
Java-based On-line Monitoring
of Heterogeneous Resources and Systems

Paolo Bellavista, Antonio Corradi
Dipartimento di Elettronica, Informatica e Sistemistica, Università di Bologna

Viale Risorgimento, 2 - Bologna - Italy
Ph.: +39-051-2093001 - Fax: +39-051-2093073

E-mail: {pbellavista, acorradi}@deis.unibo.it

Cesare Stefanelli
Dipartimento di Ingegneria, Università di Ferrara

Via Saragat, 1 – Ferrara - Italy
Ph.: +39-0532-293831 - Fax: +39-0532-768602

E-mail: cstefanelli@ing.unife.it

Abstract
The diffusion of Web-based multimedia services and the emerging competition among service
providers require to enrich the Internet infrastructure with mechanisms to manage and control
service quality and availability. These goals require monitoring mechanisms that ascertain the
state of resources and applications in the global distributed system, and that should be a core
functionality of any infrastructure for Web service provision. The paper describes the design
and the implementation of a Java-based Application Programming Interface (API) to monitor
uniformly heterogeneous resources and systems over the Internet. The monitoring tool
operates at different levels of abstraction. On the one hand, it can instrument the Java Virtual
Machine (JVM) to handle several types of events produced by Java applications. On the other
hand, it can inspect the state of machine specific information (e.g., CPU and memory
utilization) typically hidden by the JVM, and available via platform-dependent modules
(currently developed for WindowsNT, Solaris and Linux). The implemented monitoring tool
can be integrated in any Java-based Web service infrastructure and is currently part of the
SOMA mobile agent platform.

1. Introduction

The Internet behaves as an open and global distributed system that can support service execution
and provision to an increasing number of users, connected via very different and heterogeneous
devices, e.g., PCs, personal digital assistants, WAP phones [1]. The diffusion of multimedia Web
services and the emerging competition among service providers stress to the limit some critical
service properties that are obviously considered more and more important by service providers,
network operators and final customers. One of the most important property is to grant and
guarantee negotiated levels ofQuality of Service(QoS), whichever is the current attachment point
of users and the location of service providers, and independently of the dynamic conditions in the
involved networks and systems [2, 3]. In this scenario, the providers that offer services with some
controlled and differentiated QoS levels are interested inaccountingconsumed services to users in a
non-repudiable way, in order to enforce a correct billing policy. The complete support of QoS-
enabled service provision imposes to ensure also service dependability, even in case of failure of the
communication infrastructure and/or of some of the involved distributed service components. In the
public (untrusted) Internet environment, another important service property is security, that permits
to identify and face all forms of misuse and attack, such as the case ofdenial-of-servicewhen
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service availability is threatened by overloading the distributed resources that offer service
execution.

The above properties require monitoring mechanisms and tools to obtain the visibility of the state
of all heterogeneous resources that compose the network infrastructure. The significant monitoring
information are at very different abstraction levels, from the state of execution resources at each
node (e.g., CPU, memory and bandwidth utilization), calledkernel statein the following, to the
state of service components at the application level (e.g., the state of a service-specific daemon
process), referred asapplication state[4]. In addition, the monitoring component should work
during service execution, without service suspension and with minimal performance intrusion: only
in this case, this information can be of any help in dynamic service adaptation, in the detection of
denial-of-service attacks, in performance enhancements, and in the accounting of subscribed users.

Several research activities have investigated the implementation ofmonitoring tools for
distributed system [4-6]. In addition, some researchers have focused onon-line monitoring tools
that are forced to collect a restricted set of kernel and application state indicators. Their goal is to
provide tools that detect the current conditions of service provision, in order to make possible run-
time corrective actions. These tools are forced to carefully select the synthetic information to be
collected, thus minimizing their intrusion towards the observed system [7-9].

Monitoring tools generally exploit native features either provided by dedicated hardware/software
probes or available in the hosting operating systems. Although most operating systems generally
agree on the types of data to monitor (to infer general information about processes, threads,
memory, network and file system), the collecting and accessing mechanisms are very heterogeneous
and platform-dependent. This has produced different and sometimes clashing mechanisms (e.g., the
/proc directory in Solaris and Linux, the registry keys in WindowsNT) which are difficult to
integrate in a unique monitoring framework. The platform-dependent monitoring mechanisms have
achieved interesting results [4, 5, 7, 8], but can provide only the initial deployment step in the
Internet environment, that requires also to have visibility and control on the application state of any
middleware component while it supports service execution.

We claim that a general monitoring component plays a basic role in the design and
implementation of any distributed infrastructure for Web-compatible service provision [10]. In this
scenario, the Java technology is a convenient choice to develop new applications and services for the
Internet. Java can be considered an obvious programming environment in the implementation of
distributed monitoring tools [11, 12]. However, the Java Virtual Machine (JVM) hides platform-
dependent characteristics and imposes a level of abstraction that seems an obstacle in providing
Java-based monitoring solutions. Also these monitoring considerations have recently motivated
some significant extension proposals of the JVM at different abstraction levels, both platform-
independent and platform-dependent: SUN has introduced the JVM Profiler Interface (JVMPI) [13],
to export some JVM internal event occurrence for debugging and monitoring purposes, and the Java
Native Interface (JNI) [14], to integrate Java programs with platform-dependent executable code.

The paper presents the design and implementation of a Java-based Application Programming
Interface (API) for the on-line monitoring of kernel and application state. The monitoring API
collect information at two different levels of abstraction. At the Java level, the API makes possible
to dynamically instrument the JVM, to deal with several events produced by the execution of Java-
based services, e.g., object allocation and method invocation. At the low platform-dependent level,
the API permits also to overcome the boundaries of the JVM and to obtain the visibility of the
needed kernel indicators of the monitored host, such as percentage of CPU and memory utilized by
all active processes, whether Java-based or not.

The implementation of the monitoring API exploits the novel features of the Java 1.2 platform:
the JVM Profiler Interface (JVMPI) and the Java Native Interface (JNI). The former permits to
inspect the JVM internals in order to collect several types of application-level predefined events
produced by the execution of Java applications, and the API exploits it to obtain Java-level
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monitoring information on the application state. The latter technology allows the invocation of
native code within Java programs, and has been used to integrate the Java-based monitoring API
with platform-dependent monitoring mechanisms that we have implemented as dynamic link libraries
for WindowsNT and shared object libraries for Solaris and Linux.

Finally, the paper reports some experimental measurements of the overhead introduced on service
execution by the implemented monitoring API. All results refer to the most spread targets, i.e.,
Solaris, Linux and WindowsNT platforms. They show that the intrusion of the monitoring tool can
be very limited by tuning the sampling frequency of kernel and application indicators.

2. The Java Technology for Monitoring

The Java technology plays a fundamental role in the design, implementation and deployment of Web
services over the global and heterogeneous Internet infrastructure. Apart from Java portability,
dynamic class loading and easy integration with the Web, the main motivation of Java success is its
homogeneous run-time support. The JVM hides the peculiarities of the operating system and
presents a uniform vision of all available computing resources, middleware facilities and application
components.

However, several application domains require a deep and low level visibility of both the JVM
internal and the underlying platform. This is particularly critical when Java is adopted for the
implementation of monitoring tools. These considerations have suggested SUN researchers to
extend the JVM via the JVM Profiler Interface, in order to propagate the visibility of some internal
details of the JVM state to the application level. In addition, the necessity of observing both kernel
state and application state outside the JVM requires to integrate native monitoring components in
the JVM by exploiting the functions of the Java Native Interface.

2.1. The Java Virtual Machine Profiler Interface

The JVMPI is an interface provided as an experimental feature in the Java 2 platform and is mainly
designed to help application developers to monitor the behavior of Java-based applications during
debugging and deployment. The JVMPI is a two-way API between the JVM and a dedicated profiler
agent, usually implemented as a platform-dependent native library for the sake of performance. In
one direction, the JVM notifies several internal events to the profiler agent that has registered its
interest. In the other direction, the profiler agent can enable/disable the notification of specific types
of events and can perform some limited management actions on the JVM. Figure 1 depicts the
described two ways of utilization of the JVMPI.

All notifiable events are fired by changes in the state of Java threads (started, ended, blocked on
a locked monitor), beginning/ending of invoked methods, class loading operations, object
allocation/deallocation, and the beginning/ending of JVM garbage collection. Any event notification
carries full information about the entities that have generated that event. For instance, the allocation
of a new object generates theJVMPI_EVENT_OBJECT_ALLOCevent, and the profiler agent
receives the identifiers of the new object and of its class, together with the size of allocated heap
memory.

The JVMPI can be exploited also in the opposite direction from the profiler agent towards the
JVM. Apart from notification enabling/disabling, the agent can intervene on the JVM via JVMPI
functions to suspend/resume Java threads, and to modify the behavior of the garbage collector
(enable, disable, force its immediate execution).

Figure 1 shows also a profiler process, possibly external to the JVM. The profiler can provide
application developers with an immediately readable form of the monitoring data collected by the
profiler agent. The profiler process interrogates the agent to obtain the information on notified
events, and can elaborate these data, either on-line or off-line, to obtain traditional average system
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indicators, such as the total size of heap memory allocated to a specified service thread or group of
threads.
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Figure 1. JVMPI-based architecture for JVM monitoring.

The SUN distribution of the Java 2 platform provides a simple implementation of the profiler agent
as a native library for both Solaris and WindowsNT operating systems. The agent is called HPROF
[13], and has been mainly designed for final debugging and performance tuning of applications.
HPROF is a general-purpose event collector with simple configuration features. It works better as
an off-line post-mortem monitoring of Java threads than as an on-line one because it tends to collect
a large volume of monitoring data that cannot be given without a heavy filtering and processing to
obtain significant and synthetic service indicators. This is the main reason of several recent
implementations of profiler processes to organize HPROF data in user-friendly graphic interfaces
[15, 16].

Although it permits to instrument dynamically the JVM, the JVMPI has several limitations in
furnishing monitoring functions. In fact, the JVMPI reports only some of the events generated in the
JVM, and imposes a coarse-grained specification of the events to be notified to the agent, with no
possibility of fine selections and dynamic refinements. For instance, a profiler agent can only choose
to enable/disable the notification of all events related to all Java classes (or
objects/methods/monitors), but it does not allow any specific interest in the events generated by a
particular class. In addition, the JVMPI cannot give any direct information about the current
conditions of the monitored host outside the JVM (e.g., the number of non-Java active processes,
the set of files opened by a non-Java process, …). Therefore, it cannot be used as it is to obtain
traditional indicators of system load, such as CPU idle time and total size of allocated memory.
Some load indicators can only be obtained by indirect (and usually less accurate) measures, e.g., by
collecting the statistics of the time interval needed to execute a predefined CPU-bound test method
(JVMPI_EVENT_METHOD_ ENTRYandJVMPI_EVENT_METHOD_EXITevents).

2.2. Exploiting Platform-dependent Functions via the Java Native Interface

The development and deployment of QoS-enabled Java services require the possibility to observe
dynamically both the kernel state, e.g., the current percentage of total available memory, and the
application state of service components outside the JVM, e.g., the total number of non-Java active
processes. To obtain these monitoring indicators, it is necessary to exploit platform-dependent
monitoring mechanisms and tools. The JNI interface specifies how to dynamically integrate Java
programs with any platform-dependent code, and, in particular, can permit the extension of Java-
based monitoring tools with platform-specific monitoring solutions.

The JNI is a two-way API interface that permits Java threads to invokenative methods, i.e.,
functions typically written in C/C++, compiled for a specific platform and provided in the form of
Dynamic Link Libraries (DLL) under WindowsNT and of Shared Object (SO) libraries under Solaris
and Linux (see figure 2). In one direction, any Java program can invoke native methods, simply by
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declaring methods with the keywordnative and with no body. During the execution, the JVM
uses the JNI to call the requested function in the native library, previously loaded via the
System.loadLibrary() method. The JNI specification defines the modes of method invocation.
For instance, it rules how to perform parameter marshalling/unmarshalling between the Java
invoking thread and the called native method.

In the other direction (from the native library towards the JVM), the JNI allows native methods
to interwork with their invoking Java objects and methods. To this purpose, the JNI provides native
code with callbacks to the invoking Java environment and, in particular, to the invoking Java object.
This way permits native methods to interwork with all Java entities accessible to the Java class that
has invoked the native function. For instance, a native method can access and modify the value of
Java objects, can call Java methods, and can raise Java exceptions.

Java Thread 1Java Thread 1

Java Thread 2Java Thread 2

Java Thread 3Java Thread 3

Java Virtual Machine
Native library

invocation

Invocation
results;

working on
Java env. via

callbacks

native
library

native
library

J
N
I

Host

Figure 2. The two-way JNI for native library invocation.

The motivations of the JNI stems from the necessity to prevent incompatibility between JVM
implementations. Dynamically loaded native libraries can contain platform-dependent executable
code and cannot be ported to heterogeneous operating systems. The JNI can ensure native code
portability over different implementations of the JVM for different platforms, even provided by
different vendors.

If applied to the monitoring domain, the JNI permits to integrate the JVM with native monitoring
libraries, thus working at a lower level than the JVMPI, with visibility of kernel and application
indicators. For instance, if a Java-based monitoring applications wants to collect information about
any active process on one host (e.g., to register which process occupies the most the CPU in a
specified time interval), it can invoke the execution of a C-based native library to extract the needed
information from either the WindowsNT registry keys or the Solaris/proc directory.

This widened visibility of low-level indicators has the obvious drawback that these monitoring
tools are not portable over different platforms. On the opposite, a standard interface should be
provided and requires a certain degree of homogeneity. A possible solution is to furnish different
implementations of native monitoring functions with analogous monitoring information over
different operating systems, to permit the dynamic integration of Java-based tools with the suitable
native implementation. In that way, the multi-platform implementation guarantees transparency and
portability. We have adopted this solution in the development of the on-line monitoring API
described in the following section.

3. A Java API for On-line Heterogeneous Monitoring

We have worked to design and implement a Java-based infrastructure for on-line distributed
monitoring, which permits maximum visibility in the observation of dynamic properties of the
managed systems, such as resource utilization and application state, over possibly heterogeneous
platforms. To achieve this goal, we have implemented a Java API (ResourceManager class) for
the uniform local monitoring of a single host.
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On the one hand, theResourceManager class permits the monitoring of application state
indicators at the application level, in order to export the visibility of JVM events. Our monitoring
API exploits the JVMPI to gather information about any Java-based thread running on the
monitored host; these JVMPI-based functions are immediately portable on any host that runs the
JVM version 2. On the other hand, theResourceManager class provides also monitoring
indicators for the kernel state of the observed host. We have used JNI to integrate our Java-based
ResourceManager with platform-dependent monitoring functions implemented as native libraries
for several different platforms (WindowsRM DLL on Microsoft WindowsNT 4.0,SolarisRM SO
on SUN Solaris 2.7, andLinuxRM SO on SuSE Linux 6.2). The native libraries can be loaded at
run-time in a completely transparent way, dependently on the platform of the current monitored
host. Figure 3 shows theResourceManager architecture.

Resource Manager class

Java Native Interface

JVM Profiler Interface

WindowsNT OS Solaris OS

NTResource
Manager class

SVR4Resource
Manager class

SuSE Linux OS

LinuxResource
Manager class

Java Virtual Machine

WindowsRM DLL SolarisRM SO LinuxRM SO

Figure 3. The architecture of our Java-based monitoring API.

The ResourceManager class makes available a limited set of synthetic monitoring parameters
sufficient to summarize the current state of the monitored host. We have defined synthetic
parameters because our main objective is on-line monitoring: service administrators (or even
automatic software-based service managers) should use our API to guide their management
operations on adaptation during service provision. Therefore, the overhead imposed by the
monitoring tool is critical and monitoring results should be “ready to use”, i.e., without the need of
any additional, possibly complex and time-consuming, off-line processing.

The monitoring indicators are organized in three main classes (ProcessInfo , NetworkInfo ,
andFileSystemInfo ), andResourceManager provides them in a uniform way, independently
of the operating system of the observed host. ThegetOS() API method is the only way to
understand which platform theResourceManager class is currently running on. Apart from that
result, the monitoring functions are completely transparent, independently of the hosting operating
system. To minimize the intrusion of the monitoring API depending on service-specific time
constraints of observation, all API methods require amsec invocation parameter that indicates the
milliseconds to refresh the desired monitoring indicators. Themsec interval affects the time of the
periodic invocation of native libraries and of the refreshment of JVMPI collected events, with
different consequences on the introduced overhead, as described in Section 4.

All methods return either an object or an array of objects of the three classes described in the
following. ProcessInfo is a class that maintains all the data related to a process identified bypid
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in the getProcessInfo() invocation. Monitored data include the utilization percentage and the
effective time of the CPU consumed by the specified process, its allocated memory (either physical
or virtual), and various data on its composing threads. In the case of JVM processes, a very large
collection of monitoring data are available for any Java thread, such as the reference to the Java
thread object, the number of loaded classes, contended monitors, allocated objects, invoked
methods, and network operations. Otherwise, the monitoring API provides, for any non-Java thread,
the thread identifier and the percentage/effective time of CPU utilization.

The NetworkInfo class reports aggregated monitoring data about the utilization of the
communication infrastructure made by the target host as a whole. Monitored data include the total
number of sent/received UDP/IP packets, of TCP connections and entering/exiting segments, and of
received UDP/IP packets with errors. These synthetic parameters permit to evaluate traffic and
congestion in the network locality of the monitored host.

Finally, the FileSystemInfo class maintains information about the file system on the target
host (space available and its percentage on total disk size) and, in particular, about the current state
of open files: for any active process and for any file opened by it, the class can return the opening
time and its opening modes (read/write/both/locked), and the number of current read/write
operations. We are extending this function to maintain also data on how many files a process has
worked on in a specified time window, and on how many times it has opened and closed any of these
files; the aim is to prevent possible denial-of service attacks based on the repetition of open and
close operations on the file system.

The monitoring API has been designed and implemented to simplify dynamic extension and
tailoring to service-specific needs. In particular, we are working to extend the API with a method
newMethod() to permit to authorized administrators to introduce new functions to the monitoring
interface, by dynamically injecting Java bytecode. For instance, a multimedia service component
could require to observe the network latency obtained in transmitting a specific video stream
between two adjacent hosts. To provide this monitoring feature, currently not provided in the
NetworkInfo class, the multimedia service provider can securely inject the needed code at run-
time, thus dynamically extending the monitoring API.

4. Experimental Measurements of the Monitoring Overhead

Any on-line monitoring tool should minimize its intrusion on observed hosts, not to introduce
sensible overload during service provision. We have followed this guideline in the design and
implementation of our Java-based monitoring, and we have accurately measured the overhead it
introduces, in order to validate the effectiveness of the proposed solution. We have tested our
ResourceManager class over all the different supported platforms, to evaluate also the different
costs due to the adoption of either the JVMPI technology or the native methods.

We have installed anad-hocJava benchmark application that stresses both CPU and memory
usage: it simply instantiates a number of different threads and objects. The simple benchmark has
first been executed on target hosts with neither applications nor theResourceManager running,
and we have taken several hundred measurements. The average completion time of the benchmark
execution, calledTnoMon, has been compared with the average time (TMon) measured with our
monitoring tool in execution. The graphs in Figure 4 and 5 report the overhead percentage
(Overhead%) introduced by the monitoring tool, defined as:

1001100% ∗�
�

�
�
�

� −=∗−=
noMon

mon

noMon

noMonmon
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All reported costs have been measured with different sampling frequencies on Microsoft
WindowsNT4 and SuSE Linux6.0 running on Intel PentiumIII PCs, and on SUN Solaris7 running
on UltraSPARC10 workstations.
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Let us note that the test case of only the benchmark application running, is the worst possible
case for theOverhead%parameter. In fact, when the monitored host is either loaded on the average
or overloaded,TnoMon tends to increase faster thanTmon in absolute terms, and consequently their
ratio Overhead%tends to lower. We have takenOverhead%measurements with several general-
purpose benchmark tests running, and the gathered costs confirm the above claim, with an average
decrease of about 1.0-1.5% of theOverhead%parameter in conditions of medium load.

Figure 4 depicts theOverhead%introduced by the JNI operations to monitor respectively
ProcessInfo , NetworkInfo and FileSystemInfo , for the three supported platforms and
depending on the sample time period.Overhead%has shown to depend linearly on the invocation
frequency of the native monitoring libraries via the JNI. The set of graphs shows that the monitoring
tool causes similar and acceptable overhead (interference is lower than 3%) in all cases when the
sampling frequency goes under 0.3 Hz.
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Figure 4. Overhead%of the native monitoring functions invoked via JNI.

In addition, we have measured the overhead of the JVMPI instrumented to notify continuously (not
only at polling times) certain kinds of events. In this case, the sampling frequency represents only the
frequency to refresh the observed data and to transmit them to the human/automatic manager.
Figure 5 depicts theOverhead% for the different supported platforms, by separating the
contributions stemming from the different kinds of events that the JVMPI is enabled to notify (either
monitor or method or object tracing). The JVMPI notification mechanism is non-intrusive in itself
(lower than 0.7%) under different load conditions and their interference has confirmed to be
independent of sampling frequencies. Only object tracing can become heavy as a weak point in our
current prototype implementation. In fact, our profiler agent maintains information about objects
instantiated by Java threads in a table that is implemented, for the sake of simplicity, in a C++
dynamic list of pointers. This data structure can make expensive the retrieval depending on table
size. We are completing a new version of the profiler agent that exploits a hashed table, and this
implementation achieves a reduction of object tracingOverhead%of a 4 factor.
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Figure 5. Overhead%of the JVMPISlave agent to monitor Java threads.
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The sampling frequency affects only the overhead introduced by the tool that reads and processes
the collected monitoring information to provide final users with their graphic visualization: in any
case, the overhead can be maintained under 2.0% when the sampling frequency goes under 0.3 Hz
and object tracing is disabled.

5. Concluding Remarks

The necessity of monitoring tools to achieve full visibility of kernel and application state information
calls for an extension of the JVM that is capable of overcoming the boundaries imposed by its
abstraction level. We have exploited two different directions, the JVMPI and the JNI technologies,
to implement a Java-based API to monitor heterogeneous resources and systems in the Internet
scenario.

The API provides service administrators with indicators that are particularly suitable for on-line
monitoring: it tends to furnish synthetic and not overhead-prone information. The implementation
has exhibited an acceptable overhead on executing services. At the moment, we work on the
integration of the presented monitoring component within our mobile agent framework. This
integration is twofold: on the one hand, to provide mobile agents with a local monitor component
needed for network and systems management, and, on the other hand, to compose a basic
framework for the accountability of resource consumption in Internet service provision.
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