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Abstract. Programming the network infrastructure significantly enhances its
flexibility and favors fast deployment of new protocols, but also introduces
serious security risks. It is crucial to protect the whole distributed infrastructure,
especially its availability in case of denial-of-service attacks. A security
framework for programmable networks may provide security solutions at
different levels of abstraction. Active networks mainly propose a network-layer
approach, by extending the packet format to include security information.
Mobile code technologies tend to provide security tools at the application layer
to integrate with standard external infrastructures, such as public key ones. The
paper describes the security frameworks of several programmable network
proposals and points out the dis/advantages related to the adopted abstraction
level. This comparison suggests to consider an integrated security framework
capable of choosing the service-specific balance between application-layer
flexibility and network efficiency. To this purpose, the paper presents the
architecture of a Programmable Network Component (PNC) that integrates
security solutions at different layers and that has been implemented by using a
mobile agent programming environment.

1 Introduction

 The convergence of telecommunication systems and the Internet proposes a global
shared network infrastructure with new value-added services for all participants (final
users, service providers, and network operators) [1]. The management of the
infrastructure is increasingly complex, because of its global dimension, of network
resources heterogeneity, of the request for dynamicity in offered services, and of
increasing user requirements and expectations. To satisfy these requirements, the
traditional end-to-end model of interaction in the network is evolving toward an
alternative scenario where the network infrastructure can play an active execution



role. In particular, in Programmable Networks (PN), interconnection components can
perform computations on transmitted data and can be programmed by dynamically
injecting service/user-specific code [2]. Several approaches and technologies have
been proposed for the realization of PN, and can be roughly classified on the basis of
the principal abstraction layer: the term Active Networks (AN) usually identify the
approaches that achieve programmability by working mainly at the network layer,
whereas we consider Mobile Agents as an enabling technology that achieves
programmability at the application layer [2].

Many research groups have recently claimed PN suitability for a wide spectrum of
applications [3] [2]. PN can help in fast prototyping and deploying new network-layer
protocols (e.g., for congestion control and topology-aware reliable multicast). Other
proposals employ network programmability to deal with application-specific
requirements, as in Web caching and in dynamic adaptation of multimedia streaming
to currently available resources [4] [2]. All application scenarios require that PN
environments provide adequate answers to the security issues raised by network
programmability. The main security concern is to achieve a full protection of the
shared network infrastructure against illegal accesses and denial-of-service attacks.

The paper discusses some different security solutions in the PN research area
depending on their specific level of abstraction. Some approaches in the AN area
suggest the adoption of security mechanisms at the network layer. They usually tend
to standardize security data by directly enclosing them into packets [5] [6]. Other
approaches propose solutions at a higher level of abstraction, to exploit the flexibility
and extensibility typical of the application layer [3]. On the one hand, network-layer
approaches focus on efficiency but often lack flexibility and dynamicity. On the other
hand, application-layer solutions permit to integrate with existing infrastructures for
rapid prototyping and deployment, but do not often achieve performance.

The paper presents the architecture of a Programmable Network Component
(PNC), designed to fast prototype and deploy protocols/services in the global,
heterogeneous and untrusted Internet environment. In particular, the paper focuses on
security aspects and proposes the integration of network- and application-layer
solutions. An integrated approach to security permits service designers and system
managers to satisfy different security requirements, from high dynamicity in the
modification of security data to strict respect of timing constraints, from
interoperability with existing infrastructures to scalability, crucial for handling a large
number of users. We claim that only a solution that integrates mechanisms and tools
at both layers can achieve the efficiency of the network layer together with the
flexibility of application-layer solutions. The proposed PNC architecture has been
implemented by using a Mobile Agent (MA) framework called Secure and Open
Mobile Agent (SOMA) [7]. The SOMA platform exploits the Java technology for
agent serialization, dynamic class loading, networking support and for the ubiquitous
availability of the Java virtual machine.



2 Security Issues in Programmable Networks

Network programmability raises significant concerns from the security point of view.
Possible threats and attacks to PN are far more critical than in passive network
infrastructures. In fact, the possibility of injecting code to modify the behavior of
network components can compromise not only the correct operations of one node but
also the availability of the whole network. To face these threats, the design of a
general PN environment should grant an adequate level of security since its first
phases, and security cannot be considered an add-on to insert only a posteriori.

 The security framework of a PN environment should be based on a thorough
security model to protect all involved entities, both network infrastructure (the set of
all programmable nodes) and active packets (the single pieces of code injected into
the network). More in detail, it is necessary to protect:

• the network resources against malicious behavior of active packets, to maintain the
availability of the shared network infrastructure;

• the active packets against attacks from malicious network nodes, to grant the
correctness of the service provided by active packets over the whole network path
between service users and providers;

• the active packets when transiting in the network, to detect possible modification
and to prevent malicious sniffing;

• the active packets from interfering with each other, to avoid the possibility of
combined attacks performed by colluding active packets.

The PN security framework should answer the fundamental issues of authentication,
authorization, secrecy, and integrity and should provide the requested models of trust.
Any trust model defines who or what in the system is considered trusted, in what
way, and to what extent [8].   

Authentication permits to associate active packets with responsible principals,
where principals represent the subjects that request the operations, e.g., an individual,
a corporation, a service provider, and a network administrator. In practice, any
principal can be associated with personal public/private keys and digitally signs
packets to ensure the correct identification of their responsible party. The
authentication process safely verifies the correspondence between principal identities
and keys. Most authentication solutions delegate key lifecycle management to Public
Key Infrastructures (PKIs) [9]. Authentication also ascertains the paternity of active
packets by associating them with either their principal or their responsible role. A role
models a collection of rights and duties that characterizes a particular position within
an organization. A role-based model facilitates the administration and management of
a large number of principals, by simplifying the dynamic handling of principals and
permissions [3].

Authorization grants active packets the permissions to operate on the resources of
the network infrastructure. Several authorization models are possible: the most
common is the Access Control Lists (ACL) model that describes and enforces the
access rights of principals/roles on a resource. More generalized models, such as the



Trust Management model, can provide a unified framework for the specification and
interpretation of security policies in distributed systems [10].

In addition, the security infrastructure should prevent the possibility of modifying
and inspecting active packet contents (integrity and secrecy issues) while migrating
over untrusted networks and executing in malicious nodes. When considering the
protection of an active packet in transit over an end-to-end communication channel,
traditional cryptographic techniques can establish secure channels to ensure both
integrity and secrecy between end-to-end network nodes. This approach is not
sufficient in the PN area where intermediate hosts have to verify incoming active
packets before their execution. This requires a hop-by-hop control that implies the
establishment of a trust relationship between all involved intermediate nodes [2].

In PN environments another issue concerns the possibility to control the behavior
of incoming active packets while in execution. Several PN infrastructures confine the
execution of different active packets into isolated environments to prevent reciprocal
interference, and to avoid possible collusion against the hosting network node and
provide monitoring services to exclude excessive resource consumption that can lead
to possible denial of service attacks [11].

A general security framework for PN environments should provide strategies and
mechanisms of solution for all the above issues. The same infrastructure can offer
different solution implementations to make available different qualities of security
service. In any case, some general properties have to be considered to deal with
global and heterogeneous distributed systems such as PN.

The basic requirement to satisfy is the durability of design efforts. Whenever a
system has been completely deployed, its lifetime strictly depends on its capacity of
following the evolving needs. In other words, the security model should be flexible
enough to accommodate any suitable variation and should extend easily to embody
reasonable additions to components. These extensibility and flexibility properties can
be achieved along synergic guidelines, preventive solutions and design technologies
that favor the addition/substitution of system modules. For instance, the association
of one principal with several roles can help in changing the principal permissions to
adapt to different and evolving environments. The same is for the versioning of
security tools, which can coexist in different versions within the same system at the
same time, if the design maintains sufficient information to distinguish between the
different installations.

Another requirement is dynamicity. PN are global systems and the availability of
the network infrastructure is a necessary condition. For this reason, all security
solutions have to maintain system effectiveness while incorporating variations. For
instance, while a programmable router is receiving a new protocol version that affects
the handling of specific streams, not only routing operations should go on, but also no
packets (either active or normal) should be lost.

A final but fundamental consideration for the implementation of a PN security
infrastructure, which influences all design choices, is to meet an adequate level of
performance. PN call for security solutions capable of meeting cost requirements and
of achieving a suitable trade-off between the necessary security degree and the usage
of time and resources.



3  Security Solutions in Programmable Networks

The aim of this section is not to provide a general survey on the state-of-the-art of the
PN research, but to organize and give some technical insights about the projects that
have specifically worked on solutions at different levels of abstraction for the PN
security issues.

According to this guideline, we first present two architectures that base their
security solutions on the insertion of security data directly within transmitted packets.
They are the Secure Active Network Environment (SANE), employed in the
SwitchWare project at the University of Pennsylvania [12] and the Smart Packets
(SP) proposal of the BBN [13]. Other PN approaches tend to rely on security
mechanisms and tools that are more at the application layer: Section 3.2 presents
some trends emerging in these PN architectures and gives some insights of the Agent-
Based Security Architecture for the Active Network Infrastructure (ABSANI)
developed at the GMD Fokus [3].

3.1  Security Data within PN Packets

Several research efforts have addressed the issue of defining new formats for network
packets to include security-relevant information [5] [6]. These activities propose a
structure of packets that permits efficient security processing at packet
forwarding/reception, on the basis of the security data contained in packet headers.

The most recognized work toward the standardization of the PN packet format is
the Active Network Encapsulation Protocol (ANEP) [5] that proposes a common base
to increase interoperability among different PN projects. The main purpose of ANEP
is to fast identify the environment in which to evaluate incoming active packets by
examining the content of specific fields in packet headers. ANEP packets can be
transmitted directly over the link layer, or they can be encapsulated within an existing
network protocol such as IP.

The current security support in ANEP is limited to the provision of one-way
authentication with X.509 and SPKI self-signed certificates [9]. All the network-layer
security approaches in the PN area have proposed specific extensions to the ANEP
header to provide and manage security issues in a more general way.

3.1.1 Secure Active Network Environment
SANE provides a layered security architecture to ensure the correct behavior of
incoming active packets. At the lower layers, SANE guarantees that its PN
components start in an expected state by exploiting a secure bootstrap mechanism,
called AEGIS [12]. The higher layers are responsible for active packet
authentication/encryption, for the provision of a restricted execution environment
based on a type-safe dedicated language for active packets [3], and for the safe
partitioning of separate name spaces to the different node services.

SANE extends the ANEP format to support packet authentication and secrecy. The
approach is similar to the IPsec protocol and to its provided security associations [6].



The SANE packet includes a Security Parameter Index (SPI) to identify uniquely the
corresponding security association. Figure 1 shows the SANE authentication header
that provides a first basic mechanism to detect  replay attacks and that ensures packet
origin and data integrity.

SANE employs a secret-key scheme that requires a preliminary application-layer
negotiation, called Key Establishment Protocol (KEP), to determine security
associations between all involved PN nodes and between the PN infrastructure and its
users. At bootstrap, the PN nodes verify the accessible network topology and perform
KEP steps with adjacent nodes. After two PN parties have achieved mutual
authentication and agreed on the utilization of specified secret keys and cryptographic
algorithms, they can start to exchange authenticated and encrypted active packets.
Any PN node stores negotiated parameters locally until the corresponding security
association is broken. In particular, active packets can follow a path that involves a
large number of PN nodes, such as in multiple-hop PN protocols, if all involved PN
nodes have mutually established security associations.

SANE exploits secret-key-based security for the sake of performance and limits
the public-key usage only during the security association phase. In addition, the
information required to perform security checks is maintained locally at the active
nodes: when receiving an active packet, the SANE node locally retrieves the security
parameters indexed by the SPI to complete the verification of the authenticator
integrity.

The SANE authorization support exchanges information about user permissions
over authenticated and encrypted channels, established by using ANEP-compliant
packets. In particular, KeyNote-based credentials [10] specify the policies to rule the
operations of active packets on system resources.

Packet Headers

Replay Detection Counter

Authenticators

Packet Payload

SPI

Authentication Data

Other Authenticators

...

Fig. 1. The SANE packet format

3.1.2 Smart Packets
SPs have been proposed in a DARPA project that focuses on the PN application to
network management. SP distinguishes two different modes, end-to-end and hop-by–
hop. In the end-to-end mode, only SP endpoints can execute SP protocols, while in



the hop-by-hop mode the source, the destination and all SP intermediates actively
participate to deploy the active protocol.

To concentrate on the adopted security solutions, SP authenticates the origin of
active packets by checking their integrity and by providing a confined and controlled
execution environment. A dedicated specialized language, Sprocket, limits the
operations permitted to SP active packets.

SP are encapsulated within ANEP via the definition of a specific SP header (basic
authenticator), shown in Figure 2. The authenticator permits both to identify the
origin of the packet and to verify the integrity of its non-mutable portions, by
exploiting public-key algorithms. SP designers extended the ANEP header to
accommodate the hop-by-hop mode, which models the case of intermediate SP nodes
that operate and transform the active packet contents. To avoid the need of an
integrity check at any hop, SP carry an authenticator that omits the payload and the
packet length field in the ANEP header.

Source Identifier

Integrity Checksum

Ver

Destination Identifier

Sequence NumberType Context

SP Payload

Flags

Packet Length

Type ID

Header Length

Ver

Smart
Packet

ANEP
Header

Fig. 2. The SmartPacket format

At the reception of one SP packet, its origin and the integrity of its non-mutable parts
are verified. Any SP node checks the received authenticators on the basis of user
certificates, either included in the SP payload or requested to an external application-
layer PKI. There is no limit to the number of certificates that can be included within
an SP packet, obviously apart from the maximum packet size. X.509 standard
certificates directly enclosed into SP packets reduce the space left for the code, but
may significantly improve the efficiency of security controls. The SP performance, in
fact, is tightly connected to the local availability of needed certificates at the
intermediate SP nodes.

If the packet origin and integrity verification process fails, the packet is discarded;
otherwise, the packet enters the authorization process that employs ACL mechanisms
to control active packet execution.



3.2  Security Solutions at the Application Layer

Most PN proposals implement security solutions completely at the application level,
without affecting the content of the transmitted active packets. Main motivations are
the integration with mechanisms, tools and infrastructures already developed for
securing distributed services, the fast prototyping of security solutions via software
simulations of network components, and the simplified support for flexible and
programmable security in PN.

All these PN proposals have chosen Java as the implementation technology. This
choice is motivated not only by Java portability over heterogeneous platforms, but
also by its security-related properties, such as safeness (strong typing, lack of
pointers, automatic memory management) and availability of security mechanisms
both at the language level and at the run-time support one [14].

For instance, the Intel framework for PN (Phoenix) exploits Java authorization and
access control to rule the access to active node resources by mobile agents that
implement congestion analysis and intrusion detection active protocols [15]. The Java
authorization mechanisms are extended with proprietary monitoring and management
functions that permit to change agent priority levels and to dynamically reject
resource requests depending on current resource load. Another example is the Lucent
PN prototype for distributed network management where legacy routers are enhanced
with a Java-based active engine that runs on a general-purpose workstation [16]. The
Lucent system exploits the standard Java SecurityManager to avoid possible
interference between different flows of active packets and to control the associated
session environments at run-time, by preventing the access to native methods and to
some protected parts of the file system.

We give in the following some details of the ABSANI architecture because it is an
MA-based PN system specifically developed with the goal of providing a flexible,
open and interoperable security framework. ABSANI is Java-based, and its
developers are skeptical about the introduction of dedicated programming languages
for the PN area [2] [3] [13].

ABSANI completely isolates the execution of injected agents into abstraction
localities called places to prevent any interference among executing mobile agents. In
particular, several isolated places can be concurrently present on the same ABSANI
node. A resource manager component acts as a mediator in the interactions between
agents and node resources. The resource manager can also provide the basic
mechanism for auditing: it can collect the data generated by network activities to
identify the users responsible for security breakouts. In addition, it provides control
and management operations to change the overall system behavior, e.g., the
modification of local security policies is only allowed from a dedicated place
responsible for node management.

Agent authentication is based on credentials that permit the association of agents
with responsible principals and the control of agent actions according to the local
security policies. Credentials can vary to include standard X.509 and SPKI
certificates, the hash of packet contents, the list of its signers and their signatures, etc.
The granted permissions result from the intersection of two policies, at the place and



at the node level. Policies can be administered via application-layer management
tools; abstractions such as groups and roles for principals can further enhance policy
manageability [3].

3.3 Comparing the Approaches: Security at Which Layer?

The above discussion has shown that various frameworks can address security at
different levels of abstraction, by exploiting features typical of either the network
layer or the application one. The awareness of the advantages deriving from the
security approaches at different layers favors a more knowledgeable choice in the
trade-off between security requirements and expected performance. The correct
choice impacts crucially on the acceptance of deployed PN protocols and can widen
the range of application areas of PN secure services.

Other areas have already faced a similar debate about security provision at
different layers. The request for Web secure services has motivated the introduction
of application-layer secure protocols, such as Secure HTTP and SSL. Their extensive
usage has stressed the need for more efficient solutions that can be provided by
working at the network layer as in the IPsec proposal. However, the discussion about
at which layer security should be provided is still open [6].

The main advantage of network-layer solutions for PN is efficiency in exchanging
authenticated and encrypted packets. The encapsulation of security information
within packet headers permits to perform security checks at the network layer by
saving packet security processing to upper layer protocols. However, some security
issues can only be dealt with at higher levels of abstraction, e.g., the management of
authentication and authorization services. For instance, SANE can achieve the
performance typical of network-layer solutions, after the security associations have
been established between all nodes in the active packet path; but this preliminary
negotiation phase works at the application layer.

The application-layer approach simplifies the support to system durability because
solutions at this level can provide flexibility, extensibility and dynamicity to the
management of security services. For example, a policy/role management service
demands solutions to simplify administrator operations of adding and changing
policies/roles. The embedding of this functionality directly in network-layer packets
could imply continuous extension of PN protocols and formats, to accommodate
evolving requirements and facilities, and this would clash with the need of keeping
the packet size to the minimum. In addition, application-layer solutions simplify the
implementation of an open and interoperable security architecture, capable of
integrating with diffused standard security frameworks that exploit state-of-the-art
technologies, as shown in [3].

The above considerations motivate the design of security frameworks that integrate
the two layers, by taking advantage of both the efficiency deriving from embedded
protocols at the network layer and the expressive capacity stemming from solutions
and tools at the application layer. PN administrators and users can exploit the
frameworks to find their specific balance between performance and flexibility,



depending on particular service requirements and the level of trust of the target
environment of operations.

4 The Programmable Network Component

We have developed a framework for the fast prototyping and deployment of
protocols and services that is based on a Programmable Network Component (PNC)
to be installed in the nodes of the network infrastructure. The PNC supports active
protocols and services expressed in terms of mobile agents that employ the migration
and communication services of the SOMA programming environment [7]. The PNC
is built on top of the JVM to exploit the Java inherent support for dynamic class-
loading, platform independence and security.

Mobile agents are used to distribute the behavior of active nodes out-of-band and
to support the dynamic extension of active node functions [2]. In addition, MAs
permit the easy installation of service- and user-specific protocols that can be injected
dynamically into the network. Our PNC provides a secure environment for agent-
based active protocol execution, with a wide range of security solutions at different
layers. The main guideline is to combine the efficiency of basic security features
implemented at the network layer together with the flexibility and extensibility of
more advanced security tools and infrastructures provided at the application one.

The PNC is designed to support differentiated protocols that can coexist in the
same node without reciprocal interference. For this purpose, the PNC provides
isolated environments for agent execution called places (see Figure 3). A component
called dispatcher is present in any PNC node to forward incoming packets to the
agent responsible of their handling depending on the specific security and
management policies of the PNC node. The PNC support ensures a protected binding
between loaded agents and local node resources. The binding is implemented via a
proxy-based mechanism where each node resource is encapsulated and available via a
proxy object. Agents refer initially only to these proxies with no possibility to access
resources directly. In particular, any resource proxy exports a Resource interface
with the getEnvironment() method that agents have to call to access the managed
resources. The proxy accepts requests for its resources and determines whether to
allow the agent access on the basis of the node security policy. For instance, returned
references can depend on the role dynamically associated with the agent principal. To
improve efficiency, agents are forced to pass via the proxy only once at first retrieval
of resource references, whereas afterwards they can maintain these references locally.
Any PNC node takes advantage of a set of basic security services that include:

• the secure transport service that provides integrity and secrecy for the transport of
agents between PNC nodes. At agent arrival at any PNC node, security checks are
performed to ascertain if integrity and secrecy have been preserved during agent
transport;

• the authentication service that accepts/discards agents on the basis of their
corresponding user identities and roles. Cryptographic operations are performed to



verify the X.509 identity and role certificates, possibly locally to the PNC. If the
verification succeeds, agents can be dispatched to the correct place, otherwise
forwarded to a severely restricted default environment that support anonymous
agent execution;

• the safe checking service that exploits the Java class verifier to ensure agent class
file conformance to the JVM specification. Static checks avoid stack
over/underflow, and dynamic controls are provided to grant correctness of
symbolic references. Agents not satisfying the safety property are discarded;

• the authorization service that extends the Java security architecture to permit the
utilization of a role-based access control model. Security policies rule the access of
agents to all local PNC resources, both shared and private ones, that are available
in the execution place. Authorization checks are performed by resource proxies
when the getEnvironment() method is called. The access control policies
define the set of permitted references for the requesting agents.

It is worth noting that some security checks, such as the integrity, secrecy, and
authentication ones, can be implemented at the network-layer to improve efficiency.
However, even these security services require to integrate with application-layer
solutions in order to be exploited in large scale networks.

Shared
Resources

Isolated
Execution
Environments

Place1 Place2 PlaceN

Dispatcher
Shared

Node State

Prot2Prot1 ProtN

Other
Resources

Private
Resources

Private
Resources

Private
Resources

Fig. 3. PNC isolated environments for agent execution

4.1 Network-layer Solutions

We have designed the PNC security architecture to achieve the needed degree of
extensibility to permit the addition of new security features without modifying or
recompiling existing security components. To this purpose, the PNC framework
includes several modules that provide similar security services, but with different
properties in terms of flexibility and performance. This permits to configure and
install the most proper solution depending on application-specific requirements.



The modularity of the approach applies to the implementation of the authentication
and the secure transport services, which are provided by either the ANEP module or
the IPsec one (see Figure 4). The ANEP-compliant active packets exploit the TypeID
and Option fields to indicate respectively the identifier of the involved MA-based
protocol and the authenticator data, in the same way as in SANE. By now, there are
no hardware implementation of ANEP-compliant routers and the possible
performance improvements cannot apply to real service protocols. We are also
completing the implementation of the alternative IPsec module that adopts the IPsec
network-layer protocol to provide secure transport and authentication services. We
are currently working on the IPsec module implementation on a dedicated IPSec-
compliant hardware component, the TimeStep VPN Gateway [17].

Both the ANEP module and the IPsec one can be configured to use standard public
key cryptography mechanisms and X.509 certificates that can be distributed, revoked
and suspended by an external application-layer PKI [9]. The integration of both
modules with a PKI can further simplify the modularity and interchangeability of the
implementations.

4.2 Application-layer Solutions

Advanced application-layer security services are implemented on top of the basic
security services to improve the manageability, scalability, flexibility, and dynamicity
of the basic security services (see Figure 4).

The certificate management service is used to enhance the manageability and
scalability of the secure transport and authentication services by supporting
keys/certificates distribution, revocation and suspension. The service is offered by the
Entrust PKI [18] that permits to provide transparent and automatic key management
in application-specific components written in different programming languages, e.g.
Java. The certificate service is implemented to realize a local cache of most recently
used X.509 certificates and certificate revocation lists at any PNC node to improve
the efficiency of integrity, secrecy and authentication checks. When security
operations require certificates that are not present in the local cache, the needed
certificates are requested to the Entrust PKI together with their corresponding
revocation/suspension status. It is worth noting that in a realistic scenario different
PNC administrators may wish to adopt different PKI solutions depending on their
peculiar management and security policies. For this reason, we are also examining the
interoperability issues that stem from the integration of our PNC with different and
heterogeneous PKIs. In addition, all the basic security services can benefit from the
policy/role management service. This service increases the usability of access control
policies when dealing with a large-scale PNC network infrastructure that provides
services to a potentially large number of users. The service adopts the Ponder policy
language [19] to model the actions that agents are permitted/forbidden to perform on
the PNC node.

In addition, it provides the required support to map Ponder policy specifications
into platform-dependent policies that can be interpreted and enforced at run-time in



the system. In particular, the service includes a policy/role graphical user interface for
the specification, editing, and administration of policies/roles and a policy repository,
local to the PNC node, for the storage and retrieval of policy/role information. The
policy/role management service is designed to support dynamic roles/policies
modifications with no need to suspend PNC operations. Administrators can modify
the security policies of the managed resources and the changes are propagated
automatically to involved PNC nodes, and consequently to the resource proxies.

Authorization
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Secure
Transport
Service

Authentication
Service

Safe Checking
Service

Monitoring
Service

Management
Service Policies Roles Certificates

ANEP

IPsec

Entrust
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Infrastructure

Secure
Transport
Service

Authentication
Service
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Fig. 4. The PNC architecture of security services

The PNC node also provides an on-line monitoring service that permits system
managers to control and prevent any agent excess in resource consumption, by
making available the usage of PNC local resources. The monitoring service can be
configured to visualize the utilization of the local processor, the quantity of used
memory and the generated network traffic, both for any Java thread and any other
process outside the Java Virtual Machine. To reduce the overhead effect of on-line
monitoring on PNC performance, our monitoring service can be dynamically tuned to
observe only a subset of executing threads, possibly with different observation
frequencies. For instance, to face denial-of-service attacks, we collect the CPU
utilization percentage only for the agent threads responsible of active packet
execution; when one thread exceeds a threshold, the PNC alerts the system
administrator and begins to collect and visualize all possible monitoring information
about the specified thread, with a possibly increased frequency.

The collected monitoring information is obtained in two different ways. On the
one hand, we exploit platform-dependent functionality (Solaris/Linux /proc

directory, Microsoft WindowsNT system registries), integrated in the PNC via the
Java Native Interface [20]. On the other hand, to permit fine-grained monitoring
visibility of all Java threads, we use the novel Java Virtual Machine Profiler Interface.
The JVMPI is proposed by Sun within the latest version of the Java platform, to
notify Java applications of several kinds of events that can take place in the virtual



machine [21]. The result is a common monitoring API that abstracts from the PNC
hosting platform (Solaris, WindowsNT and Linux are currently supported) and that is
mapped transparently to the correct platform-dependent dynamic libraries at run-time.

5 Final Remarks

In the global environment proposed by the Internet, many application areas have
experienced an exponential growth in the number of interested developers and users.
There are several services and protocols that could add new impulse to this scenario,
but their deployment is currently limited due to the long and difficult standardization
process. The application of PN technologies to the Internet infrastructure could boost
even more its importance, because PN could accelerate the deployment of new
service-specific protocols that can be installed at run-time.

However, the PN potential has not been exploited completely because of the lack
of general agreement on comprehensive and accepted security frameworks. Only the
definition of general security standards, or, at least, of more precise security
recommendations, can produce the momentum needed to grant durability to the PN
design efforts.

The paper has considered how several PN proposals have faced the issues
connected with security. The paper does not give a complete classification but should
help security service designers in better understanding the properties offered at
different layers. The aim is to drive the design of a PN security framework offering a
wide range of solutions and tools to compose the contrasting requirements of
flexibility and efficiency.

As a final consideration, PN emphasize programmability for network components
but also call for programmability of the security framework itself, to fully adapt to
different environments, to diverse user expectations, and to various requirements in
performance.
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