
Lightweight Code Mobility for Proxy-based
Service Rebinding in MANET

Paolo Bellavista, Antonio Corradi, Eugenio Magistretti
Dip. Elettronica, Informatica e Sistemistica - Università di Bologna

Viale Risorgimento, 2 - 40136 Bologna - ITALY
{pbellavista, acorradi, emagistretti}@deis.unibo.it

Abstract— Advances in device miniaturization and wireless
technologies are stimulating Mobile Ad-hoc NETworks
(MANET) where mobile nodes can autonomously organize in a
peer-to-peer mode, without requiring a statically deployed net-
work infrastructure. Because of node mobility, the set of service
components that MANET clients have at one-hop distance
changes often during service provisioning. That continuous
change in locally accessible services significantly increases the
complexity of designing and implementing effective MANET ap-
plications. The paper claims the need of dynamic middleware
supports for MANET, not only to address routing/configuration
issues, but also to automate the re-qualification of service bind-
ings at provision time. It presents COMMAND, a flexible mid-
dleware solution, based on code mobility, for transparent service
rebinding in MANET. COMMAND exploits dynamically elected
proxies that act as intermediaries to decouple mobile clients and
needed service components. In particular, the paper focuses on
how COMMAND implements a lightweight MANET-specific so-
lution for effective code distribution to deploy the needed proxy
behavior only when and where required. Finally, the paper shows
the implementation of a COMMAND-based forum distributed
application, together with its related performance, to point out
how the proposed middleware can help service development in
MANET.

Keywords: MANET; Middleware; Service Reconfiguration;
Code Mobility; Proxy

I. INTRODUCTION
The necessity of rapid, flexible and temporary connections

between possibly heterogeneous mobile devices has recently
motivated intense research activities in the Mobile Ad-hoc
NETworks (MANET) area [1]. MANET nodes can move at
any time, even during service provisioning, while a client node
has started to access distributed server components in the
MANET but not terminated yet. Node mobility and consequent
variations in network topology force continuous network reor-
ganizations. Due to the temporary and spontaneous nature of
MANET connections, it is almost impossible to rely on a stati-
cally deployed network support infrastructure. MANET nodes
tend to be autonomous entities that cannot guarantee a durable
and continuous presence in cooperating and performing multi-
hop information delivery [2].

The high dynamicity of MANET makes the design and im-
plementation of distributed applications significantly more

complex than in traditional wired environments. In particular,
most development challenges stem from two key MANET
properties: lack of a support infrastructure and high mobility of
terminals. On the one hand, several infrastructure-based solu-
tions, effective in wired networks, hardly suit MANET envi-
ronments. For instance, in MANET it is unlikely to assume that
a configuration server is continuously available to provide the
needed network configuration data, such as temporarily as-
signed IP addresses in DHCP. As a consequence, MANET re-
quire the design and implementation of completely distributed
ad-hoc protocols for dynamic host configuration. On the other
hand, node mobility may cause frequent disconnections of
MANET clients and needed distributed resources, e.g., due to
the loss of direct connectivity when either resources or clients
move out of the reciprocal wireless coverage area and none can
perform multi-hop routing.

MANET force to reconsider even well established distrib-
uted interaction models, such as the client/server one. For in-
stance, clients cannot assume that, once discovered and bound
to a suitable server component, their established connections
could persist for the whole service session. In other words, the
application logic should continuously verify and update the list
of reachable service components, and manage the possible dis-
connections by performing rebinding operations accordingly.
Let us note that, even when mutual node movements do not
cause interruption of established connections, it could be rele-
vant to dynamically re-qualify the bindings to service compo-
nents to favor optimal exploitation of local (at single-hop dis-
tance) resources. For instance, when two reachable and func-
tionally equivalent servers are visible, it is preferable to rebind
to the currently local one in place of the other at multiple-hop
distance from the client.

All the above motivations have led us to design and imple-
ment a highly dynamic and flexible middleware, called COde
Mobility Middleware for MANET Dynamic Rebinding
(COMMAND), with the main goal of supporting automatic
service rebinding in MANET. COMMAND not only provides
MANET nodes with configuration support, but also facilitates
the development of MANET applications by automatically
managing connection rebinding when clients and servers lose
direct visibility, i.e., when they become more than one-hop dis-
tant, during service provisioning. The ultimate goal is to allow
application developers to concentrate only on application logic
and to design MANET distributed services as in wired de-

ployment scenarios with stable client/server connections. In
addition, COMMAND decides to operate at the application
level to simplify the achievement of high flexibility and full
portability over different MANET implementations.

COMMAND is based on the primary idea of middleware
proxies that act as decoupling components between client and
server endpoints to support their binding/rebinding independ-
ently of mutual movements during service delivery. Due to in-
trinsic lack of infrastructure and high dynamicity of MANET,
the choice of which nodes act as proxies is completely decen-
tralized via an ad-hoc election protocol. The assumption of
static availability of all needed middleware proxy components
at all nodes, e.g., distributed search module or cach-
ing/filtering/transcoding functions in advanced service scenar-
ios, is typically unfeasible for resource-constrained MANET
devices. Thus, we claim that it is crucial to have MANET mid-
dleware supports capable of distributing the needed code at
runtime, in a completely decentralized way, by considering the
peculiarities of the MANET environments to optimize the
adopted mobile code mechanisms. The paper focuses on a
lightweight MANET-specific solution for code distribution to
deploy the needed proxy behavior only when and where re-
quired at service provision time.

The paper is structured as follows. Section 2 presents the
design guidelines and the architecture of our middleware for
automatic service rebinding in MANET, while Section 3 is de-
voted specifically on the description of the COMMAND Code
Mobility facility. Section 4 reports the experience made with
the implementation of a COMMAND-based forum case study,
which exemplifies how our middleware significantly facilitates
the development of MANET applications. Section 5 reports
related performance results. Conclusions and on-going research
activities end the paper.

II. COMMAND: A PROXY-BASED MIDDLEWARE FOR
AUTOMATIC REBINDING

MANET enable highly dynamic service scenarios charac-
terized by the potential mobility of all participants. This chal-
lenging environment suggests to identify localities consisting
of MANET nodes in direct wireless visibility and to provide
distributed services by favoring local interaction. For the sake
of presentation, let us consider the case of a server that belongs
to one MANET locality and moves to another locality while
running active service sessions. The server change of locality
would either require the dynamic organization of routing
chains of forwarding nodes to maintain the client-server con-
nectivity or produce the abrupt interruption of the service ses-
sions if MANET nodes in the locality do not support multiple-
hop routing. To enable session continuity notwithstanding
server movements, any client should be capable of reacting to
server disconnection, understanding whether it is possible to
rebind to an equivalent server in its locality, and performing a
multi-hop inter-locality search for (and routing to) the moved
server. Let us note that similar considerations apply to the case
of client movements with regards to their needed and unmoved
server, and to the combination of both movements.

We claim unviable a solution where any MANET client
node should own all the above capabilities. First of all,

MANET nodes are heterogeneous and often very resource-
constrained: it is impossible to statically equip any node with
all the functions possibly needed at runtime to allow session
continuity. Secondly, charging application developers with the
burden of implementing the session continuity support signifi-
cantly complicates the realization of MANET applications,
thus slowing down the emergence of this novel service market.
Moreover, in the usual case of a high client/server ratio, the
concurrent search for the moved server by several MANET cli-
ents in a locality is likely to produce local network congestion,
by degrading other service sessions active in the same locality.

The above comments have motivated the design and im-
plementation of the COMMAND middleware for transparent
service rebinding in MANET. COMMAND automatically per-
forms the needed rebinding in response to the change of local-
ity of clients and servers when their movements cause the loss
of their direct visibility, without the need of having multiple-
hop routing solutions statically pre-installed on any MANET
node. COMMAND exploits code mobility (as better detailed in
the following), has been implemented in Java, and works over
MANET nodes hosting the Java 2 Micro/Standard Edition with
either IEEE 802.11b (in the ad-hoc configuration mode) or
Bluetooth. COMMAND operates at the application level to fa-
cilitate its portability over different lower-level MANET solu-
tions, e.g., over different node platforms and heterogeneous
wireless connectivity technologies. The application-level
choice is recognized suitable to provide flexible solutions to
crucial mobility issues, such as application-specific information
dissemination and caching, security, and interoperability be-
cause middleware supports can benefit from all the standard
mechanisms, solutions and tools available at this abstraction
layer [3].

The primary guideline of COMMAND is the introduction
of middleware proxies to act as decoupling components be-
tween client and server endpoints. Proxies are in charge of per-
forming the management operations to seamlessly rebind
moved clients and servers, and of working as inter-locality
forwarders for service requests/replies. One COMMAND
proxy executes in each MANET locality, serves all local clients
and maintains client/server connections transparently and per-
sistently available for all the duration of the service session.

The proxy adoption can induce several advantages. First,
only the MANET nodes hosting proxies have to own the know-
how needed to find entities outside their locality and to re-
establish the client/server sessions. This differentiation of node
roles meets the heterogeneous (and often very limited) capa-
bilities typical of MANET hosts. Secondly, the adoption of a
locality proxy can facilitate the enforcement of local manage-
ment policies, e.g., to restrict the maximum number of concur-
rent inter-locality active sessions in order to prevent an exces-
sive degradation of the locally available bandwidth. Finally,
application-level proxies could also cache service results and
directly reply to local clients instead of remote servers, by re-
ducing the need for non-local communications.

The introduction of support proxies in MANET localities,
where a static infrastructure is not available, is possible only if
proxies play a totally dynamic role, usually assigned to one of
the local clients in a completely distributed and decentralized

way. COMMAND dynamically assigns the proxy role via an
ad-hoc lightweight election protocol (see Section 2.B). Any
node, since in principle it may become proxy, should be de-
ployed with all COMMAND functions required for proxy. Be-
cause this assumption is unfeasible for resource-constrained
MANET devices, we claim the importance of adopting code
mobility mechanisms in middleware solutions as in
COMMAND. By exploiting code mobility, any MANET node
can retrieve the needed code at runtime. In particular, for
MANET it is crucial to provide novel locality-aware solutions
to distribute code that exploit intra-locality efficient communi-
cations and reduce the network traffic generated for code re-
trieval. The original COMMAND solution for code mobility is
extensively described in Section 3.

A. Overview of the COMMAND Middleware Components
COMMAND offers a rich API to simplify the design of cli-

ent/server application components for MANET. In particular, it
provides a dynamically elected proxy component in any
MANET locality. In addition, it offers client/server stubs for
node configuration, local discovery, and message forwarding,
as shown in Fig. 1. The Configuration facility permits cli-
ents/servers to join a COMMAND locality by providing them
with unique identifiers (required for the proxy election protocol
as discussed in Section 2.B) and initialization parameters. The
client/server Discovery facility is in charge of broadcast-
ing/responding to lookup service requests in the locality. The
Data Send and Receive facility redirects requests/responses ei-
ther to the client/server (when they are co-located) or to the in-
termediate proxy.

In the following, the paper focuses on the primary
COMMAND component (the proxy) and on how it is possible
to extend dynamically its behavior via the Code Mobility facil-
ity.

B. The COMMAND Proxy: Functions, Design, and
Implementation
As already stated, when a server ruling active service ses-

sions exits a locality, the COMMAND middleware triggers a
distributed election protocol to choose the local node most suit-
able to host the proxy. The election is triggered if there is no
proxy in the locality, and also whenever the current proxy
leaves the locality before the termination of all active sessions.

The election protocol estimates the suitability of each node of
becoming proxy by considering its capabilities, e.g., computa-
tional power and available memory, and its expected mobility
patterns based on its history of exhibited movement habits.

Frequent link/node failures, high error rates and possibly
long delays in packet delivery make most traditional election
protocol unsuitable for MANET. For these reasons,
COMMAND adopts a novel and MANET-fitting election solu-
tion, with the main goal of maintaining the protocol very sim-
ple and lightweight, by considering the usual strict constraints
on resource availability over MANET devices. We imple-
mented a variant of the “bully algorithm”. During the discovery
phase, the server replies to clients not only by disclosing its
identity, but also by assigning to each client a unique identifier,
based on client characteristics sent within the service request
message. For instance, the faster is the wireless connectivity of
the client, the greater the assigned identifier. The election pro-
tocol is then triggered when a client senses the server move-
ment via the Location facility depicted in Fig. 1. In that case,
the client immediately broadcasts its identifier; when receiving
this message, any client compares its identifier with the re-
ceived one, and broadcasts a reply message with its own identi-
fier if and only if the latter is greater than the received one. The
only node that does not receive replies within a timeout sup-
poses to be the elected proxy. The implemented election proto-
col also considers message losses, and provides a series of
countermeasures to guarantee the election consistency in a
wide set of temporary failure cases.

The elected proxy is in charge of inter-locality server
search and of client session re-establishment. To this purpose,
the proxy exploits three main middleware facilities:

• the Search facility to retrieve the moved server com-
ponent (or one functionally equivalent replica) outside
the original locality;

• the Forwarding facility to transparently redirect client
requests and server responses;

• the Code Mobility facility to dynamically retrieve the
needed behavior after the election and when novel
middleware components should be deployed.

Depending on the nature of the provided application-level
service, the Search facility can look either for the same server
instance moved out of the proxy locality (in the case of stateful
services and when the session state is exclusively kept at the
server side) or for an equivalent one (in the case of stateless
services and when the session state could be maintained at the
client side and delivered to the new server during the first ser-
vice connection phase). To scan localities that are outside its
direct wireless visibility, the proxy exploits the AODV multi-
hop routing protocol [4]. Again, the code implementing the
protocol, if not already present in the elected node, is dynami-
cally downloaded when needed.

The Forwarding facility is exploited only after finding the
server outside the proxy locality. This facility re-qualifies con-
nections between clients and servers by acting as an active
bridge. It does not blindly redirect client messages to the server
(and vice versa), but inspects message content and decides the Figure 1. The COMMAND architecture: middleware components and

data flows.

actions to perform depending on current conditions in the lo-
cality. For instance, in the case of caching-enabled forwarding,
the facility avoids to contact the server and directly send ser-
vice results to the client, when possible, by querying locally
cached previous results. Or, if network traffic in the locality is
too high, it enqueues client messages while waiting for a de-
congested situation. Any client-to-server forwarding channel is
handled by a dedicated thread, instantiated only when the
proxy receives a new client request, without the static alloca-
tion of a thread pool, to reduce static computational load at the
proxy.

III. THE CODE MOBILITY FACILITY
In dynamic and heterogeneous scenarios two primary con-

siderations call for a mobile code facility. On the one hand,
MANET devices are generally provided with scarce amounts
of memory, thus one cannot expect that each peer owns all
code to execute all possible tasks. This holds especially for
proxy peer duties. On the other hand, we claim the need of im-
proving the flexibility of the middleware by supplying a
mechanism to update component behavior at runtime. This
mechanism enables the installation of facilities when needed
and their discarding after service provisioning.

Even if the mobile code research have achieved relevant re-
sults in the last years, especially when supporting mobile com-
puting in both traditional wired networks and infrastructure-
based wireless environments [5-8], no appropriate solutions for
code mobility in MANET have been proposed yet. In fact, it is
crucial that MANET-specific code mobility considers two pri-
mary points deriving from the peculiar deployment environ-
ment:

• inter-locality communication is much more expensive
than in wired LANs or cellular wireless networks, be-
cause MANET require a significant resource consump-
tion by the forwarding nodes along the sender-receiver
paths;

• code transfers (as any other communication) are
power-consuming operations. Thus, mobile code
mechanisms should be designed to minimize energy
consumption and performed only when strictly needed.

These considerations have motivated the two main guide-
lines of the COMMAND code mobility support:

• the COMMAND code transfer exploits the code al-
ready available within the locality as much as possible,
by looking for non-local code repositories only when
no closer copies are available;

• COMMAND adopts metacode to spread, in a concise
and effective way, the knowledge about all code mod-
ules (and versions) currently available in the MANET
locality.

In more details, COMMAND exploits metacode descriptors
to maintain information about the code available on all
MANET nodes in the locality. Each descriptor specifies name
and version of stored code modules through a sequence of
XML-based elements [9]. In particular, each COMMAND
node maintains two repositories: the Local Code Repository

with the descriptors and the code of the modules installed on
the node; the Neighbor Metacode Repository describing the
code modules available at neighbor nodes, together with their
location.

Every time a COMMAND node needs a code module, it
searches the metacode information stored in its local reposi-
tory. For instance, when a node is elected proxy (or when it re-
quires an updated version of the election protocol), it first
checks whether its Neighbor Metacode Repository includes a
descriptor for the required module. If the descriptor is found,
the node downloads the code directly from the referred local
node. Anytime a node downloads a code module, the Local
Code Repository is updated. When the repository reaches its
capacity limits, COMMAND discards entries by following a
least recently used replacement policy. If no suitable entry is
found (or if the node registered for that code is no longer avail-
able in the locality), the requesting node asks its COMMAND
proxy to perform a search outside the locality on its behalf.

Let us rapidly observe that, thanks to the COMMAND sup-
port, a code-requesting node requires being capable of per-
forming multiple-hop routing only in the case that it is looking
for the code to act as a newly elected proxy and that there is no
local node already owning that code.

In other words, the COMMAND code mobility protocol
follows these default rules:

1. a piece of code is downloaded only when strictly nec-
essary, i.e., when the Java class-loader cannot find lo-
cally the needed packages at execution time;

2. a node entering a new locality advertises its code, by
single-hop broadcasting the content of its Local Code
Repository;

3. when a node leaves a locality, COMMAND notifies
the event to all other local nodes for their autonomous
updating of Neighbor Metacode Repositories;

4. when a node requires and obtains a piece of code
available inside the locality, all local nodes can decide
to download the code at the same time (depending on
their available memory). That exploits the broadcast
nature of the local wireless communications;

5. if the required piece of code is not available in the lo-
cality, the requesting node asks the proxy for a remote
search. As soon as the code is found, the proxy auto-
matically broadcasts it in the locality. Local nodes may
update their Local Code Repository similarly to the
case above.

These default rules can be modified by introducing suitable
policies written in the Ponder language [10]. Since policies can
be dynamically modified, the behavior of the Code Mobility
facility can be changed at runtime, without affecting its imple-
mentation code. The architecture of this facility is shown in
Fig. 2. The Download Mechanism is responsible for
code/metacode sending/receiving and for the updating of the
corresponding repositories. The Policy Manager reacts to the
events arisen by the Monitoring component by calling the
Download Mechanism according to the specified policies. A
thorough description of the Monitoring component and of the

Figure 2. COMMAND message sequence during service rebinding in
Forum-MAN

Policy Manager is out of the scope of the paper; additional de-
tails are in [11].

Let us finally explain, with an example, how the Code Mo-
bility facility behavior can change. Every time a peer enters a
locality, the Monitoring component senses its joining and
raises an event. This event triggers the associated policy (de-
scribed at point 1) that obliges the node entering a locality to
broadcast the content of its Local Metacode Repository. If a
MANET administrator prefers to save the bandwidth at the en-
trance of a new peer in the locality and, at the same time, is
willing to accept a temporary lack of consistency in the state of
its participant repositories, she needs only to define a new pol-
icy specification with no action associated to node entrance.
This decision and the different policy adopted has absolutely
no impact on the implementation of the Code Mobility facility.

IV. THE FORUM-MAN CASE STUDY
COMMAND is a general-purpose middleware for MANET

and different types of applications can be built on top of it. To
verify the behavior of the COMMAND middleware in a practi-
cal usage scenario and to show how it facilitates the design and
implementation of applications, we have developed the Forum-
MAN (Forum in Mobile Ad-hoc Networks) application proto-
type. Forum-MAN is organized in rooms (thematic channels).
Participants can post and get messages to/from their preferred
channels. Once posted, a message can be modified only by au-
thors or by channel administrators. This service is built to pro-
mote direct interactions between close neighbors, and also to
maintain the possibility to continue participating in interesting
channels in case of mutual movements of mobile clients and
servers. In fact, Forum-MAN provides users the possibility to
dynamically rebind to server components and to use services
even after server movements.

Let us explain how the application works on top of
COMMAND. At first, each client joining a new locality con-
nects to the server and accesses services by employing the tra-
ditional send and receive primitives provided by COMMAND.
Behind the primitives, the middleware executes a transparent
discovery of the server peer and provides application-level
message delivery. The server offers Forum-MAN services in-
side its original locality by publishing messages posted on
managed channels. Hence, local peers can send their updates
and messages directly to the server. When the server decides to
leave the locality, clients can continue to use the service trans-
parently. In fact, an elected proxy undertakes the server search
operations and establishes connection rebinding. As soon as it
finds the server, the proxy notifies clients of the Forum-MAN
service re-establishment within the locality. Therefore, the

middleware components running on clients connect to the For-
warding facility of the proxy, which provides for the relaying
of requests to the moved away Forum-MAN server (Fig. 3).
The Forwarding facility behaves like a multi-hop routing func-
tionality: it acquires routing information during the server re-
mote search phase and adds this information to each service
packet header.

In addition, we claim that the Code Mobility facility im-
proves application flexibility. For instance, routing modules
unavailable at proxy and new releases of the Forum-MAN cli-
ent can be downloaded during service delivery. COMMAND
provides the dynamic deployment of new code delivered on
peers by downloading from code repositories, to be discovered
at runtime similarly to (and by using the same support as) all
other application services. COMMAND performs all code
management operations without any explicit intervention of the
application components (and hence without any burden for the
application client/server developer).

The implementation of the Forum-MAN client and server
on top of the proposed middleware is very simple. The client
component, at first, exploits the COMMAND Discovery to
find which peers run the server implementation. Then, it sends
to the server the messages inserted in the Forum-MAN GUI by
the local user and shows notes posted by other users, by em-
ploying the communication primitives provided by the Data
Send and Receive facility. The client components also maintain
the state related to the messages already obtained from the
server. By attaching this state as a parameter to each updating
request, clients can receive packets containing only recently
posted messages. Likewise, the server component at first regis-
ters a new entry in the Discovery Server of its local peer. Af-
terwards, every time the Data Send and Receive facility run-
ning on that peer receives a new request, it invokes a specified
method of the server. This method, depending on request type,
publishes new messages posted by the users or propagates
messages recently posted to clients. The implementation
classes are completely unaware of all mobility issues, but con-
centrate only on the application logic, with minimal differences
if compared with the implementation of the same service in
wired and static deployment scenarios.

V. EXPERIMENTAL EVALUATIONS AND PERFORMANCE
RESULTS

To quantitatively verify the feasibility of the approach
based on dynamically elected proxies, we deployed the
COMMAND-based Forum-MAN application in a little testbed

Figure 3. COMMAND message sequence during service rebinding in
Forum-MAN

within our Department Wireless Lab. We organized our de-
vices (Acer TM518 laptops running the Linux 2.4.20 kernel
and Compaq iPAQ PDAs running the Familiar Linux distribu-
tion) in two heterogeneous and disjoint MANET localities, as
depicted in Fig. 3. The communication was enabled by IEEE
802.11b-compliant devices (Cisco 350 Client Adapters) con-
figured in ad-hoc mode.

We have evaluated the Forum-MAN performance when the
server moves from one locality to the other. We have decided
to measure two primary time indicators: Service Unavailability
on Client represents the time interval between client/server
connection loss and re-establishment; Search Time on Proxy is
the interval for the proxy to find the moved server. We have
measured average values of the two above indicators over a
large set of experiments. The obtained results point out that the
performance of the COMMAND middleware is definitely
compatible with the time constraints of most classes of
MANET applications with no strict real-time requirements on
service reconfiguration after client/server mutual movements.

In more details, we measured these values in different test-
ing conditions and we observed their dependence on several
factors. They primarily relate with the interval T elapsed be-
tween the server loss of connectivity in the original locality and
the complete re-establishment of server connection to the new
location. The interval T, in its turn, mainly depends on the time
employed by the peer that hosts the server component to cross
the physical distance between the coverage areas of the two
localities (movement time TM) and on the time required by
IEEE 802.11 devices to manage the communication handoff at
the lower layers (handoff time TH).

According to the measured values of T in several condi-
tions, we decided to consider two main configurable parame-
ters for COMMAND, which affect the performance of the elec-
tion and server search protocols. The first, IAPTime, measures
the election timeout value, i.e., the amount of time waited by a
proxy candidate to announce its election. The second, Search-
Period, in the case of server delays in reconnecting to the net-
work, represents the time interval between successive proxy
search attempts. COMMAND administrators can trade mid-
dleware promptness and generated traffic by a careful tailoring
of SearchPeriod interval. In fact, by lowering that interval, the
proxy is faster in promptly finding the server. However, if the
server remains unreachable for a long time and no equivalent
service component can be discovered, the overhead increases.
In general, no static prediction can foresee a specific and opti-
mized value. COMMAND provides a self-tuning mechanism
that adapts parameters to server unavailability history. Search-
Period and IAPTime have initial intermediate values specified
by the administrator in an XML configuration file; they are
automatically updated by monitoring the server behavior.

Table 1 reports values obtained by assuming that the server
remains active during its movement. The proxy component is
not able to find the server at the first search attempt because the
movement (TM) and the handoff (TH) times required for the
server reconnection to the new locality are longer than the in-
terval to sense its movement and to elect the proxy in the old
locality. Since the inactivity interval is low, it is worth to set
also the IAPTime and SearchPeriod parameters to low values.

Table 2, instead, shows the performance measured when the

server remains inactive for 2s after its disconnection from its
original locality. Given that high inactivity interval, it is likely
that the proxy is ready to find the server just as soon as it re-
connects. This explains why the overhead values obtained by
subtracting the inactivity interval from the Service Unavailabil-
ity on Client (which represents a rough estimate of the time
spent by COMMAND to rebind the client/server connections,
once the server component has reconnected in the new locality)
in the two scenarios are different. In this case, it is better not to
pay a high overhead to promptly react to server movement.
Thus, IAPTime and SearchPeriod can be set to relatively high
values.

VI. RELATED WORK
MANET have recently attracted the interest of several re-

search activities in both industry and academia [1]. First inves-
tigations have addressed the novel challenging communication
issues, primarily to face the instability due to terminal mobility
and infrastructure lack. On the one hand, some proposals pro-
vide solutions for the network-layer autonomous configuration
of nodes that dynamically and unpredictably join MANET lo-
calities. The common goal of these solutions is to provide a
temporary IP lease, without requiring explicit operations by
network administrators [12]. On the other hand, relevant re-
search activities have investigated novel MANET-specific so-
lutions for multi-hop routing. A possible taxonomy of MANET
routing protocols has been proposed in [13]: most common so-
lutions are topology-based on-demand ones that determine
routes to destination only by need when required by source
nodes.

However, as already stated, MANET dynamicity does not
affect only network-layer aspects but also significantly compli-
cates application design and implementation. To support appli-
cation development over mobile systems, some research activi-
ties are moving to extend traditional socket programming to
embed mobility-related connection re-qualification [14]. In ad-
dition, other research is addressing the definition of novel tu-
ple-based programming models suitable for highly dynamic
MANET environments, primarily to support time/space de-
coupled coordination among distributed components. For in-
stance, LIME provides coordination for MANET software

TABLE I. TEST CONDITIONS: IAPTIME = 200ms; SEARCHPERIOD =
200ms

Parameter Average Value (ms) Std. Dev. (ms)
Service Unavailability

on Client 788.6 11.01

Search Time on Proxy 430.4 9.18

TABLE II. TEST CONDITIONS: SERVER INACTIVITY INTERVAL = 2s;
IAPTIME = 1s; SEARCHPERIOD = 1s

Parameter Average Value
(ms) Std. Dev. (ms)

Service Unavailability
on Client 2270.4 23.10

Search Time on Proxy 1045.6 33.68

components by dynamically aggregating tuple spaces of co-
located components in federated tuple spaces [15]. TOTA, in-
stead, extends the LIME model with the idea of moving tuples
in MANET deployment environments and of dynamically
modifying tuple content according to some associated propaga-
tion rules [16].

To the best of our knowledge, there are not other applica-
tion-level middlewares yet based on lightweight code mobility
to support the automatic re-qualification of resource bindings.
In that sense, our approach provides an original perspective of
the field. However, the relevance of the addressed topic is rec-
ognized and some first proposals, which adopt design guide-
lines similar to COMMAND, are starting to emerge. For in-
stance, to face MANET device heterogeneity, the
CONNECTED project proposes application level proxies to
carry on tasks that resource-constrained devices cannot per-
form [17]. In addition, the recent Expeerience support proposes
the exploitation of mobile code techniques, in particular of mo-
bile agent ones, to increase the flexibility of the MANET mid-
dleware [18].

VII. CONCLUSIONS AND ON-GOING WORK
Distributed applications over MANET require flexible and

mobile middleware solutions capable of properly handling the
frequent variations of locally reachable device/service compo-
nents during service provisioning. In addition, the intrinsic
complexity of the MANET scenario motivates a clear separa-
tion of concerns between the client/server application logic and
the support solutions in charge of handling the discovery,
automatic rebinding, and request routing to mobile service
components. Novel MANET middlewares should exploit
lightweight code distribution to effectively provide this separa-
tion and to achieve the level of flexibility and reusability suited
to these highly dynamic network environments.

Our first experiences stemming from the deployment and
testing of the COMMAND middleware have shown that a
highly dynamic support infrastructure based on proxies and
code mobility can significantly facilitate the design and imple-
mentation of MANET applications with feasible performance
results, thus potentially leveraging the promising market of
services for Personal Area Networks. These encouraging re-
sults are stimulating further research to extend the middleware
in two main directions. First, we work on the full integration of
our middleware prototype with other multi-hop routing proto-
cols available in literature (and on the related performance
evaluation). Secondly, we intend to explore solutions to dy-
namically establish proxy-to-proxy inter-locality chains. This
perspective can speed up and facilitate the search of non-local
servers, and can significantly improve the COMMAND scal-
ability when deployed over large-scale MANET scenarios.

ACKNOWLEDGEMENTS
Work partially supported by the Italian MIUR within the

FIRB WEB-MINDS Project and by the Italian CNR within the
Strategic IS-MANET Project.

REFERENCES
[1] J. Macker, S.Corson, “Mobile Ad-hoc Networks (manet)”, 1997,

http://www.ietf.org/htmlcharters/manet-charter.html.
[2] I. Chlamtac, M. Conti, J. J.-N. Liu, “Mobile ad hoc networking:

imperatives and challenges”, Elsevier Ad Hoc Networks, vol.1, pp.13-
64, July 2003.

[3] J. Bolliger, T. Gross, “A Framework-based Approach to the
Development of Network-aware Applications”, IEEE Transactions on
Software Engineering, vol. 24, pp. 376-390, May 1998.

[4] C. E. Perkins, E. M. Royer, “Ad Hoc On-demand Distance Vector
Routing”, 2nd IEEE Workshop on Mobile Computing Systems and
Applications, WMCSA ’99, pp.90-100, February 1999.

[5] A. Fuggetta, G. P. Picco, and G. Vigna, “Understanding Code Mobility”,
IEEE Transactions on Software Engineering, vol. 24, pp.342-361, May
1998.

[6] P.K. McKinley, U.I. Padmanabhan, N. Ancha, S.M. Sadjadi,
“Composable Proxy Services to Support Collaboration on the Mobile
Internet”, IEEE Transactions on Computers, vol. 52, pp. 713-726, June
2003.

[7] S.S. Yau, F. Karim, W. Yu, W. Bin, S.K.S. Gupta, “Reconfigurable
Context-Sensitive Middleware for Pervasive Computing”, IEEE
Pervasive Computing, vol. 1, pp. 33-40, July-September 2002.

[8] P. Bellavista, A. Corradi, R. Montanari, C. Stefanelli, “Context-aware
Middleware for Resource Management in the Wireless Internet”, IEEE
Transactions on Software Engineering, vol. 30, pp. 1086-1099,
December 2003.

[9] E. Wilde, “XML Technologies Dissected”, IEEE Internet Computing,
vol. 7, pp. 74-78, September-October 2003.

[10] Imperial College – Ponder, http://www-dse.doc.ic.ac.uk/Research/
policies/ponder.shtml.

[11] P. Bellavista, A. Corradi, C. Stefanelli, “Java for On-line Distributed
Monitoring of Heterogeneous Systems and Services”, The Computer
Journal, Oxford University Press, vol. 45, pp. 595-607, November 2002.

[12] S. Nesargi, R. Prakash, “MANETconf: configuration of hosts in a
mobile ad hoc network”, Joint Conference of the IEEE Computer and
Communications Societies, INFOCOM ‘02, pp. 1059-1068, June 2002.

[13] E. M. Royer, C. Toh, “A review of current routing protocols for ad hoc
mobile wireless networks”, IEEE Personal Communications, vol. 6, pp.
46-55, April 1999.

[14] U. Saif, J. M. Paluska, “Service-oriented Network Sockets”, USENIX
Int. Conference on Mobile Systems, Applications and Services, MobiSys
2003, pp.159-172, May 2003.

[15] A. L. Murphy, G. P. Picco, G.-C. Roman, “LIME: a middleware for
physical and logical mobility”, IEEE Int. Conference on Distributed
Computing Systems, ICDCS-21, pp. 524-533, April 2001.

[16] M. Mamei, F. Zambonelli, "Programming Pervasive and Mobile
Computing Applications with the TOTA Middleware", IEEE Int.
Conference on Pervasive Computing and Communications, PerCom
2004, pp.263-276, March 2004.

[17] Swedish Institute of Computer Science – CONNECTED, www.sics.se/
cna/connected/.

[18] M. Bisignano, A. Calvagna, G. Di Modica, O. Tomarchio, “Expeerience:
a JXTA middleware for mobile ad-hoc networks”, IEEE Int. Conference
on Peer-to-Peer Computing, P2P ’03, pp. 214-215, September 2003.

