
The Mobile Agent Technology to Support
and to Access Museum Information

Paolo Bellavista
Dip. Elettronica, Informatica e Sis-
temistica – Università di Bologna

Viale Risorgimento, 2
Bologna - Italy

Ph.: +39-051-2093087
pbellavista@deis.unibo.it

Antonio Corradi
Dip. Elettronica, Informatica e Sis-
temistica - Università di Bologna

Viale Risorgimento, 2
Bologna - Italy

Ph.: +39-051-2093083
acorradi@deis.unibo.it

Andrea Tomasi
Dip. Ingegneria dell'Informazione

Università di Pisa
Via Diotisalvi, 2

Pisa - Italy
Ph.: +39-050-568560
tomasi@iet.unipi.it

ABSTRACT
The global scenario put together by communication networks de-
termines new opportunities towards the realization of Internet-
based distributed services in many complex and composite appli-
cation areas, such as the access to museum information. Solution
complexity mainly stems from the heterogeneous representation
formats of data, their geographical distribution, the large number
of data sources involved, and the user requirements for personal
customization and optimization of the accessed services. The pa-
per claims that the realization of flexible museum information
access services require a middleware-level approach and the im-
plementation of a distributed support infrastructure. Within the
MOSAICO project, we have realized the VM (Virtual Museum)
framework on top of the SOMA (Secure and Open Mobile Agent)
programming environment. Mobile agents have been chosen for
their intrinsic properties of autonomy, asynchronicity, dynamicity
of distribution, and adaptability to available system resources. We
have designed the VM to accommodate different usage scenarios:
VM users can play different roles with different expertise levels;
they can ask the VM infrastructure for differently complex fea-
tures, from simple Web accessibility to user accounting for data
resource consumption, from data customization via user profiling
to automatic update of subscripted query results. The first proto-
type, apart from the feasibility of the approach, has already shown
the potential and the flexibility of the mobile agent infrastructure
to adapt to both different user requirements and different resource
availability.

Keywords
Virtual Museums, Internet Services, Mobile Agents, Heterogene-
ous Data Resources, Web Accessibility, Asynchronicity.

1 INTRODUCTION
The emerging scenario of global communications together with
the increasing diffusion of Internet-based services have given a
definite impulse to several application areas, by suggesting not
only new solution directions, but also new design frameworks for
the realization of distributed services. As the most notable exam-
ple, on the one hand, the Internet communication infrastructure
has made possible the cooperation of geographically distributed
users via interactive tools, such as the ones to support video con-
ference; on the other hand, the Internet is undergoing continuous
evolution to answer the raising user expectations for granting the
desired level of Quality of Service (QoS). At the same time, sev-
eral support areas are still unexplored and attract many proposals
and projects, and specific application fields are still in need of
attention, such as information retrieval, cooperative work and
electronic commerce.

The paper addresses the possibility of realizing a virtual mu-
seum by using the Internet as the network infrastructure to make
available heterogeneous museum information, from pictures, fig-
ures and maps to texts, audio and animated images. The virtuality
attribute stems from the impossibility of putting physically to-
gether the whole information and from the opportunity of creating
a service infrastructure only via the communication layer. In fact,
the considered application field for our virtual museum is repre-
sented by the collection of information related to artistic and his-
torical objects, as manufactured goods, tissues, paints and docu-
ments, which public and private organizations in Italy have re-
cently started to organize. The disseminated sites involved are
public and private museums, archives, libraries, either open to
visitors or only accessible to researchers. They are characterized
by diversity and complexity, as well in heterogeneous data con-
tent as in system organization, because they have operated in a
completely independent way, without the definition of common
standards for neither storing the inventory data and the digital rep-
resentations of the cultural patrimony, nor providing catalogues
and indexing structures at the local sites or at the global level.

The paper defines a framework called Virtual Museum* (VM),
and presents its design and implementation on the top of a mobile
agent programming environment called SOMA (Secure and Open
Mobile Agent) [2]. The VM provides the accessibility to the

* The VM framework is available at http://www-
lia.deis.unibo.it/Research/SOMA/VM.shtml.

above collection of digital representations of artistic and historic
artifacts, independently of the physical location of the informa-
tion. Data representations span from simple inventory forms to
object 2D/3D visualization, and may even collect Web links to
more detailed descriptions, as specialized publications or audio-
visual comments. The VM solution offers to users a Web-enabled
and simple interface to access the museum information. The in-
terface permits different degrees of expertise to different user ty-
pologies, thus covering the main real application scenarios, from
simple query services for generic visitors, to more protected and
customizable policies for supporting the activity of expert users
and managers. The VM provides mechanisms and tools to
authenticate users, to associate them with their proper role, and to
account their inquiry and processing activity according to the
policies adopted by the data providers [16]. Differentiated views
and browsing possibilities on the linked museum information can
be obtained on the basis of the different user roles and system
policies.

The paper claims that the flexibility required in the museum
application area (e.g. for integrating heterogeneous and legacy
data servers in an open framework, for customizing query results
depending on user role and dynamically changing profile infor-
mation, and for adapting the resource consumption of query serv-
ices to the currently available QoS) calls for the realization of a
distributed support infrastructure. This infrastructure significantly
takes advantage of an implementation based on mobile agents: the
Mobile Agent (MA) programming paradigm stresses properties
that are particularly suitable for the VM application area, such as
the MA capacity of independent behavior and execution, of dy-
namic migration and exploration of open global environments, of
run-time adaptation to the hosting sites and their resource avail-
ability [9]. In addition, to overcome data heterogeneity, the VM
framework integrates MA with the more traditional client/server
model of interaction, by exploiting widely diffused database ac-
cess technologies, such as JDBC and ODBC [22, 20], and stan-
dardized solutions for distributed object infrastructures such as
CORBA [21].

The paper is structured as follows. Section 2 describes the VM
framework requirements and briefly proposes guidelines for solu-
tion. Section 3 underlines the properties of mobile agents that
claim for the adoption of the MA technology to implement the
VM infrastructure. Section 4 presents the architecture of the
SOMA programming environment, while Section 5 focuses on the
detailed description of the VM components and of their duties in
different usage scenarios. In particular, the paper shows that dif-
ferent levels of functionality and complexity are possible de-
pending on user roles and expertise. Directions of evolution,
which currently guide our implementation work, and concluding
remarks follow.

2 VIRTUAL MUSEUM REQUIREMENTS
AND GUIDELINES FOR SOLUTION

The VM framework should be able to connect and collect the
whole information related to artistic and historical artifacts lo-
cated at many different geographically distributed sites. Any arti-
fact belonging to the VM should be described by a dynamically
determined inventory form, which contains all the related infor-
mation available, allows the visualization of the artifact and es-

tablishes links to further known documentation about it. Digital
representations of artifacts include:
• simple inventory data, with coded or descriptive fields related

to physical location, conservation state, time of manufacturing,
material and technique used, name of the author, ...;

• photo images;
• 3D coded representation for virtual exhibition;
• miscellaneous descriptive documentation, such as archive

documents, historic notes, expert publications and audiovisual
material, with/out hypermedia links.

The scenario is complicated by the fact that the inventory form
fields may also contain imprecise or uncertain values because of
incomplete classification and attribution work, sometimes due to
controversy between experts. In addition, the documentation re-
lated to one artifact is usually spread to many different sites and,
in most cases, neither the document links are present into the in-
ventory form, nor a link chain exists to reach all of them. Public
organizations devoted to the maintenance of artistic and historic
patrimony have recently started to consider the need for stan-
dardization, but the definition and acceptance of a standard for
museum data content, and for user/management functionality to
be provided by VM services is still long to be achieved.

Moreover, the VM framework should answer very different
user requirements. VM users can be roughly divided into three
classes, with different authorization rights and processing needs:
managers, experts and generic visitors. Managers usually belong
to the organization that host the VM data: they are aware of object
locality; they need full query services to support patrimony man-
agement, exhibition arrangement, digital publishing and some
form of electronic commerce. Expert users need to investigate
extensively and completely the information related to specified
artifacts, usually with no limitation on the VM resource con-
sumption, possibly discovering new data and establishing new
relationships between objects; the result of expert work may be
new material to be added to the VM repository. Generic visitors
are normally interested in examining a single piece, or in on-line
navigation from artifact to artifact to collect the available even
incomplete information. The VM should allow managers, experts
and visitors to see different data views, with different degrees of
authorization (maximum for the manager, minimum for the visi-
tor). The accounting policy should be bounded by any local re-
sponsible site but, in most cases, the access to the information is
free.

The largest part of the existing distributed services in the appli-
cation area of museum information mainly follows the Cli-
ent/Server (C/S) programming paradigm. The C/S approach has
demonstrated to be a satisfying solution to realize distributed que-
ries that operate on completely known and static information, by
applying the traditional techniques of distributed databases and
exploiting standard access interfaces such as JDBC and ODBC
[22, 20]. In this context, CORBA can play a crucial role to allow
and simplify the integration with legacy data systems, which are
very frequent in the museum information area and rarely support
diffused access interfaces. The traditional C/S model of interac-
tion is also a suitable programming paradigm to provide browsing
functionality: users should be able to navigate the VM from site to
site, following existing links via standard Web browser solutions.
In this case, Java applets [7] can significantly extend the interac-
tion model by dynamically moving code to the client host that can
actively take part in service provision.

However, other application-specific issues (e.g. dynamicity -
extending service functionality, moving data servers, modifying
security policies, at run-time; asynchronicity - pre-fetching the
results of a query before the connection of the interested user;
adaptability - tailoring data to user profile requirements and cur-
rent resource availability) stress the necessity of integrated solu-
tion frameworks that achieve a degree of flexibility higher than
the one available in frameworks built upon the traditional C/S
model. We claim that emerging programming paradigms [9], such
as mobile agents, which focus on code mobility to emphasize
flexibility and dynamicity in service provision, have to be consid-
ered an interesting enabling technology for VM services, not in
alternative but as a necessary extension to the C/S solution.

Our VM infrastructure has the additional implementation con-
straint to continue to exploit some software components (e.g., in-
terfaces) belonging to a previous C/S application, well-known by
involved museum operators who used it at local sites to manage
inventory information of artistic objects. In particular, Figure 1
shows respectively the query form that permits to employ diction-
aries and lists of terms, and the inventory form possibly sent as a
query result (in Italian). The required “back-compatibility” of the
interfaces forces to consider VM solutions capable of integrating
existing and heterogeneous components and of simplifying the
data exchange between them.

Figure 1. The dictionary-based query form and the inventory
form of the VM.

3 MOBILE AGENT INFRASTRUCTURES
FOR MUSEUM INFORMATION

The intrinsic characteristics of the information retrieval in the
above presented case of geographically distributed heterogeneous
museum information require to design a distributed infrastructure
that also supports Web accessibility. It is recognized that the de-
sign, deployment and management of large-scale and complex
distributed services in global environments such as the Internet
calls for solutions at the middleware level [5, 11, 18]. In this
context, services can be implemented in terms of distributed coor-
dinated components, where any component can concentrate on the
specific issues related to service provision because of the possi-
bility of exploiting the general-purpose facilities provided by the
middleware infrastructure. In our case, the needed infrastructure
has not only to provide Web accessibility to a large amount of
highly autonomous, heterogeneous and unstructured distributed
information with differentiated views depending on user roles,
but, because of the multimedia nature of the interesting data, also
to optimize network-bandwidth consumption by exploiting local
interrogations on information sources and by realizing the distrib-
uted caching of general interest query results.

We claim that the MA technology is particularly suitable for
the realization of this infrastructure because mobile agents are
autonomous entities with a large capacity of coordination, able to
dynamically move where the needed resources are located, and
able to operate and adapt to the current system conditions in a
completely asynchronous way with regard to their launching user
[9]. As a consequence of the adoption of the MA paradigm, a VM
infrastructure based on mobile agents can achieve the following
properties:
• distribution of service control; VM services are realized in

terms of cooperating mobile agents, that are placed where they
are needed to exploit locality in the management and control of
information resources. In addition, agents can autonomously
decide to move dynamically to follow possible movements of
both users and available resources;

• enhanced accessibility; agent mobility makes possible to dy-
namically migrate service components where needed. In par-
ticular, mobile agents can also implement proprietary clients
that are capable of dynamically moving to run-time determined
access points. In that way, they enhance service accessibility
even in case of the compulsory use of proprietary non-standard
access interfaces;

• customizability; mobile agents provide an effective mechanism
to support service customization in response to dynamically
specified user requirements. Dedicated agents can be in charge
of collecting profile information about the user desiderata, of
migrating profile information depending on the user current ac-
cess point, and of adapting consequently VM information
flows to users (data filtering, multimedia format conversion,
…);

• adaptability; agents make possible to adapt services to the cur-
rent system situation (location-aware MA-based services [17]).
For instance, monitoring agents can exchange information and
move themselves to obtain a global view of the system state.
This knowledge is the shared basis to decide corrective opera-
tions that can modify the perceived QoS (re-negotiation, addi-
tional communication channels, …), according to a strategy

either required by the VM user in her user profile or decided by
VM administrators depending on the user role;

• security; the MA paradigm introduces not only specific security
mechanisms and policies to deal with the execution of possibly
untrusted hosted code, but also integrates widespread and stan-
dard solutions for secure service provision at the application
level. For instance, agent operations on information and system
resources are controlled depending on the permissions recog-
nized to their authenticated principals and associated with their
proper role [16]. Based on these security mechanisms, any op-
eration can be permitted, registered and accounted to the re-
questing user depending on her role in the VM infrastructure;

• interoperability; agents work in an open global scenario and
should interoperate with existing components, from legacy
systems to existing and standard Internet services. Many MA
systems achieve interoperability via compliance with diffused
standards in the distributed object area, such as CORBA, in the
MA-specific research area, such as MASIF (the OMG standard
for interoperability between heterogeneous MA platforms [10])
and FIPA (the standard specification proposal for agent com-
munication languages [8]) [13, 2], and in access interfaces for
distributed information systems, such as ODBC and JDBC [20,
22].

Several research activities have shown the suitability of the MA
technology to provide the above properties [23, 26]. As it is natu-
ral whenever a new technology is in its infancy, the largest part of
the research efforts has been directed to the implementation of
basic mobility mechanisms and MA platforms. Notwithstanding a
general agreement on the opportunity of mobile agents to support
access, filtering and retrieval of Web distributed information, only
a few projects have already reached interesting results in this ap-
plication domain. They mainly address the specific issues of re-
ducing the communication cost by exploiting the possibility of
mobile agents to filter distributed information locally to data serv-
ers [25]. Others stress the development of frameworks in the Web
databases application area to assess and validate the MA approach
in terms of achievable performance [24]. To our knowledge, no
specific work has experimented yet the MA approach in the par-
ticular arena of virtual museum information.

4 The SOMA Architecture
The main guideline of the SOMA design has been to implement a
modular and extensible Distributed Processing Environment
(DPE) [14] that permits the rapid prototyping and deployment of
distributed services. A particular feature of the SOMA DPE is its
openness: SOMA has been designed and implemented to permit
its full integration with other DPEs, whether MA-based or not, via
CORBA compliance. In that way, SOMA service developers can
realize service components that are not tied to use only the SOMA
facilities. Service components may choose the most suitable im-
plementation of the needed functionality, provided by whichever
DPE, depending on the requirements of the specific application
domain. SOMA has already demonstrated its suitability for the
development of applications in several fields, e.g., user and termi-
nal mobility, multimedia distribution, network and systems man-
agement [3, 4]. Usability, accessibility and manageability are the
main attractive features of the SOMA framework, that facilitates
the use of the environment to first-time users, but can also assist
skilled developers in the deployment of complex distributed
services.

The SOMA facilities are structured on two levels (Upper Layer
Facilities – ULF - and Lower Layer Facilities – LLF; see Figure
2) and offer the fundamental functionality for the realization of
any distributed application in open, global and untrusted envi-
ronments such as the Internet. The SOMA DPE LLF include:
• Agent Communication Facility (ACF); the ACF provides

mechanisms and tools to simplify coordination and communi-
cation between possibly mobile entities. Agents in the same
execution node interact by means of shared objects, such as
blackboards and tuple spaces; local access to resources is
regulated by agents controlling authorization and enforcing the
corresponding security policy. Agents that need to share re-
sources with other remote agents are forced to migrate; outside
the scope of the node, in fact, agents can only coordinate via
message passing, and messages are eventually delivered even in
case of agent migration.

• Agent Naming Facility (ANF); the ANF permits to identify
dynamically any entity in the system, i.e. (possibly mobile)
agents, users, terminals and resources. The ANF is imple-
mented in terms of coordinated agents, and can interoperate
with several naming standards, e.g. DNS-, CORBA-, and
LDAP-compliant naming services [1, 12, 21]. The ANF is
based on the association of a globally unique identifier with
any SOMA public entity, making possible its dynamic tracing.
Frequently moving entities have fixed care-of agents that keep
updated the entity current position information; entities with
lower mobility degree are traced by a more traditional and hier-
archical register service.

• Agent Migration Facility (AMF); the AMF gives service de-
signers the possibility to simply reallocate network resources
and service components at run-time. Entities capable of reallo-
cation are represented by agents, that can move in the network
either via SOMA native migration methods or via standard
specifications, such as CORBA Internet Inter-ORB Protocol
[21] and MASIF [10].

Other DPE CORBA DPE

SOMA DPE LLF

Com
m

un
ica

tio
n

(A

CF)

Nam
in

g
 (

ANF)

M
ig

ra
tio

n
 (

AM
F)

Network
Components

VM
Services

SOMA
Architecture

Distributed
Data Caching

One-Time
Queries

Subscribed
Queries

VM
Infrastructure

SOMA DPE ULF

QoS
(A

QoS
F)

In
ter

op
er

ab
ili

ty

 (
AIF

)

Sec
ur

ity
 (

ASF)

VM Infrastructure Agents

Acc
es

s
(A

A)

In
ter

fa
ce

(IA
)

Rep
os

ito
ry

(R
A)

Sub
sc

rip
tio

n
(S

A)Que
ry

(Q
A)

Use
r P

ro
fil

e
(U

PA)

Figure 2. The SOMA architecture for VM services.

The SOMA ULF makes extensive use of the functionality pro-
vided by the lower layer of facilities. On this basis, they provide:
• Agent Interoperability Facility (AIF); the AIF permits interop-

eration among different resources and service components, by
closely considering conformance with the CORBA and MASIF
standards. For instance, the AIF simplifies the integration of
legacy data resources (independently of the programming style

of their implementation) in the VM infrastructure via encapsu-
lation with CORBA interfaces.

• Agent Security Facility (ASF); the ASF ensures the protection
to any SOMA entity with a wide range of mechanisms and
tools for authentication, authorization, privacy, integrity, and
fine-grained access control to resources and service compo-
nents depending on user recognized roles. The security frame-
work is based on standard security providers for cryptographic
algorithms (IAIK [15]) and diffused certificate infrastructures
(Entrust PKI [6]).

• Agent QoS Facility (AQoSF); the AQoSF is in charge of ap-
plication-level QoS monitoring and adaptation functionality.
The monitoring module has the duty of observing the interest-
ing properties of single or aggregated resources, e.g., lo-
cal/domain disk free space and currently available network
bandwidth. It exploits platform-dependent mechanisms to ob-
tain the monitored indicators (e.g. the psapi.dll on Windows
NT and pstat on Unix). It invokes this functionality provided
by the hosting operating system via the Java Native Interface
[7]. Any authorized SOMA component can access the moni-
tored properties to decide a strategy for adapting to the current
environment conditions. In addition, the monitored QoS pa-
rameters serves in evaluating and registering user resource con-
sumption towards accountability. It is possible to associate
different costs to different QoS data resources, and to account
users not only depending on the size of the received data but
also on the resource consumption to perform the requested que-
ries.

Mobile agents are typically location-aware entities [17], and
SOMA provides a set of locality abstractions suitable for de-
scribing any kind of internetworking scenario. Any node in the
system owns at least one place that constitutes the agent execution
environment. Several places can be grouped into a domain ab-
straction that corresponds to the network locality. In each domain,
a default place hosts a gateway to perform inter-domain function-
ality.

Further details about the SOMA programming framework and
its implementation are presented elsewhere [2, 3] and are out of
the scope of this paper that concentrates on describing the distrib-
uted infrastructure for the VM support, which is built on top of
these two general facility layers as depicted in Figure 2.

5 THE VM INFRASTRUCTURE
We have designed and implemented a specific MA-based infra-
structure to support the provision of VM services. The complexity
of the VM infrastructure is completely hidden to its users who
operate via friendly interfaces, either provided by a specific type
of mobile agents (the Access Agents, see the following section) or
integrated within standard Web pages. The physical localization
of data resources is generally transparent; the only knowledge re-
quired to users who have no managing duties is about the logical
names of resources. In addition, users can specify profile infor-
mation at their first registration, and can modify it at any time.
Profile data are maintained by User Profile Agents (see next sec-
tion) and can also be replicated in several nodes of the VM infra-
structure for increased reliability and efficiency. User profile pref-
erences are the key mechanism to permit user subscriptions and to
inform the infrastructure of information pre-fetch and cache op-
portunity.

In the following, we first present several types of MA-based
components that implement the distributed VM infrastructure.
Then, we briefly describe a concrete usage scenario that shows
how the VM organizes museum information when dealing with
different levels of complexity: when the functionality require-
ments of the scenario increase, the VM infrastructure is capable of
offering increasingly complex and powerful features.

5.1 VM Components
The main guidelines in the implementation of the VM infrastruc-
ture are:
• to overcome the heterogeneity problems due to the intrinsic

open nature of the considered data. To realize a completely
open framework, we have followed the principles of data re-
source encapsulation, and we have pursued the compliance
with the most accepted data access standards (JDBC, ODBC,
and CORBA access in case of legacy data resources [20-22]);

• to improve the efficiency and the effectiveness by the realiza-
tion of a persistent information infrastructure that is geographi-
cally distributed over the Web and that accommodates user-
subscripted queries, i.e. queries that one user is permanently
interested in. The VM infrastructure can maintain distributed
cached results for subscripted queries and can automatically
update this information at predefined intervals, as specified in
the user profile information. This can significantly reduce the
on-line connection time needed by the user since she has only
to receive the already retrieved query results.

The VM infrastructure results from the interaction of several MA-
based components. Their specification, design and realization has
been simple and rapid because of the modular design of SOMA
and its implementation in the Java language [7]. In addition, the
object-oriented approach makes simple successive refinements of
VM components via sub-classing and allows their reuse in other
projects and application areas. The main categories of mobile
agents that compose the VM infrastructure are access, interface,
repository, query, user profile and subscription agents.

The Access Agent (AA) is responsible for accepting queries
from authorized users. We introduce different types of AA tai-
lored to the recognized different user roles: manager, expert and
normal visitor. Normal visitors can only submit simple queries
and explore the provided results with no possibility of specifying
a required QoS level on reception. Experts can also subscribe for
query repetition and are accounted on the basis of both the VM
resource consumption and the obtained QoS. In addition to the
functionality available to experts, managers can modify the VM
data under their responsibility, e.g., to add dynamically a link to a
new publication about a particular artifact. AAs are in charge of
authenticating the connected user and associating her with the
proper role, by exploiting the underlying SOMA security facility.
Then, they collect the requested query, decide how to answer the
query by coordinating a group of query agents, control the work
progress up to its completion, and finally yield back the results to
the user according to the corresponding user profile information.
The visualization of the query results, which possibly consist of a
set of multimedia data encoded in different representation for-
mats, currently exploits both the integration of the existing legacy
interfaces shown in Section 2 and standard available visualization
tools, e.g., Web browsers with RealPlayer plug-in, that are sup-
posed to be already installed at clients. However, this is not a
limiting constraint because SOMA provides specialized agents to
automate dynamic software installations [3]. The default system

configuration provides one AA for any client host, but the infra-
structure permits to dynamically create new AAs and to migrate
them wherever the traffic of service requests justify a multiplicity
of agents to overcome possible congestion and bottlenecks. We
are testing several AA distribution policies: we are evaluating so-
lutions where one AA can handle from 1 to j different queries,
from 1 to k different users (AA-per-query/user); we are also
measuring the performance under different traffic conditions for a
pool of n AAs already running to receive user queries on any cli-
ent host, if compared with the instantiation of a new AA at any
new user query. Any of the aforementioned AA comes in two fla-
vors depending on the fact it implements or not the Web-enabled
CORBA server interface (see Figure 3): it can either run on
SOMA places active on client hosts, or reside on a Web server
and be accessed via a CORBA-client applet integrated in a stan-
dard Web page.

The Interface Agent (IA) is the stationary entity that encapsu-
lates information resources by abstracting from their specific im-
plementation details. It represents the key component to overcome
heterogeneity in data resources, and provides a uniform interface
to the other components of the VM infrastructure. Its implemen-
tation is different depending on the particular characteristics of
the encapsulated data resource. We have already implemented two
specialized IAs for data resources that own JDBC and ODBC ac-
cess interfaces (see Figure 3). We are currently working on the
encapsulation of legacy data components via CORBA interfaces
and on their integration in the VM by exploiting the SOMA
interoperability facility. In addition, the IA enforces the security
policies for data resource access: it receives user authentication
information from the AA, and registers resource consumption for
accountability. The IA is always placed locally to the data re-
source it encapsulates. As a consequence, apart from its initial
dynamic code distribution, the IA is mainly a stationary agent;
however, it can move to follow the possible migration of the en-
capsulated data resource (e.g., the transfer of a database on a new
server).

The Repository Agent (RA) is the stationary agent in charge of
organizing the data resource name service for the whole system.
Typically, we have one RA in each SOMA domain. After receiv-
ing a query, any AA interrogates its RA to discover the physical
locations of the data resources involved. The RA resolves the
logical names of the resources into the corresponding physical
locations of the IAs. The information maintained by a single RA
does not cover all the data resource names in the system. RAs are
hierarchically organized: one RA that is not able to respond to a
name resolution request simply forwards it to its higher-level RA
in the hierarchy, and waits for an answer in a way that is com-
pletely analogous to the resolution of logical IP names in the DNS
[1]. In addition, in case of replicated data resources, the RA
chooses the IA among a group of equivalent ones according to
locality and load-balancing evaluations. At the moment, VM
agents interrogate RAs via a SOMA proprietary directory proto-
col. We are extending this implementation to increase standardi-
zation and portability of the repository service without affecting
its performance; in particular, we are terminating the integration
of an additional interface for our RAs compliant with LDAP [12].

The Query Agent (QA) is the mobile entity that really performs
user-specified queries on data resources. After one user inputs a
query, expressed in a subset of the SQL language, the AA parses
it and interrogates the RA in its domain to discover which data
resources are interested by the interrogation. At that point, on the

basis of the query structure and of data localization, the AA de-
cides the number of QAs to generate. Any query is always per-
formed by a group of coordinated QAs that exploit the communi-
cation facility provided by the SOMA platform. We have already
implemented several QA refinements (see Figure 3). A master QA
is the query-responsible agent that coordinates the other agents
(slave QAs), puts together the overall result and yields it back to
the interested user. Slave QAs, instead, calculate the results of
independent partitions of the original query; slave QAs are nor-
mally instantiated and distributed one for each SOMA domain to
be explored. Finally, in case of join operations, slave join QAs
have the opportunity to delegate sub-queries to new slave QAs,
generated on-the-fly, and to wait for merging the corresponding
sub-results.

ODBC
Resource

Agent

JDBC
Resource

Agent

Legacy
Resource

Agent

Interface
Agent (IA)

Slave
QA

Master
QA

Join
QA

Query
Agent (QA)

Sub-classing

Visitor
AA

Expert
AA

Manager
AA

Interface inheritanceInterface

Class

Access
Agent (AA)

Web-enabled CORBA
Server Interface

Figure 3. Class and interface relationships for the AA, IA and
QA components.

The User Profile Agent (UPA) is the mobile agent responsible for
maintaining the preferences of usual customers, i.e. experts and
managers. It collects information about the characteristics of the
most commonly used terminals (e.g., graphic resolution), the
usual attachment points to the network, and the expert subscripted
queries with the related general preferences (e.g., to discard an-
imations from query results if they overcome predefined thresh-
olds). The UPA is generally located at the user home, i.e. the
place of the user first registration, but it is able to migrate to fol-
low possible user movements (personal mobility). The distributed
location of UPAs makes possible a good decentralization of the
load of user profiling. The limitation due to the fact that any rec-
ognized user has one personal active UPA in the VM infrastruc-
ture is not severe because UPA agents normally do not waste
system resources, but simply wait in an idle state until they are
waked up by the reconnection of the corresponding user.

The Subscription Agent (SA) automatically maintains and up-
dates query results that are still interesting for VM users, because
of subscription or sharing potential. Distributed SAs are the cru-
cial component to provide the distributed caching functionality
within the VM infrastructure. At the moment, we have realized a
first simple SA prototype: any expert-subscripted query has a
dedicated SA that automatically re-executes the needed interrro-
gations at intervals specified in the subscription; when a user con-
nects to the VM infrastructure, her AA directly interrogates the
corresponding SA and simply collects the already retrieved re-
sults. We are interested in extending the SA functionality accord-
ingly to two different directions: the former is to automatically
trigger query re-execution when involved IAs notify the VM of a
a significant data updating; the latter is to accommodate and op-
timize the case of different users interested in overlapping query
results. For instance, the distributed replication of query results in
the VM can significantly improve access performance and reduce
overall network traffic in case of large volume data objects (e.g.,

high-quality raster images and animations) when the results are
supposed to interest a multiplicity of independent VM users
working in the same network locality.

5.2 The VM Infrastructure in a Possible Us-
age Scenario

The flexibility of the VM infrastructure also impacts on the possi-
bility to provide differently complex levels of functionality to us-
ers with different degrees of expertise and different expectations
from the service. While a normal visitor is likely to perform sim-
ple queries, an expert is a usual museum customer and pays for
several pending subscriptions.

When a normal visitor accesses the VM infrastructure, the AA
authenticates her via standard certificates, requests her profile in-
formation to the corresponding UPA at the user home, and inter-
rogates the domain RA to know the location of the data resources
involved in the query. In the case of a simple query on the data
resources of a single domain, the AA creates one QA and sends it
for the whole search. The QA collects the query results and comes
back to its launching AA, which communicates the results to the
corresponding user.

The effectiveness of the VM framework becomes more and
more evident when subscripted queries complicate the usage sce-
nario and make possible to exploit distributed caching (see Figure
4). When one expert user requests a new query subscription, her
AA creates a dedicated SA in the local domain. It is the SA that
asks the local RA for data resource name resolution, and that cre-
ates, coordinates and collects the query results from a pool of QAs
(normally one in any interested SOMA domain). In addition, the
SA is able to command the repetition of the query, triggered by
the corresponding UPA at the time intervals specified. The ac-
counting information on data resource usage is registered at any
involved IA, and the overall cost of the subscripted query is
maintained by the SA. Any time the expert user of a subscripted
query accesses the VM service, the AA directly connects her to
the corresponding SA to immediately download the updated query
results with no need for the user to wait for the query execution.

Place2

Domain B

Domain A

Place1

Domain C

Place2

Place1

Place1
(User Home)

AA

UPA

Default
Place

Default
Place

Default
Place

SAIA

J
D
B
C

RA

RA

RA

IA

J
D
B
C

QA

IA

C
O
R
B
A

IA

J
D
B
C IA

O
D
B
C

QA

QA

QA

Figure 4. The VM agents in a possible usage scenario.

6 FUTURE WORK
The first experiences in deploying museum information services
within the VM framework have shown not only the feasibility of

the approach but also its effectiveness: the modular design of both
SOMA and VM components have allowed to simply extend and
refine the implemented services depending on the feedback from
the test-bed experience; the first concrete tests of the infrastruc-
ture exhibit significant performance improvements, especially
when exploiting the distributed caching infrastructure and when
dealing with geographically distributed data servers intercon-
nected by networks that are highly heterogeneous in their band-
width characteristics.

At the moment, we have extensively tested the VM prototype
only on a small subset of the museum information (3 Web sites
with about 100000 images and inventory forms) involved in the
MOSAICO project (about 300 data servers with ten million ob-
jects will be included in the VM before the end of next year). We
have now started the integration of the complete test-bed of data
servers and we expect other interesting feedback, especially from
the point of view of scalability.

In addition, we are working on the extension of the VM infra-
structure to accommodate complete mobility of users, terminals
and data resources: user mobility is already supported by the cur-
rent VM prototype via the UPAs; we are implementing the dis-
tributed support for the run-time dis/connection of terminals
from/to different points of attachment to the network with no need
to suspend service provision; data resource mobility is under in-
vestigation, and we are collecting VM performance under differ-
ent network traffic conditions to measure which cases justify the
migration of data servers (and of corresponding IAs), e.g., when
some databases residing on domain A are accessed very fre-
quently by users of domain B.

Moreover, the current VM prototype still needs implementation
work to extend its management functionality and browsing facili-
ties: on the one hand, the management operations are currently
realized in a traditional client/server way by exchanging com-
mands between the AA and the IAs and exploiting the proprietary
functions of the data servers involved, while also management can
significantly take advantage of an MA-based implementation; on
the other hand, the VM is under extension to allow QAs autono-
mous migration to follow dynamically determined Web links.

Finally, we are evaluating the possibility of introducing a uni-
form data representation that is flexible enough for the open na-
ture of the involved data. Data representation languages that are
emerging in archive and museum Web catalogues, such as XML
[19], and interoperable standard efforts for agent communication,
such as FIPA [8], are under consideration.

7 ACKNOWLEDGMENTS
Work carried out under the financial support of the Italian Minis-
tero dell’Università e della Ricerca Scientifica e Tecnologica
(MURST) in the framework of the Project “MOSAICO: Design
Methodologies and Tools of High Performance Systems for Dis-
tributed Applications”.

8 REFERENCES
[1] Albitz, P., and Liu, C. DNS and BIND, 3rd Edition. O'Reilly

& Associates, Sep. 1998.
[2] Bellavista, P., Corradi, A., and Stefanelli, C. A Secure and

Open Mobile Agent Programming Environment. ISADS99,
Tokyo, Japan, Mar. 1999.

[3] Bellavista, P., Corradi, A., and Stefanelli, C. An Open Se-
cure Mobile Agent Framework for Systems Management.
Journal of Network and Systems Management, Vol. 7, No. 3,
Sep. 1999.

[4] Bellavista, P., Corradi, A., Stefanelli, C., and Tarantino, F.
Mobile Agents for Web-based Systems Management. Inter-
net Research, MCB University Press, Vol. 9, No. 5, Nov.
1999.

[5] Bolliger, J., and Gross, T. A Framework-Based Approach to
the Development of Network-Aware Applications. IEEE
Trans. Software Engineering, Vol. 24, No. 5, May 1998.

[6] Entrust Technologies. Entrust. http://www.entrust.com/.
[7] Flanagan, D. Java Power Reference. O’Reilly & Associates,

March 1999.
[8] Foundation for Intelligent Physical Agents.

http://www.fipa.org/.
[9] Fuggetta, A., Picco, G.P., Vigna, G. Understanding Code

Mobility. IEEE Trans. Software Engineering, Vol. 24, No. 5,
May 1998.

[10] GMD FOKUS, and IBM Corp. Mobile Agent Facility
Specification. Joint Submission supported by Crystaliz Inc.,
General Magic Inc., the Open Group, OMG TC Document
orbos/97-10-05, ftp://ftp.omg.org/pub/docs/orbos/, 1998.

[11] Gribble, S.D., and Brewer, E.A., System Design Issues for
Internet Middleware Services: Deductions from a Large Cli-
ent Trace. USENIX Symp. on Internet Technologies and
Systems, USA, 1997.

[12] Howes, T., and Smith, M. LDAP: Programming Directory -
Enabled Applications with Lightweight Directory Access
Protocol. Macmillan Technical Publishing, Jan. 1997.

[13] IKV++ GmbH. Grasshopper, http://www.ikv.de/products/
grasshopper/.

[14] Inoue, Y., Cuha, D., and Berndt, H. The TINA Consortium.
IEEE Communications, Vol. 36, No. 10, Sep. 1998.

[15] Institute for Applied Information Processing and Communi-
cations. IAIK JCE. http://jcewww.iaik.tu-graz.ac.at/.

[16] Lupu, E.C., and Sloman, M. Towards A Role-based Frame-
work for Distributed Systems Management. Journal of Net-
work and Systems Management, Vol. 5, No. 1, Mar. 1997.

[17] Maass, H. Location-aware Mobile Applications Based on
Directory Services. Mobile Networks and Applications, Vol.
3, No. 2, pp.157-173, 1998.

[18] McFall, C. An Object Infrastructure for Internet Middleware.
IEEE Internet Computing, Vol. 2, No. 2, pp. 46-51, Mar.
1998.

[19] Michard, A., Pham-Dac, G. Descriptions of Collections and
Encyclopaedias on the Web using XML. Archives and Mu-
seum Informatics, Vol. 12, 1998.

[20] North, K., Understanding ODBC 3.0 Standards and OLE
DB. DBMS, Vol. 9, No. 4, Apr. 1996.

[21] Object Management Group. CORBA/IIOP Rev 2.3. OMG
Document formal/98-12-01, http://www.omg.org/library/,
Dec. 1998.

[22] Quan, X., Ling, F., and Hongjun, L. Supporting Web-based
Database Application Development. 6th IEEE Int. Conf. on
Database Systems for Advanced Applications, USA, 1999.

[23] Rothermel, K., and Hohl, F. (eds.). Mobile Agents. 2nd Int.
Workshop (MA’98), Springer Verlag, Germany, Sep. 1998.

[24] Samaras, G., Dikaiakos, M., Spyrou, C., and Liverdos, A.
Mobile Agent Platforms for Web-Databases: A Qualitative
and Quantitative Assessment.

[25] Theilmann, W., and Rothermel, K. Disseminating Mobile
Agents for Distributed Information Filtering. 1st IEEE Int.
Symp. on Agent Systems and Applications, USA, Oct. 1999.

[26] Vitek, J., and Tschudin, C. (eds.). Mobile Object Systems:
Towards the Programmable Internet. Springer Verlag, Ber-
lin, 1997.

