
How to Monitor and Control Resource Usage in Mobile Agent Systems

Paolo Bellavista, Antonio Corradi
DEIS - University of Bologna

{pbellavista, acorradi}@deis.unibo.it

Cesare Stefanelli
Dip. Ingegneria - University of Ferrara

cstefanelli@ing.unife.it

Abstract
The Mobile Agent technology has already shown its

advantages, but at the same time has already remarked
new problems currently limiting its diffusion in
commercial environments. A key issue is to control the
operations that foreign mobile agents are authorized to
perform on hosting execution environments. It is
necessary not only to rule the MA access to resources but
also to control resource usage of admitted agents at
execution time, for instance to protect against possible
denial-of-service attacks. The paper presents a solution
framework for the on-line monitoring and control of
Java-based MA platforms. In particular, it describes the
design and implementation of MAPI, an on-line
monitoring component that we have integrated within the
SOMA system. The paper shows how to use MAPI as the
building block of a distributed monitoring tool that gives
application- and kernel-level information about the state
of mobile agents and their resource usage, thus enabling
the enforcement of management policies on MA resource
consumption.

1. Introduction

While the Mobile Agent (MA) technology has
demonstrated its suitability in many application domains
and the number of MA platforms is increasing, there are
still a limited number of examples of medium- and large-
scale MA-based "industrial" services. The main
motivation stems from the fact that software companies
still do not trust completely the MA technology because
of potential problems introduced by hosting the execution
of foreign active entities.

The research has obtained significant results in the MA
security area, both in protecting hosting sites from running
agents and in defending agent code and state from their
current execution environments [1, 2]. Most MA
platforms exploit traditional security techniques to
admit/deny the MA access to currently local resources.
However, these techniques are not targeted to protect

against denial-of-service attacks caused by mobile agents
that engage resources making them unavailable for other
activities. The same applies to the techniques for keeping
track of resources in the sense of quantitatively
associating them with users for billability sake: this aspect
is mostly disregarded by MA frameworks that tend not to
support tools for the accounting of MA resource
consumption to bill agent responsible users.

The confidence in MA systems can only be built by
embodying components to support measurement,
monitoring and eventual limitation of resource usage of
mobile agents while they execute. For instance, even if
several agents of the same responsible user are authorized
to execute on one host, the local administrator may want
to give a maximum percentage threshold to the total CPU
time they can engage, in order to preserve the CPU
availability (in a significant percentage) to other local
activities and services. Similarly, once authenticated, an
agent may obtain the permission to open network
connections toward some specified hosts, but its network
usage should be eventually accounted for the generated
amount of traffic.

We claim that agent on-line monitoring is a critical
factor for the acceptance and diffusion of the MA
technology and for the enlargement of the core of MA-
based industrial applications. The availability of an on-
line monitoring component should be considered crucial
for any MA platform, in order to observe the behavior of
mobile agents at runtime and to permit corrective
management operations that enforce the required policies
for MA resource usage.

Most recent MA platforms adopt Java as the
implementation language because Java presents obvious
advantages in the support of mobile agents (dynamic class
loading, serialization, security mechanisms and policies,
directly provided as basic facilities of the language
environment). However, the Java Virtual Machine (JVM)
abstraction tends to hide platform-dependent information
and seems an obstacle when dealing with on-line
monitoring. Some extensions of the Java technology can
help in overcoming this transparency: the JVM Profiler
Interface (JVMPI) [3] exports several JVM internal events

for debugging and monitoring purpose, while the Java
Native Interface (JNI) [4] permits to integrate Java
programs with platform-dependent executable code. In
addition, the Java framework has already faced the
necessity of integrating with components and tools
compliant with widespread Internet protocols, such as
SNMP [5], and has shown its suitability to encapsulate
specific aspects of legacy components [6].

The paper describes the Monitoring Application
Programming Interface (MAPI) and its implementation to
build a monitoring component for Java-based MA
environments. In particular, MAPI has been integrated in
the Secure Open Mobile Agent (SOMA)* platform [7, 8].
MAPI exploits JVMPI to collect several application-level
events produced by Java applications (e.g., object
allocation and method invocation). In addition, it employs
the JNI technology to make possible the integration with
platform-dependent native monitoring mechanisms, which
we have currently implemented for Windows NT, Solaris
and Linux. MAPI encapsulates also legacy SNMP
components and filters their information to yield
aggregated monitoring indicators, thus limiting the
overhead due to long sequences of SNMP requests/
responses.

SOMA exploits MAPI to obtain monitoring
information about MA resource usage, both local and
remote. If MAPI is responsible for local indicators,
SOMA has visibility of the global state of distributed
resources by using ad-hoc mobile monitoring agents. They
are in charge of collecting, filtering and transporting
requested data to build a distributed framework that
employs monitoring information as the knowledge base
for the enforcement of suitable management policies.
Monitoring indicators are exploited to control, and
possibly to deny, the operations of specific mobile agents
on available resources with fine granularity. For instance,
in case of locally congested situation, SOMA
administrators can dynamically limit the number of
operations available for authorized agents of remote users,
up to their complete block.

The paper finally reports measurements of the
overhead introduced by MAPI monitoring over the
different supported operating systems. The overhead
depends mainly on the granularity of monitoring
indicators and on the time interval for their update, and
can be tuned dynamically by SOMA administrators in
response to service/system runtime conditions. The
presented performance shows the feasibility of the MAPI
approach that does not impose any modification to the
standard JVM. This should be considered a basic
requirement for any MA platform that aims at working

* SOMA is available at:
 http://lia.deis.unibo.it/Research/SOMA/

over global and open distributed environments such as the
Internet.

2. Technologies for On-line Monitoring of
Java-based Mobile Agents

The MA programming paradigm is a promising
technology for the design and implementation of
applications in the Internet scenario. However, mobile
agents require establishing a trusted relationship between
involved parties, in order to protect both agents and
execution environments. For instance, it is necessary to
control the amount of resources used by mobile agents at
runtime in order to protect agent execution environments
against attacks such as denial of service, a major threat to
the availability of MA platforms. This scenario stresses
the importance of on-line measurement and control of
resource consumption in MA systems.

As most current MA platforms are implemented in
Java, we have decided to classify resources in JVM
resources and Operating System (OS) ones. We define the
formers as the resources supported by the JVM and visible
to a Java-based running agent. The set of JVM resources
consists of all local and remote resources accessible as
Java objects. The latter are the execution resources of the
hosting operating system and are at a lower abstraction
layer than the former. As an example, authorized Java-
based mobile agents use CPU and in/out bandwidth of
their current execution environment, even if JVM hides
the visibility of their usage, e.g., the effective CPU time
consumed by a specific agent.

Java-based MA platforms can exploit Java mechanisms
to control the access to JVM resources. In particular, they
usually take advantage of the SecurityManager, either
in its basic version or in a proprietary specialization, that
is part of the Java programming environment. The
SecurityManager controls the JVM resource access by
defining suitable permission classes and security policies.
Nevertheless, it can only control Java code access
permissions, while mobile agents also require other
mechanisms and tools, able to dynamically ascertain the
quality of usage in the access to both JVM and OS
resources.

Two solution guidelines are viable. The first is to build
ad-hoc resource managers for any type/instance of
resource potentially accessible by mobile agents, and to
force agents to work on resources only via these
intermediary entities. In this case, agents have no direct
visibility and should always use resource manager
mediators. This solution requires writing at least one
manager for each type of recognized resource, and also
imposes the overhead of a proxy for any access.

The second possibility is to organize an on-line
monitoring service that inspects the state of both JVM and

OS resources during agent execution. This is possible by
exploiting new Java technologies (JVMPI and JNI) that
extend the visibility available within the JVM, and by
integrating with external and standard SNMP monitoring
components, either Java-based or not.

JVMPI can help in monitoring and controlling the
consumption of JVM resources. JVMPI is an experimental
interface featured by the Java 2 platform and mainly
designed to help developers in debugging Java
applications. JVMPI is a two-way API between the JVM
and a dedicated profiler agent. In one direction, the JVM
notifies several internal events (e.g., Java thread state
change, class loading operations, object allocation/
deallocation) to the profiler agent. In the other direction,
the profiler agent can enable/disable the notification of
specific types of events and can perform some limited
management actions on the JVM (e.g., suspend/resume
Java threads and enable/disable/force the garbage
collector execution).

JNI permits to achieve visibility of OS resources by
providing a standard way to invoke platform-dependent
code from the JVM. JNI is a two-way API interface that
permits Java threads to invoke native methods, i.e.,
platform-specific functions typically written in C/C++,
usually available as Windows NT Dynamic Link Libraries
(DLL) and as Shared Object (SO) libraries under Solaris
and Linux. In one direction, any Java program can invoke
a native method, simply by declaring the method with the
keyword native and with no body. After the binding
obtained by calling the System.loadLibrary()

method, the JVM uses JNI to call the requested function
in the native library during the execution. JNI specifies the
mode of method invocation: for instance, it rules how to
perform parameter marshalling/unmarshalling between the
Java invoking thread and the invoked native method. In
the other direction - from the native library to call JVM
entities - JNI provides native methods with callbacks to
the Java environment and to the invoking Java object,
which can access and modify object values, call Java
methods, and raise Java exceptions.

SNMP is currently the most diffused monitoring
solution in the network management domain. It is a
specialized request/reply protocol between two types of
possibly remote entities, SNMP managers and SNMP
agents. The SNMP manager uses this protocol to request
values of state indicators to one of its SNMP agents.
SNMP agents play the role of servers that reply to
manager requests by extracting the indicator values from
their local MIBs. The MIB specifies the organization and
formats of the maintained state indicators. Recent research
work shows an increasing trend in exploiting Java as a
basic technology in the systems management area [6]. The
main motivation is the capacity of Java of supporting
rapid prototyping of SNMP-compliant wrappers and

integrators (the same does Java with other recognized
management technologies, such as CORBA and CMIP).
In addition, some proposals start to choose Java as the
platform both for implementing new SNMP components
and for putting together legacy management sub-systems
and solutions [9, 10].

3. Local Monitoring and Control of SOMA
Mobile Agents

The Secure and Open Mobile Agents (SOMA) is a
programming framework designed and implemented to
support the deployment of services in the global, open and
untrusted Internet environment [7]. It exhibits a modular
organization in a set of layered middleware services and is
implemented in Java to achieve portability (see Figure 1).
SOMA provides services for agent migration, naming,
communication, security and interoperability. In addition,
SOMA agents allow the dynamic installation and the
extension of infrastructure/service components by
permitting code and state migration during service
provision.

To achieve the scalability that is crucial in the global
Internet scenario, SOMA offers locality abstractions to
describe any kind of interconnected system. Any node
hosts at least one place for agent execution; several places
are grouped into domain abstractions that correspond to
network localities. In each domain, a default place is in
charge of inter-domain routing functionality and
integration with legacy components via CORBA. The
mobile place is the locality abstraction used to support
mobile devices: it enhances the normal place with specific
features for automatic reconfiguration when changing
domain of attachment [11].

Java Virtual Machine

Heterogeneous Distributed System

SOMA
Middleware

Services

Security Interoperability

Migration

Information
Retrieval

Multimedia
Distribution

Systems
Management

MAPI

Naming Communic. Monitoring

Control/
Management

SOMA-based
Applications

Figure 1. The modular service architecture of the
SOMA platform

While other papers [7, 8] give a general presentation of
the SOMA platform and of its middleware services, here
we focus on the specific solutions adopted for the
monitoring and control of SOMA agents.

We claim that the diffusion of the MA technology in
industrial and commercial applications is still slowed
down by the limited confidence that organizations are
willing to concede to MA execution. This makes crucial
not only to have flexible mechanisms and tools to
admit/deny agent access to resources, such as the role-
based policies expressed in Ponder [12], but also to
dynamically observe and control of the amount of
resources consumed by MA execution. In other words,
MA platforms should provide functions for the on-line
monitoring and management of mobile agents to enable
system administrators to control the operations of either
malicious or badly programmed admitted agents. These
are the reasons for the design and the implementation of
the on-line MAPI component and for its integration within
the SOMA programming framework. MAPI inspects the
state of local (both JVM and OS) resources and permits to
operate simple management actions on SOMA agents.

MAPI monitors the state of resources used by agents at
any single host, and exploits the SOMA platform itself to
coordinate different local monitoring entities (see Section
5). This organization produces a global vision of the
monitored distributed infrastructure and performs the on-
line management of SOMA-based services.

Figure 2 shows the MAPI architecture that provides a
uniform monitoring interface independent of platform
heterogeneity. It is implemented by the ResourceManager
class that integrates three different components: the MAPI
Profiler Agent, the MAPI SNMP Agent, and the
MAPI*ResManager.

Resource Manager class

Java Native Interface

JVM Profiler Interface
MAPI NT

ResManager class

Java Virtual Machine

MAPI Profiler Agent

Monitoring Application Programming Interface (MAPI)

Windows NT OS

MAPI
WindowsRM

DLL

SNMPv3
agent

Solaris OS

MAPI
SolarisRM

SO

SNMPv3
agent

SuSE Linux OS

MAPI
LinuxRM

SO

SNMPv3
agent

MAPI SVR4
ResManager class

MAPI Linux
ResManager class

MAPI SNMP
Agent class

Off-the-shelf
components

MAPI platform-independent
components

MAPI platform-dependent
components

Figure 2. Architecture of the Java-based MAPI

The MAPI Profiler Agent is able to gather monitoring
information about JVM resources of the monitored target.
It not only collects JVMPI events but also filters and

processes them on-line, to offer concise monitoring
indicators during service execution. The JVMPI-based
monitoring functions are immediately portable on any host
that runs the JVM version 2.

According to the SNMP terminology, the MAPI SNMP
Agent acts as an SNMP manager that interrogates the
standard SNMP agent available on a target to obtain
monitoring data about local OS resources. The MAPI
SNMP Agent not only provides a uniform Java interface
by wrapping possibly non-Java SNMP agents, but also
implements several local optimizations of the SNMP
protocol, as described in the following section. In
addition, it simplifies the configuration phase of the
security parameters needed in SNMPv3, by integrating
with the SOMA distributed security infrastructure [7].

In addition, the ResourceManager can exploit the
MAPI*ResManager classes to achieve visibility of OS
resources by integrating with platform-dependent
monitoring functions via JNI. These functions are
implemented as native libraries with the same interfaces
for different platforms (MAPI WindowsRM DLL on
Microsoft Windows NT 4.0, MAPI SolarisRM SO on
SUN Solaris 7, and MAPI LinuxRM SO on SuSE Linux
6.2). ResourceManager is in charge of loading at run-time
the correct native library for the current monitored target,
to provide platform independence. In this way,
MAPI*ResManager permits to obtain OS resource
monitoring data also when SNMP agents are not available
on the target host.

Figure 3 shows the MAPI set of methods that provide
monitoring parameters summarizing the current state of
the monitored target, and in particular of the SOMA
agents running on it. Administrators of SOMA-based
services (or even autonomous software-based service
managers) can use MAPI to obtain management
information at runtime to adapt service provision. In a
runtime scenario, the overhead is obviously critical, and
monitoring results should be promptly and immediately
available to managers (see Section 6). For this reason,
MAPI can tune its intrusion to service-specific time
constraints: all MAPI methods have a msec invocation
parameter that indicates the time interval for refreshing
monitoring indicators. This time interval is propagated to
all MAPI components to update the statistics of collected
JVMPI events, to interrogate SNMP agents, and to invoke
native monitoring libraries.

MAPI methods return either an object or an array of
objects of the three classes ProcessInfo,
NetworkInfo, and FileSystemInfo shown in Figure 3.
The ProcessInfo object maintains all data related to the
current pid process. Monitored data include the CPU
usage (percentage and total time) for any specified
process, its allocated memory (physical and virtual), and
miscellaneous information on its composing threads. In

addition, for JVM threads, MAPI maintains the reference
to the Java thread object, its lifetime, and the number of
loaded classes, used monitors, allocated objects, invoked
methods, network and file system operations. For non-
Java threads, MAPI provides the thread identifier and the
percentage/effective time of CPU usage.

Package res;

public class ResourceManager{
String getOS(); // current operating system
ProcessInfo[] getProcessInfo(long msec);
ProcessInfo getProcessInfo(int pid,long msec);
ThreadInfo getThreadInfo(Thread thread,long msec);
NetworkInfo getNetworkInfo(long msec);
FileSystemInfo[] getFSInfo(long msec);
FileSystemInfo getFSInfo(int pid,long msec);
}

Public class ProcessInfo{
int pid; // Process ID
String name; // Name
Float cpu; // %CPU
long time; // CPU time
long physMem; // Physical memory
long virtMem; // Virtual memory
long totalMem; // Total phys. memory
ThreadInfo[] thread; // Thread info
}

public class JavaThreadInfo
 extends ThreadInfo{
Thread thread; // thread object
Int classLoad; // # loaded classes
int monContended; // # monitors
int objAlloc; // # objects
int objLiveAlloc; // # live objects
int objSize; // heap allocation
int objLiveSize; // live heap alloc.
Int methodCall; // # invoked methods
int tcpRead; // # TCP read ops
int tcpWrite; // # TCP write ops
int udpReceive; // # UDP read ops
int udpSend; // # UDP write ops
int FSRead; // # file read ops
int FSWrite; // # file write ops
long time; // life time
}

public class ThreadInfo{
int tid; // thread id
float cpu; // %CPU
long time; // CPU time
}

public class NetworkInfo{
int udpPackIn; // # UDP packets in
int udpPackOut; // # UDP packets out
int udpPackInErr; // % UDP in errors
int udpPackOutErr;// % UDP out errors
int tcpConn; // # TCP connections
int tcpSegIn; // # TCP segments in
int tcpSegOut; // # TCP segments out
int ipPackIn; // # IP packets in
int ipPackOut; // # IP packets out
int ipPackInErr; // % IP in errors
int ipPackOutErr; // % IP out errors
}

public class FileSystemInfo{
Int pid; // process ID
String name; // process Name
long available; // total space avail.
float available%; // as above, perc.
FileInfo[] openFiles;
}

public class FileInfo{
String absFileName; // abs. file name
long time; // time from opening
int modalities; // 0 only reading,
 // 1 only writing, 2 both
}

Figure 3. The ResourceManager class interface

The NetworkInfo class reports aggregated monitoring
data about the usage of the communication infrastructure
on the target host. Monitored data include the total
number of sent/received UDP/IP packets, of TCP
connections and sent/received segments, the percentage of
UDP/IP packets received with errors, and the percentage
of discarded UDP/IP output packets. These parameters
permit to give an overall evaluation of the host traffic
conditions and to identify congestion situations.

Finally, the FileSystemInfo class maintains general
information about the file system of the target (disk free
space and its percentage on total size) and detailed data
about currently opened files. In particular, for any active
process and for any file opened in the current session, the
class returns the opening time and its opening mode
(read/write/both/locked).

4. The MAPI Implementation

A basic guideline in the implementation of the MAPI
tool is not to modify the standard JVM. This choice,

together with the possibility to monitor mobile agents
without intervening on either their source code or their
executables, is fundamental to adopt MAPI for the on-line
distributed monitoring of MA-based services over the
open Internet infrastructure.

MAPI has required the design and implementation of
several ad hoc modules: 1) the MAPI Profiler Agent for
dynamically configurable on-line monitoring of the JVM
state; 2) the MAPI SNMP Agent to obtain monitoring data
from SNMP agents in execution on the targets; 3) the
MAPI*ResManager and its native libraries (MAPI
Windows/Solaris/Linux RM DLL/SO) for uniform data
acquisition via heterogeneous platform-dependent
monitoring mechanisms.

4.1. The MAPI Profiler Agent

The MAPI Profiler Agent permits to configure
dynamically the JVMPI-based event notification and to
provide the ResourceManager class with concise
monitoring indicators obtained by filtering the history of
previous performance. In a more detailed view, the MAPI
Profiler Agent gives the possibility to change the set of
notifiable events with no suspension of the monitoring
execution, by implementing methods to enable/disable the
event notification related to object allocation/deallocation,
method invocation/exit, and lock/unlock of Java monitors.
It keeps and updates statistics of the monitored events to
provide immediately readable indicators with no need to
maintain huge logs of monitoring data. For instance, the
profiler traces only the size of the total memory allocated
to the threads of a SOMA agent and does not log their full
data due to the execution of any system call for memory
allocation. In addition, the refresh interval of monitoring
indicators can change dynamically to tune the MAPI
intrusion depending on service-specific constraints and
run-time conditions (see Section 6).

Figure 4 sketches a piece of the MAPI Profiler Agent
code. When a registered event occurs, JVMPI signals an
event ev to the profiler that performs event-specific
actions. In particular, the figure shows the initializations
done when the class SocketInputStream is loaded.
After initializing the internal socketread variable, the
profiler can trace any invocation of the method
socketRead() by incrementing the stat->tcp_read
counter, which maintains the account for the TCP read
operations of any SOMA agent in a specified time
interval. These data represent a rough estimation of the
incoming network traffic produced by Java service
components.

If more precise information about the traffic due to
specific Java threads is needed, ResourceManager can
command the MAPI Profiler Agent to examine
dynamically the invocation parameters of the

socketRead()/socketWrite() methods. This is
possible by setting at the maximum level of detail
(JVMPI_DUMP_LEVEL_2) the triggering of JVMPI_

EVENT_OBJECT_DUMP for the specified objects. The
default of the MAPI Profiler Agent, of course, is different
to avoid the excessive overhead of the dynamic generation
and processing of object dumps.

JVMPI_Event *ev; // JVMPI event reference
jmethodID socketread = NULL; // method reference

switch(ev->event_type)
{...
case JVMPI_EVENT_CLASS_LOAD:
 if(strcmp(ev->u.class_load.class_name,
 "java/net/SocketInputStream")==0)
 {
 JVMPI_Method *meth;
 for(meth=ev->u.class_load.methods; ...; meth++)
 if(strcmp(meth->method_name,"socketRead")==0)
 socketread=meth->method_id;
 }
 break;
case JVMPI_EVENT_METHOD_ENTRY2:
 stat = tab1.get(ev->env_id);
 if(ev->u.method.method_id==socketread)
 stat->tcp_read++; // update TCP statistics
...

Figure 4. Monitoring the invocation of socket-
Read()in the MAPI Profiler Agent

4.2. The MAPI SNMP Agent

The MAPI SNMP Agent refines and extends the SNMP
gateway component included in our MA-based framework
for the distributed management of heterogeneous network
elements [13]. It acts as an SNMP manager that locally
interrogates its SNMP agent. The MAPI SNMP Agent is
programmed to request monitoring information
maintained not only in the standard MIB (monitoring data
about network elements and protocols), but also, if
supported, in the MIB extensions included in the Host
Resources Groups called Storage, Running Software, and
Running Software Performance [14]. These groups
provide information about resource usage of processes
currently in execution to obtain the MAPI ProcessInfo
and FileSystemInfo, while NetworkInfo exploits the
standard SNMP MIB.

The MAPI SNMP Agent can improve the efficiency of
standard client/server SNMP operations, especially when
dealing with the network transfer of large chunks of
monitoring data. It transmits only the changed MAPI
indicators to ResourceManager, which maintains old
values for the non-received parameters. Most important,
the MAPI SNMP Agent locally interrogates its SNMP
agent and pre-processes the obtained results to offer
concise indicators to possibly remote managers, thus
significantly reducing the generated network traffic. In
fact, a single MIB variable is usually at a lower level than
the MAPI indicators, and an aggregation of multiple
variables is required. These aggregations are known as
health functions [9]. For instance, the percentage of

discarded IP output packets is obtained by combining five
MIB variables:

gramsipForwDatastsipOutReque

100*s)ipFragFailtesipOutNoRouards(ipOutDisc
rripPackOutE

+
++=

where ipOutDiscards, ipOutNoRoutes and
ipFragFails are the number of output IP datagrams
discarded (respectively, for problems in buffer space, in
routing and in fragmentation), while ipOutRequests and
ipForwDatagrams are the total number of IP datagrams
transmitted (respectively, locally generated packets and
forwarded ones) [5].

In addition, the MAPI SNMP Agent can perform all the
operations needed for the support of mutual authentication
in case of interaction with SNMPv3 agents. It can obtain
dynamically the needed security information from the
public key infrastructure integrated with the SOMA
programming framework [7, 15]. Finally, it can locally
store configuration parameters specific for its SNMP
agent (e.g., the supported MIBs), in order to automate the
possibly complex phase of initialization of the MAPI tool.

4.3. The MAPI*ResManager

When neither the SNMP agent nor the Host Resources
MIB extensions are supported on target, Resource-
Manager can enable the gathering of monitoring data
about non-Java processes via native mechanisms. This
information is crucial when control actions on SOMA
agents mainly depend on runtime conditions of the hosting
environment. For instance, a SOMA administrator can
enforce a very strict policy on agent CPU usage only
when the total CPU usage on the host overcomes a
specified threshold.

MAPI native modules extract uniform data by
exploiting heterogeneous monitoring mechanisms
provided by the target operating system. The Resource-
Manager class employs JNI to load the target-specific
native library at runtime. We have currently implemented
the native monitoring components for Windows NT
(MAPI WindowsRM DLL), Solaris (MAPI SolarisRM SO)
and Linux (MAPI LinuxRM SO). Each component
integrates with Java via the system-specific classes called
MAPI NT ResManager, SVR4 ResManager and Linux
ResManager, as depicted in Figure 2.

Figure 5 shows a piece of the MAPI WindowsRM DLL
that accesses OS resource state indicators maintained in
Microsoft system registry keys. In particular, the figure
reports the polling of the registry to obtain updated
information about the processes in execution. The system
call RegQueryValueEx(HKEY_PERFORMANCE_DATA,

…) permits to obtain some performance data. The reported
invocation returns a reference to the native method, called

perfdata, used to access the whole information about a
process with identifier PID.

RegQueryValueEx(HKEY_PERFORMANCE_DATA, “232”, NULL, NULL, perfdata, &size);
// "232" for process-related data

RegCloseKey(HKEY_PERFORMANCE_DATA);
pointer = (PBYTE)perfdata + perfdata->HeaderLength;
obj = (PPERF_OBJECT_TYPE)pointer;
pointer = (PBYTE)obj + obj->HeaderLength;
cnt = (PPERF_COUNTER_DEFINITION)pointer;
while (cnt->CounterNameTitleIndex != PID)

{ pointer = (PBYTE)cnt + cnt->ByteLength;
 cnt = (PPERF_COUNTER_DEFINITION)pointer;
}

pointer = (PBYTE)obj + obj->DefinitionLength;
inst = (PPERF_INSTANCE_DEFINITION)pointer;
pointer = (PBYTE)inst + inst->ByteLength + cnt->CounterOffset;
value = *((jlong*)pointer);

Figure 5. Monitoring process information in MAPI
WindowsRM DLL

For Solaris and Linux platforms, we have implemented
native monitoring modules as dynamic SO libraries that
mainly exploit the /proc feature. /proc is a virtual
directory that makes visible OS resource state indicators
as a specified sub-tree of the file system. The MAPI
SolarisRM/LinuxRM library polls monitoring information
about currently executing processes by reading the
corresponding files in the /proc directory.

For instance, the ioctl()call, with PIOCPSINFO and
PIOCUSAGE parameters, permits to obtain prpsinfo and
prusage information, which maintain several data about
the identity of a specified process and its CPU usage,
respectively. Similarly, SolarisRM/LinuxRM native
components extract the descriptors of the open files from
the /proc/PID/fd virtual directory, where PID is the
identifier of the monitored process. File descriptors data
are combined with information from the system file table,
with an approach similar to the one followed in the
implementation of the Unix fuser utility. Aggregated
information about the network usage is obtained via the
invocation of the standard netstat system call [16].

5. Distributed Monitoring and Control of
SOMA Agents

Any SOMA place can exploit the local MAPI
component to achieve visibility of several on-line
monitoring indicators, to enforce a local policy for MA
resource usage. In addition, since mobile agents usually
act as distributed service components over distributed
systems, it is necessary to have also a global vision of the
distributed state of resource consumption in order to
enforce distributed control and management policies. For
instance, a SOMA administrator can enforce policies
involving a set of distributed resources, e.g., "the total
CPU time per day consumed by all SOMA agents of
principal A is lower than xxx sec". The MAPI component
is also the basic mechanism to provide distributed
management in SOMA: monitoring data retrieval/filtering
and the coordination between local monitoring entities are

implemented, in their turn, in terms of SOMA mobile
agents for the monitoring and control of distributed
systems and services, either SOMA-based or not.

To provide distributed monitoring and control of
SOMA agents, we have designed and implemented two
types of interworking agents: Managers and Explorers.
Each Explorer agent is in charge of collecting monitoring
data from one set of targets (i.e., target domain) usually
belonging to the same network locality. The Manager
agent commands the Explorers, combines their monitoring
results and presents a global view of monitored domains
to system administrators. In addition, the Manager can
delegate management operations to its Explorers, in a way
similar to [17].

Several organizations are possible, with different
hierarchical levels and numbers of Managers/Explorers
per target domain. In our organization, each system
administrator can delegate several management operations
to one or more Managers that operate autonomously. To
collect information about the overall state of its
administered domains, the Manager coordinates the
operations of its Explorer agents. In particular, it can ask
Explorers to gather specified monitoring data, with
specific alert thresholds and refresh time intervals, and
can also command management operations. In addition, a
Manager can create new monitoring Explorers at run-time
to go and control new target domains.

Explorer agents periodically migrate to their target
domain hosts to invoke locally MAPI functions, in order
to collect monitoring indicators about both JVM resources
and OS ones. Explorers can respect alert thresholds the
responsible Manager can modify dynamically: when
thresholds are exceeded, the Explorer can either notify its
Manager or take autonomously corrective operations on
service components. Explorers can reduce network traffic
due to distributed monitoring by performing locally
management operations without intervention of either
Managers or system administrators.

Explorers can also invoke the MAPI Profiler Agent
functions to control and manage local Java threads. In
particular, they can modify the priority of running threads
and can force thread suspension/termination. In addition,
when controlling SOMA agents, they can suspend agents
for a specified interval time, by exploiting the SOMA
persistency mechanisms [11]. Let us observe that the
specification and implementation of the JVM itself limit
possible control actions. Additional control functions are
recognized as crucial especially in the emerging market of
JVM-enabled embedded devices, and are recently
stimulating SUN research work to provide separated
execution environments for different Java thread groups
(task isolation), to permit their independent control.

The overhead of the MAPI distributed tool can be
tuned at run-time by modifying different monitoring

parameters. It is possible to change dynamically both the
visit time interval for Explorers to their target domain
hosts and the refresh time interval for MAPI modules. In
addition, the Manager can command Explorers to invoke
the MAPI Profiler Agent methods to enable/disable the
notification of specific kinds of events, thus adapting
dynamically the collection of monitoring data to the
enforced management policy. The following section
presents some experimental results about the overhead of
SOMA agent monitoring.

SOMA administrators can define agent permissions
and duties. Agent permissions specify which actions
agents are authorized to perform on a set of target
resources, possibly depending on runtime conditions.
Agent duties specify the actions agents must perform on a
set of target resources when a specified condition takes
place [12].

For instance, to control the network resources
consumed in a target domain, one administrator can
enforce a distributed authorization policy that limits the
number of socket operations of a specified SOMA agent
during one day over all the target hosts in the domain. The
limit on the number of socket operations can also apply to
groups of agents, e.g., the whole set of agents of the same
responsible principal.

As an example of agent duty specification, one
administrator can request an Explorer agent to lower
automatically the priority of a SOMA agent running on
specified host when the total CPU usage percentage on
that host is higher than a defined threshold. In this simple
case, the Explorer controls a single agent and monitors the
state of a single host. SOMA permits to define also duties
that impose to monitor the state of a whole target domain
and to perform management operations on groups of
agents.

In the first example, the MAPI-based distributed
monitoring tool ascertains the number of socket
operations of the agent (or the agent set) in the different
nodes of the domain. The Manager commands the
Explorer to probe the target domain at any request of
socket operation by one of the controlled agents. This
introduces a delay in the control of agent authorizations
but permits to specify policies that depend on the current
distributed state and are enforced on several distributed
agents.

In the second example, the MAPI-based distributed
tool enables the monitoring of the CPU usage and the
triggering of the management operation. In particular, the
Manager commands the Explorer to control the state of
the CPU usage on the specified host periodically,
depending on the interval time indicated in the duty
specification. When the threshold is overcome, the
Explorer acts on the specified agent by exploiting MAPI

functions to modify dynamically the priority of Java
threads.

The conditions to be controlled in SOMA agent
permissions and duties can be expressed as even complex
functions of the MAPI monitoring indicators. As shown
by the examples, it is often necessary to monitor not only
the current state of SOMA agents and of their Java
threads, but also of systems and service components
external to the JVM.

6. Experimental Evaluation of SOMA
Agent Monitoring and Control

To validate the applicability of the MAPI-based
distributed monitoring and control to mobile agents, we
have measured the overhead of the MAPI component on
different platforms, e.g., Intel PentiumIII 600MHz PCs
with either Microsoft Windows NT 4.0 or SuSE Linux
6.2, and SUN Ultra5 400MHz workstations with Solaris
7. The hosts are interconnected via 10 Mb Ethernet Local
Area Networks (LANs).

This section reports the costs of each MAPI module.
With regard to the MAPI Profiler Agent and the
MAPI*ResManager, we have used a Java benchmark
application that stresses CPU and memory usage by
generating a fixed number of different threads and objects.
In particular, the measurements reported in the following
refer to the case of 50 benchmark processes in execution,
each one with an average number of 5 threads. We have
measured the overhead of the two modules depending on
the time period to refresh monitoring indicators. We
define the overhead percentage (Overhead%) introduced
by the monitoring tool as:

1001% ∗




 −=

noMon

mon

T

T
Overhead

where TMon and TnoMon are the average completion times of
the Java benchmark on unloaded targets, respectively,
with and without the MAPI tool in execution.

Let us note that unloaded targets represent the worst
possible case for Overhead%. In fact, as soon as the load
increases, TnoMon grows faster than Tmon, and their ratio
consequently tends to decrease. This has been validated
by taking Overhead% measurements with several general-
purpose benchmark tests running: the measurements have
confirmed the expected behavior, with an average
decrease of about 1.0-1.5% of the Overhead% parameter
in conditions of average load.

Figure 6 depicts the Overhead% introduced by the
MAPI*ResManager to monitor all the information
contained in ProcessInfo for the three supported
platforms. The diagram of Overhead% is drawn function
of the refresh time that represents the interval between

two successive invocations of the native monitoring
modules via JNI. Overhead% exhibits a linear dependence
on the reciprocal of the refresh time. We have obtained
analogous trends in intrusion measurements in case of
native monitoring of NetworkInfo and
FileSystemInfo.

ProcessInfo

0.00

2.00

4.00

6.00

8.00

10.00

12.00

0.0 2.0 4.0 6.0 8.0 10.0 12.0

Refresh Time (sec)

O
ve

rh
ea

d
%

MAPI Window s ResManager
MAPI Solaris ResManager
MAPI Linux ResManager

Figure 6. Overhead% of MAPI*ResManagers for
process monitoring

In general, all tests show that the MAPI*ResManager
causes a limited overhead (Overhead% lower than 3%)
when the refresh time interval is greater than 3 seconds.
This can be considered acceptable because the refreshing
of monitor indicators with this time period is sufficient for
the enforcement of most resource usage policies. In fact,
native modules continuously collect monitored events,
and the refresh interval represents only the period between
successive interrogations of native monitoring results.

We have also measured the overhead introduced by the
MAPI Profiler Agent. In this case, the JVM notifies
continuously certain kinds of events (not only at polling
times), and the refresh time represents the interval to
process the collection of observed events in order to
obtain the desired concise monitoring indicators. Figure 7
depicts the different contributions of the Overhead%
related to data access and to the JVMPI notification
mechanisms, i.e., monitor, method and object tracing. The
results obtained for the Solaris platform are very similar to
the ones for Windows NT and Linux, with differences
lower than 3% of the maximum Overhead%.

The figure shows that the JVMPI notification is
scarcely intrusive under different load conditions and
independent of refresh times. The refresh time affects only
the overhead due to the processing of collected events and
to the reading of MAPI indicators. Object tracing has
shown to be the most relevant factor in the MAPI Profiler
Agent intrusion because of the large amount of data it

requires to receive and collect in the profiler. In any case,
the total overhead can be kept under 2.0% when the
refresh interval is greater than 2 seconds and object
tracing is disabled.

JVMPI monitoring

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Sample Time (sec)

O
ve

rh
ea

d
%

Data reading

Object trace

Method trace

Class/Monitor Trace

JVMPI monitoring (without object tracing)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Sample Time (sec)

O
ve

rh
ea

d
%

Data reading

Method trace

Class/Monitor trace

Figure 7. Overhead% of the MAPI Profiler Agent

Finally, we have considered the distributed monitoring
and control of SOMA agents, which exploits mobile
Explorer agents to migrate and to interrogate locally the
MAPI modules. The size of Explorers vary from about
8kB (at the first migration, without carrying any
monitoring indicator) to 15kB (at the end of exploration,
including all the monitoring state of the target domain).
Figure 8 reports the time an Explorer needs to collect
monitoring indicators by using MAPI SNMP Agents,
depending on the number of hosts in the target domain.
The MAPI SNMP Agent filters and pre-processes the
monitoring data to collect. For several policies about MA
resource consumption, we have experienced that the
MAPI SNMP Agent operations significantly reduce the
size of MAPI indicators collected by the Explorer with
respect to the size of corresponding raw MIB values (1:3
reduction). This optimization is impossible in a traditional
Client/Server (C/S) approach where a fixed and
centralized manager remotely interrogates the different
SNMP agents involved (SNMP C/S graph in the figure).
In addition, the MA technology is particularly suitable

when the target domain includes different LANs,
interconnected by low bandwidth links (in our
measurements, two Ethernet LANs with n/2 hosts and
connected via a 56kb modem link). In this case, Explorer
uses the slow link only once to migrate from one LAN to
the other, while the C/S solution should use the link at
least in n/2 SNMP requests and n/2 SNMP replies,
wherever the centralized manager is located.

MAPI Explorer vs. SNMP Client/Server

0

2000

4000

6000

8000

10000

12000

0 2 4 6 8 10 12 14
#hosts in target domain

T
im

e
(m

se
c)

Explorer agent

SNMP Client/Server

Explorer agent (different LANs)

SNMP Client/Server (different LANs)

Figure 8. MAPI Explorer vs. SNMP Client/Server
to monitor SOMA agents in one target domain

7. Related Work

Even if the monitoring and control of agent operations
during execution are closely related to an enlargement of
acceptance of the MA technology, they are still open
issues for state-of-the-art MA platforms. To the best of
our knowledge, there are no Java-based MA programming
environments yet to provide mechanisms to measure,
control and account agent resource consumption without
imposing modifications to the standard JVM [18, 19].
Several research activities have worked, instead, on the
exploitation of mobile agents as a suitable implementation
technology for monitoring and managing distributed
systems/services. In this area, recent research experiences
have demonstrated the MA flexibility and effectiveness to
decentralize and to automate the control of distributed
service components [9, 17].

Not only the introduction of the MA technology, but
also the diffusion of Java for the implementation of Web
services are recently changing the perspective in the
monitoring area, where significant research work has been
accomplished in the last years. Several distributed
instrumentation systems have achieved very interesting
results, especially to limit monitoring intrusion [20, 21].
However, they require instrumenting either the source
code or the binary of monitored applications, and tend to

be language- and platform-specific. This is not suitable for
the monitoring of either mobile agents or, more generally,
Web-based services that consist of distributed
heterogeneous components not to be suspended during
execution.

Some efforts have specifically addressed on-line
monitoring. They have concentrated on producing
effective tools by generally exploiting ad-hoc mechanisms
available only for specific operating systems [22, 23].
These solutions are too platform-dependent to be suitable
for open and intrinsically heterogeneous distributed
environments such as the Internet.

In the area of network monitoring and management,
many researchers have used standard protocols to
interrogate the state of network equipment. The most
diffused protocol is still SNMP, mainly because of its
simplicity. Other approaches start to be common: some of
them provide network traffic monitoring with the
granularity of a whole network segment (Remote
MONitoring - RMON [5]); others exploit platform-
dependent libraries and commands (such as the UNIX
libpcap library) to enable network packet capture,
filtering and analysis at general-purpose hosts [24]. The
goal of these tools, however, is mainly the dynamic
observation of network traffic, with no provision of on-
line monitoring of service components at the application
level.

With regard to Java-based monitoring, some activities
have simply addressed the enhancement of standard
SNMP solutions with Web accessibility. Then, some
proposals have started to exploit Java networking facilities
and code mobility to provide an integrated middleware for
distributed monitoring [6]. Probably due to the novelty of
the technology, there are few examples of Java monitoring
tools based on JVMPI. Perfanal [25] exploits the SUN
HPROF profiler agent to perform an off-line analysis of
collected monitoring data and to obtain a user-level
concise view for debugging Java applications. JProf [26]
implements its own profiler agent and profiler process,
and provides a large set of functions to present the results
of an off-line data analysis in user-level interoperable
formats, such as tables and diagrams organized by using
XML.

8. Lessons Learned and Directions of
Future Work

First results in monitoring and controlling resource
consumption of SOMA agents have shown, on the one
hand, the feasibility of Java-based on-line monitoring,
and, on the other hand, the necessity to enable the
dynamic tuning of the monitoring overhead by adjusting
both the sample frequency and the set of collected data. In
normal working conditions, all tests indicate that

monitoring SOMA agents causes a negligible overhead
when the sample frequency goes under 0.3 Hz.

Notwithstanding the encouraging results obtained,
much work is still to be done to achieve a complete and
flexible control of SOMA agent resource consumption.
Apart from improving the performance of the local MAPI
component by adopting filtering strategies to maintain
only the monitoring indicators currently of interest, we are
working at:
� adopting the Ponder policy specification language to

express obligation and permission policies for SOMA
agents. These policies permit to specify control
thresholds that depend on the runtime state of managed
distributed systems, and to trigger automatically
management operations when controlled conditions
become valid;

� extending the distributed monitoring and control of
SOMA agents to permit the accounting and billing of
registered SOMA users for the effective resource usage
of their agents. Accounting and billing can exploit the
large set of monitoring information provided by the
MAPI component at runtime, but do not require the
evaluation and processing of monitoring data on-line.
This suggests differentiated strategies for data
collection, with possibly significant overhead
reductions.

Acknowledgements
Investigation supported by the Italian Ministero della
Ricerca Scientifica e Tecnologica in the framework of the
Project "MUSIQUE: Infrastructure for QoS in Web
Multimedia Services with Heterogeneous Access".

References
[1] G. Vigna (ed.), Mobile Agents and Security, Lecture Notes

in Computer Science, Vol. 1419, Springer Verlag, 1998.
[2] A. Corradi, M. Cremonini, R. Montanari, and C. Stefanelli,

"Mobile Agents Integrity for Electronic Commerce
Applications", Information Systems, Elsevier, Vol. 24, No.
6, 1999.

[3] Sun Microsystems - Java Virtual Machine Profiler
Interface (JVMPI), http://java.sun.com/ products/jdk/1.3/
docs/guide/jvmpi/jvmpi.html.

[4] R. Gordon, Essential Java Native Interface, Prentice Hall,
1998.

[5] W. Stallings, SNMP, SNMPv2, SNMPv3, and RMON 1 and
2, Addison Wesley, 1998.

[6] J. Lee, "Enabling Network Management Using Java
Technologies", IEEE Communications, Vol. 38, No. 1,
Jan. 2000.

[7] P. Bellavista, A. Corradi, and C. Stefanelli, "Protection and
Interoperability for Mobile Agents: A Secure and Open
Programming Environment", IEICE Transactions on
Communications, Vol. E83-B, No. 5, May 2000.

[8] P. Bellavista, A. Corradi, and C. Stefanelli, "An Integrated
Management Environment for Network Resources and

Services", IEEE Journal on Selected Areas in
Communication, Vol. 18, No. 5, May 2000.

[9] D. Gavalas, M. Ghanbari, M. O’Mahony, and D.
Greenwood, "Enabling Mobile Agent Technology for
Intelligent Bulk Management Data Filtering", IEEE/IFIP
Network Operations and Management Symposium
(NOMS), USA, Apr. 2000.

[10] AdventNet Inc., AdventNet SNMP API, http://www.
adventnet.com/products/snmpbeans/.

[11] P. Bellavista, A. Corradi, and C. Stefanelli, "Mobile Agent
Middleware for Mobile Computing", IEEE Computer, Vol.
34, No. 3, Mar. 2001.

[12] A. Corradi, N. Dulay, R. Montanari, and C. Stefanelli,
"Policy-Driven Management of Agent Systems", Policy
Workshop, Great Britain, Jan. 2001.

[13] P. Bellavista, A. Corradi, and C. Stefanelli, "An Open
Secure Mobile Agent Framework for Systems
Management", Journal of Network and Systems
Management, Vol. 7, No. 3, Mar. 1999.

[14] S. Waldbusser, and P. Grillo, "Host Resources MIB",
RFC2790, http://www.ietf.org/rfc/, Mar. 2000.

[15] Entrust Technologies - Entrust/PKI, http://www.entrust.
com/products/pki/.

[16] E. Nemeth, G. Snyder, T. R. Hein and S. Seebass, UNIX
System Administration Handbook, Prentice Hall, Sep.
2000.

[17] B. Pagurek, Y. Wang and T. White, "Integration of Mobile
Agents with SNMP: Why and How", IEEE/IFIP Network
Operations and Management Symposium (NOMS), USA,
Apr. 2000.

[18] G. Czajkowski, and T. von Eicken, "JRes: a Resource
Accounting Interface for Java", ACM Conf. Object-
Oriented Programming, Systems, Languages and
Applications (OOPSLA), USA, 1998.

[19] N. Suri, J. M. Bradshaw, M. R. Breedy, P. T. Groth, G. A.
Hill, R. Jeffers, and T. S. Mitrovich, "An Overview of the
NOMADS Mobile Agent System", ECOOP Workshop On
Mobile Object Systems, France, 2000.

[20] F. Lange, R. Kroeger, and M. Gergeleit, "JEWEL: Design
and Implementation of a Distributed Measurement
System", IEEE Transactions on Parallel and Distributed
Systems, Vol. 3, No. 6, Dec. 1992.

[21] A. Bakic, M. W. Mutka, and D. T. Rover, "BRISK: a
Portable and Flexible Distributed Instrumentation System",
Software - Practice and Experience, Vol. 30, No. 12, Dec.
2000.

[22] B. A. Schroeder, "On-Line Monitoring: A Tutorial", IEEE
Computer, Vol. 28, No. 6, June 1998.

[23] G. Weiming, G. Eisenhauer, K. Schwan, and J. Vetter,
"Falcon: On-line Monitoring for Steering Parallel
Programs", Concurrency - Practice and Experience, Vol.
10, No. 9, Sep. 1998.

[24] L. Deri, and S. Suin, "Effective Traffic Measurement
Using Ntop", IEEE Communications, Vol. 38, No. 5, May
2000.

[25] N. Meyers, "PerfAnal: A Performance Analysis Tool",
http://developer.java.sun.com/developer/technicalArticles/
GUI/perfanal/index.html.

[26] G. Pennington, and R. Watson, "JProf - a JVMPI Based
Profiler", http://starship.python.net/ crew/garyp/jProf.html.

