracing of agents registered
with MAFFinder, introduced to provide an MA naming service,
because the CORBA one is not suitable for entities that are mo-
bile by nature. The SOMA compliance with MASIF has permitted
to realize MA-based services [5] in which our mobile agents co-
operate with mobile agents from Grasshopper [17], the only
commercial MA platform that has already implemented the
MASIF standard.

Security is a fundamental issue when dealing with mobile
agents deployed in the untrusted Internet environment, where the
communication network is considered insecure and any node may

host the execution of possibly malicious agents. The SOMA secu-
rity facility provides the basic mechanisms to ensure system wide
security to mobile agents, terminals and users. In particular,
SOMA supports the definition of any model of trust, to define
who or what in the system is trusted, in what way, and to what
extent. SOMA mobile entities are associated with certificates sup-
ported by a public key infrastructure. The SOMA security service
supports the model of trust and enforces its security policies:
authentication permits to identify mobile entities; authorization
recognizes whether an operation is permitted on a resource; integ-
rity guarantees that entities have not been maliciously modified
during reallocation; secrecy permits to protect entities and com-
munication messages from any exposure to malicious intrusions.
SOMA makes use of X.509 certificates for authentication, and we
are currently working on the integration with a commercial Public
Key Infrastructure (PKI) provided by Entrust [14], to automati-
cally distribute keys, to manage certificates and to perform all re-
lated administrative tasks. The integrity check can employ either
MD5 or SHA1. Secrecy is granted when needed by the possibility
of exchanging communications through a Secure Socket Layer
[19]. As a final consideration, let us notice that SOMA security is
provided with application-level tools, to take advantage of avail-
able standard solutions and products (e.g., the IAIK cryptographic
functionality and the Entrust PKI [14, 19]). If the debate about at
which level a system has to offer security is still open, the discus-
sion concentrates on the issues of transparency, flexibility and
performance [31]. Independently of the abstraction level adopted,
it is important to consider security as a property to be integrated at
any system layer. Only this pervasive approach, followed in the
SOMA design, can achieve the full level of security, higher than
the minimal one obtained by systems that add an a posteriori se-
curity strategy.

Further details about the SOMA programming framework and
its implementation are presented elsewhere [4, 5] and are out of
the scope of this paper, where we specifically focus on the SOMA
mobility add-on module.

4 THE SOMA ADD-ON MODULE TO
SUPPORT MOBILITY

The support to user and terminal mobility is based on the mobility
add-on module that consists of two main components: the tracing
and discovery service, and the QoS adaptation one.

4.1 Tracing and Discovery of Mobile Entities
There are two common approaches to implement a name service
that permits to trace mobile entities. In a centralized approach, a
global directory service maintains the allocation of any mobile
entity and it is involved in any migration [32]; in a more distrib-
uted solution, any mobile entity is associated with a correspond-
ing care-of fixed point that keeps track of the movements [20, 28].
SOMA makes use of both approaches.

The distributed approach is followed to keep track of mobile
places and users. Any mobile entity has a corresponding home,
that is the place where the entity has been first created, and that
maintains the information about the entity current position.
SOMA also provides non-traceable entities not to pay the cost of
updating their home at any migration. Any mobile place has a
place home, that is the default place of the domain where it has
been created, automatically notified whenever the mobile place

changes its connected/disconnected status and its point of attach-
ment. Any mobile user has a user home, the place of the first user
registration, that keeps the user Virtual Home Environment
(VHE) information [25]. Mobile agents, places and users in
SOMA have GUID consisting of the identifier of the correspond-
ing home associated with a progressive number unique in this lo-
cality. For instance, a mobile place owns a GUID of the form
(DomainID, progNumber) where DomainID is the IP address of
its place home. This permits to identify easily the place home, and
to forward messages/agents for that mobile place via the corre-
sponding home, without querying and registering with a central-
ized name service. Home entities represent a convenient choice
for agents, terminals and users that change often location.

An additional service for mobile entities is the SOMA directory
service, called Resource Discovery (RD). The RD service, located
in each default place at a predefined port, maintains information
about all the resources currently available within that domain.
Resources are classified on the basis of recognized types, e.g.,
printers, disks, ftp servers. The service collects a list of parameters
for registered resources, including both static properties (e.g.,
print speed, disk total space) and dynamic ones (e.g., average
bandwidth measured in ftp transfer), by interacting with the
monitoring basic service. When a nomadic user/terminal moves
from a domain A to a new domain B, she/it can interrogate the
local RD about resource availability in that domain. The nomadic
user/terminal can decide either to maintain its previous bindings
to its remote resources in domain A, or can ask RD to automati-
cally re-qualify these bindings to the corresponding resources lo-
cal to domain B. If the domain B does not offer the requested re-
source type, RD maintains the remote references. In this way, it is
possible to take advantage of resource locality to reduce network
traffic and to improve performance.

The SOMA naming infrastructure has demonstrated to scale
well: the current position resolution of any mobile entity is com-
pletely distributed among the corresponding home entities. The
RD service fits well with the SOMA hierarchical organization:
each RD server has the duty of handling only local resources, i.e.
the ones registered in its domain.

Place1

Place
HomeDomain A

Mobile
Place 1

Creation of a Mobile Place Agents/Messages delivered to a Mobile Place

Place1

Place
HomeDomain A

Mobile
Place 1

Place1

Default
Place

Domain B

Mobile
Place 1

Place2

Agent A

Agent B
Agent A owns the update position of the mobile place and immediately reaches it.

Agent B and Message try to reach the mobile place that has moved - tunneling via the place home.

12

1

3

Message

Figure 3. Agent/message delivery in terminal mobility.

4.2 The Support for QoS Adaptation
QoS issues are not specific for mobile computing but are particu-
larly critical when dealing with terminal and user mobility, be-
cause of the specific characteristics of low availability and abrupt
changes in network bandwidth. Two main directions are emerging
in the QoS research area. Some work has defined and standard-
ized new protocols to reserve network resources, to ensure their

availability to the requesting services. In the following, we will
indicate this approach as hard QoS [33, 9]. Other work is instead
at the application level, and proposes infrastructures that enhance
service provision with the possibility to require a specified QoS,
to try to satisfy these requirements and to notify the service infra-
structure in case of change in the currently available quality. All is
done at the application level, with no strict guarantee of require-
ment satisfaction, but with no need to modify the underlying net-
work layer, thus preserving the best-effort approach of the world-
wide diffused Internet protocol. We define this approach soft
QoS.

Hard QoS is the only way to ensure the real reservation and
consequently the availability of the needed amount of network
resources. However, the process of acceptance and deployment of
new standards for network-layer protocols has demonstrated to be
long and difficult, due to the large base of non-programmable and
already installed network equipment in global systems such as the
Internet. For instance, notwithstanding its standardization and the
acceptance of its importance in the academic world, RSVP is not
yet fully supported by the largest part of network routers that cur-
rently operate in the Internet. While the provision of hard QoS
guarantees is the objective of many service architectures in fixed
computing systems, it is recognized that the soft QoS approach is
extremely suitable for mobile computing. In fact, mobile services
are particularly sensible to the possibly abrupt changes in QoS
depending on terminal and user mobility, and can be significantly
enhanced by making them aware of the dynamically available
QoS. In that way, mobile services (or the distributed infrastructure
that supports them) can take application-level corrective actions
to adapt themselves to the current network conditions [10]. For
this reason, this paper mainly focuses on the possibility to provide
an application-level QoS adaptation infrastructure for mobile
services.

The SOMA QoS adaptation support exploits the monitoring
functionality of the SOMA basic services. On the basis of this
MA-based monitoring, SOMA implements a distributed adapta-
tion infrastructure consisting of two types of interworking mobile
agents, the Admission Controller (AC) agents and the QoS Ad-
aptation (QoSA) ones.

AC agents are responsible for managing and controlling the lo-
cal access to resources. AC agents realize an application-level
reservation of the required resources by impeding the acceptation
of a service request if the managed resources are not likely to sat-
isfy the required QoS level. One AC agent is distributed on each
SOMA intermediate node that actively takes part in the QoS ad-
aptation support. Intermediate nodes can also decide not to have
AC agents running on them: in this case, they behave as tradi-
tional passive nodes, and data streams generated by service com-
ponents simply traverse them via tunneling. Any AC agent man-
ages all resources local to its node and keeps track of the ones
currently committed to already accepted streams. In this way, it
can evaluate at any time the current resource availability and can
maintain accountability information on resource consumption for
any service user.

QoSA agents are the crucial components of the SOMA adapta-
tion infrastructure and are responsible for taking corrective appli-
cation-level operations in response to dynamic changes in the
available QoS. Their adaptation operations (e.g., discarding, fil-
tering, compressing, multicasting incoming streams) directly de-
pend on the nature of the service they contribute to provide. As a
consequence, they are service-specific, and any intermediate node

can contemporarily host a multiplicity of different QoSA agents,
typically one for each kind of service whose streams traverse the
node. Therefore, while the AC agent can be supposed to be al-
ready installed at any SOMA active node, QoSA agents are neces-
sarily distributed in the start-up phase of a new service provision.
This preliminary distribution affects the starting delay of new
services but does not influence performance in any successive
request for service provision.

A QoSA agent registers to monitoring agents its will of being
notified of variations in some specified indicators. It can specify a
desired value of one system property and a threshold: when the
current property value differs from the desired value more than
the threshold, monitoring agents trigger the intervention of the
interested QoSA. After being notified, the QoSA agent decides to
operate on the service: it can simply propagate the notification to
the client or to the service provider, thus delegating any decision
to the final end-systems (QoS-aware services); it can interwork
with the AC agent to request and obtain additional resources in
order to maintain the initially required QoS; it can accommodate
the service to the diminished resource availability by performing
transformations on the exchanged data (QoS-transparent serv-
ices), e.g., dropping frames or transcoding the format of multime-
dia flows.

To check the effectiveness of our QoS adaptation support, we
have applied it in the field of distributed multimedia applications.
The path between the video service provider and the (possibly
mobile) video client is automatically determined at the moment of
the user request. Monitoring, AC and QoSA agents are present on
any active node of the network; this assumption is not severe be-
cause they are implemented by mobile agents that can be installed
at run-time wherever they are needed. Monitoring agents observe
the application-level QoS currently obtained from their local host
to the next intermediate one. QoS flow specifications are ex-
pressed in terms of <receiving-host, bandwidth, delay,
loss> tuples [12]. AC agents keep track of the already accepted
streams that traverse their local node. They are in charge of an-
swering to new connection requests from QoSA agents; they
authenticate users requesting the flow and locally store informa-
tion for user accounting. QoSA agents interrogate ACs: if the
available resources are not enough for the required QoS, QoSAs
can coordinate and reduce their resource requirements by scaling
the stream. In particular, they are capable of dropping frames in
Motion JPEG streams and of reducing image resolution in
MPEG-2 ones [3, 13]. At the moment, we are testing our adapta-
tion infrastructure within the framework of the MOSAICO proj-
ect, by using DiVA (http://grid.grid.unina.it/ proj-
ects/diva/) as the service provider and the video client.

Finally, we are also working on the implementation of hard
QoS in SOMA. We are realizing hard AC agents that are able to
direct QoS requirements to the underlying network layer. At the
moment, we are implementing Java interfaces to access native
AAL5 services provided on ATM networks, with an approach that
is analogous to the one followed in the JQoS project [21]. Work
to integrate the RSVP protocol [33] into our AC agents is
planned, while waiting for network equipment that supports both
RSVP and the Java Virtual Machine.

5 RELATED WORK
Several research efforts are currently going on for supporting ter-
minal mobility with a network-level approach. They are based on

the introduction of network protocols that basically associate two
IP addresses to any mobile host. The first address represents the
current point of attachment of the mobile host to the network; the
other one reflects the home address of the mobile host, i.e. the
address of a care-of entity that maintains information about the
mobile host current position. The various proposed network-level
approaches differ in the placement of the home address function-
ality and in the protocol adopted to update the home address in-
formation [7]. The two most diffused proposals are Mobile IP,
that is backward compatible with IP, but cannot achieve optimal
routing (triangle routing problem [7]), and IPv6, that provides
both acceptable performance and excellent scalability, but whose
process of acceptance seems still long, as for any new protocol
[26].

With a different perspective, the European Telecommunication
Standards Institute is working on the standardization of the Uni-
versal Mobile Telecommunications System (UMTS) [25]. UMTS
proposes to support personal communication directly at the level
of the service infrastructure, by realizing the VHE concept. The
VHE permits a mobile user to retrieve her personalized environ-
ment also when accessing services from heterogeneous and differ-
ent terminals connected to heterogeneous and different networks.
The VHE is the basic component of the UMTS mobility middle-
ware, which hides the specific properties of the network from the
user, and the peculiarities of user and service providers from the
network.

Notwithstanding all potential advantages of adopting the MA
approach, there is not much work on the use of mobile agents to
support terminal and user mobility, probably due to the relative
novelty of the MA technology. The MA research mainly concen-
trates on solving the naming issues related to terminal mobility,
by providing laptops with several care-of points on the fixed net-
work. MASE provides a mobility gateway between fixed and mo-
bile networks [24]; Agent TCL implements the same functionality
via a docking station in charge of forwarding agents and messages
to the mobile terminal [23]; finally, the Discovery system permits
to notify all interested agents of the dis/connection of a mobile
terminal [27]. Other MA-based proposals for user mobility mainly
focus on the provision of VHE and directory services [28].

In the area of QoS adaptation, first results are emerging in the
realization of distributed infrastructures for supporting QoS
monitoring and dynamic service adaptability. The largest part of
the proposals comes from the active network area: several re-
search activities address the possibility to reserve resources on the
path between the service provider and its clients, and to dynami-
cally inject application-specific multicast protocols [11]; others
propose intermediate hosts that play the role of active filters to
dynamically adapt the exchanged information to the currently
available bandwidth, especially in the multimedia distribution
application domain [1, 2]. However, there is not a general agree-
ment on the fact that the network-level approach typical of active
networks is the most suitable for the provision of effective, pro-
grammable and adaptive service infrastructures [3]. Among the
proposals at the application-level, some work is also emerging in
the field of multi-agent systems, mainly focused on establishing
and maintaining as far as possible a user-defined level of QoS
[29]. The multi-agent approach to QoS adaptation is similar to
ours from many points of view, but multi-agent service compo-
nents suffer from a lower degree of flexibility, since they cannot
dynamically migrate and have to be present on the involved hosts
before the starting of service provision.

6 CONCLUDING REMARKS
The paper describes the adoption of mobile code technologies to
support user and terminal mobility, by describing the implemen-
tation of the two components of the SOMA mobility add-on mod-
ule, the tracing and discovery service and the QoS adaptation one.
The SOMA modular organization has permitted to design and
implement the mobility support module incrementally as a natural
extension of the already available SOMA infrastructure.

In addition, apart from feasibility, the first experience in the
system usage has exhibited efficient and scalable performance for
the implemented mechanisms to support mobility. In particular,
the tracing and discovery service has shown good scalability
while increasing the number of mobile entities involved, mainly
due to the delegation and distribution of registering duties over all
involved places, without forcing to maintain a centralized and
strictly consistent naming service. Also the first prototypes of
QoS adaptation components are demonstrating the viability of the
approach, at least if considered as separated basic mechanisms.
However, since the characteristics of the QoS adaptation compo-
nents are tightly connected to the nature of the interested service,
we expect to obtain significant feedback from the performance
results we are collecting in the implementation of a multimedia
distribution service capable of adapting to groups of heterogene-
ous QoS-requesting PDA receivers. This feedback will guide our
work of refinement of the already implemented QoSA agents.

Finally, thanks to its properties of modularity and
interoperability, the SOMA mobility support has demonstrated to
be an open and extensible mobility framework. We are currently
working on its further development to answer the specific needs
of different application areas for mobility, such as network and
systems management in case of nomadic administrators, and user-
asynchronous information retrieval in geographically distributed
heterogeneous repositories.

7 ACKNOWLEDGMENTS
Work carried out under the financial support of the Italian Minis-
tero dell’Università e della Ricerca Scientifica e Tecnologica
(MURST) in the framework of the Project “MOSAICO: Design
Methodologies and Tools of High Performance Systems for Dis-
tributed Applications”.

8 REFERENCES
[1] Amir, E., McCanne, S., and Zhang, H. An Application-level

Video Gateway. Proc. ACM Multimedia’95, Nov. 1995.
[2] Amir, E., McCanne, S., and Katz, R. Receiver-driven Band-

width Adaptation for Light-weight Sessions. Proc. ACM
Multimedia’97, Nov. 1997.

[3] Amir, E., McCanne, S., and Katz, R. An Active Service
Framework and its Application to Real-Time Multimedia
Transcoding. ACM SIGCOMM98, Vancouver, Sep. 1998.

[4] Bellavista, P., Corradi, A., and Stefanelli, C. A Secure and
Open Mobile Agent Programming Environment. Proc.
ISADS99, Tokyo, Japan, Mar. 1999.

[5] Bellavista, P., Corradi, A., and Stefanelli, C. An Open Se-
cure Mobile Agent Framework for Systems Management.
Journal of Network and Systems Management, Vol. 7, No. 3,
Sep. 1999.

[6] Bellavista, P., Corradi, A., Stefanelli, C., and Tarantino, F.
Mobile Agents for Web-based Systems Management. Inter-

net Research, MCB University Press, Vol. 9, No. 5, Nov.
1999.

[7] Bhagwat, P., Perkins, C., and Tripathi, S. Network Layer
Mobility: An Architecture and Survey. IEEE Personal Com-
munications, Vol. 3, No. 3, June 1996.

[8] Bolliger, J., and Gross, T. A Framework-Based Approach to
the Development of Network-Aware Applications. IEEE
Trans. Software Engineering, Vol. 24, No. 5, May 1998.

[9] Busse, I., Deffner, B., and Schulzrinne, H. Dynamic QoS
control of multimedia applications based on RTP. Computer
Communications, Vol. 19, No. 1, Jan. 1996.

[10] Chalmers, D., and Sloman, M. A Survey of Quality of Serv-
ice in Mobile Computing Environments. IEEE Communica-
tions Surveys, http://www.comsoc.org/pubs/surveys, 2nd Qrt.
1999.

[11] Chawathe, Y., Fink, S., McCanne, S., and Brewer, E. A
Proxy Architecture for Reliable Multicast in Heterogeneous
Environments. Proc. ACM Multimedia’98, Sep. 1998.

[12] Couloris, G., Dollimore, J., and Kindberg, T. Distributed
Systems: Concepts and Design. Addison-Wesley, 1994.

[13] Delgrossi, L., et al. Media Scaling in a Multimedia Commu-
nication System. ACM Multimedia Systems, Vol. 2, 1994.

[14] Entrust Technologies. Entrust. http://www.entrust.com/.
[15] Flanagan, D. Java Power Reference. O'Reilly & Associates,

March 1999.
[16] GMD FOKUS, and IBM Corp. Mobile Agent Facility

Specification. Joint Submission supported by Crystaliz Inc.,
General Magic Inc., the Open Group, OMG TC Document
orbos/97-10-05, ftp://ftp.omg.org/pub/docs/orbos/, 1998.

[17] IKV++ GmbH. Grasshopper. http://www.ikv.de/products/
grasshopper/.

[18] Inprise. VisiBroker for Java. http://www.borland.com/ visi-
broker.

[19] Institute for Applied Information Processing and Communi-
cations. IAIK JCE. http://jcewww.iaik.tu-graz.ac.at/.

[20] Ioannidis, J., Duchamp, D., and Maguire, G. IP-Based Pro-
tocols for Mobile Internetworking. ACM SIGCOMM Com-
puter Communication Review, Vol. 21, No. 4, Sep. 1991.

[21] Kassler, A., Christein, H., and Schulthess, P. A Generic API
for Quality of Service Networking based on Java. Proc.
ICC'99, Vancouver, Canada, June 1999.

[22] Kim, P.J., and Yoon, S.H. Mobile Agent System Architec-
ture for Mobile Computing by Using Proxy Technology. Int.
Conf. On Telecommunications, Greece, 1998.

[23] Kotz, D., et al. Agent TCL: Targeting the Needs of Mobile
Computers, IEEE Internet Computing, Vol. 1, No. 4, 1997.

[24] Kovacs, E., Rohrle, K., and Reich, M. Integrating Mobile
Agents into the Mobile Middleware. Proc. Mobile Agents
International Workshop (MA'98), Springer-Verlag, pp. 124-
135, Germany, 1998.

[25] Kreller, B., et al. UMTS: A Middleware Architecture and
Mobile API Approach. IEEE Personal Communications,
Vol. 5, No. 2, Apr. 1998.

[26] Kumar, A. Third Generation Personal Communication Sys-
tems. IEEE Int. Conf. on Personal Wireless Communica-
tions, pp. 313-318, New York, 1996.

[27] Lazar, S., Weerakoon, I., and Sidhu, D. A Scalable Location
Tracking and Message Delivery Scheme for Mobile Agents.
IEEE Int. Workshop on Enabling Technologies, 1998.

[28] Lipperts, S., and Park, A. An Agent-based Middleware: a
Solution for Terminal and User Mobility. Int. Journal of
Computer and Telecommunication Networking, 1999.

[29] Nait-Abdesselam, F., Agoulmine, N., and Kasiolas, A.
Agent-based Approach for QoS Adaptation in Distributed
Multimedia Applications over ATM. Int. Conf. on ATM,
June 1998.

[30] Object Management Group. CORBA/IIOP Rev 2.3. OMG
Document formal/98-12-01, http://www.omg.org/library/,
Dec. 1998.

[31] Oppliger, R. Security at the Internet Layer. IEEE Computer,
Vol. 31, No. 9, Sep. 1998.

[32] Perkins, C., and Harjono, H. Resource Discovery Protocol
for Mobile Computing. IFIP World Conf. on Mobile Com-
munications, pp. 219-236, London, 1996.

[33] Zhang, L., Deering, S., Estrin, D., Shenker, S., and Zappala,
D. RSVP: a new resource ReSerVation Protocol. IEEE Net-
work, Vol. 7, No. 5, Sep. 1993.

