
CORBA Solutions for Interoperability in Mobile Agent Environments

Paolo Bellavista, Antonio Corradi
DEIS - University of Bologna

{pbellavista, acorradi}@deis.unibo.it

Cesare Stefanelli
Dip. Ingegneria - University of Ferrara

cstefanelli@ing.unife.it

Abstract
The Mobile Agent (MA) paradigm proposes several

attractive solutions to deal with the problems of network-
centric programming. Despite the availability of several
MA platforms, there are still only a few MA-based dis-
tributed services. The paper claims that the lack of
interoperability is one of the major obstacles to the large-
scale diffusion of the MA paradigm, and discusses solu-
tions to permit the interworking between heterogeneous
MA frameworks and other systems, whether MA-based or
not, via compliance with either accepted or emerging
interoperability standards. In particular, we focus on
compliance with CORBA, the accepted standard for OO
components, but also with MASIF and FIPA, respectively,
the OMG specification for the support of agent mobility
and management, and the framework for standard lan-
guages and protocols in agent communication. The paper
also reports performance results of CORBA-based
interoperability in the SOMA programming framework:
the presented costs, measured for a systems management
application, show the feasibility of the adopted
interoperability solutions.

1. Introduction

The widespread popularity of the Web and the ubiq-
uitous availability of access points to the Internet have
recently increased the interest in considering the global
network as an open distributed system for the design,
implementation and deployment of services. These new
services are network-centric and compose a scenario
where distribution, dynamic modifications, heterogeneity
and openness are basic requirements.

The design of network-centric applications has stimu-
lated the research on several new programming para-
digms. Some of them (Remote Evaluation, Code On De-
mand and Mobile Agents [1-4]) move from the consid-
eration that the traditional Client/Server (C/S) model is
not flexible enough for the new scenario. They extend the
expressive capacity of the C/S paradigm by giving the
possibility of transferring code over the network at run-

time. In particular, the MA paradigm permits location-
aware executing entities to migrate from one network host
to another one while in execution (with their code and the
reached execution state) [1].

The MA technology is providing attractive solutions in
many application areas, such as management of networks,
systems and services, mobile computing, electronic com-
merce, and intelligent information retrieval and filtering
[3]. The expected benefits span from realizing robust
remote interworking over unreliable networks to increas-
ing the asynchronicity in user interaction, from reducing
the traffic over the network to improving performance in
information retrieval by exploiting data locality, from
balancing load distribution in an administered network to
adding dynamically client-specified functionality to serv-
ers. Up to now, while there are many different MA sys-
tems, there are still only a few MA-based Internet serv-
ices, and some are mostly limited case studies.

What is currently limiting the MA diffusion in com-
mercial applications is the impression of immaturity
around the MA technology. On the one hand, the large
number of incompatible MA systems induces a sense of
uncertainty. System diversity is important but it can pro-
duce incompatibility, discouraging the investments by
software companies in MA applications. On the other
hand, the MA paradigm certainly raises new security
issues in the implementation of distributed applications.
Mobile agents are untrusted pieces of code that execute
on possibly untrusted hosts over a possibly untrusted
network used to migrate and communicate. Many flexible
solutions to MA security problems have been investigated
and deployed [5]; a still unresolved issue is to find, for
any specific application, the most suitable trade-off be-
tween contrasting requirements, such as desired security
levels and efficiency. We claim that both the necessary
degree of interoperability and the proper level of security
are key challenges to widen the application opportunities
of MA programming frameworks.

Interoperability is greatly simplified by a large accep-
tance of interoperable interfaces and standard guidelines.
In the area of distributed OO systems, the Object Man-
agement Group (OMG) has proposed and spread the

Common Object Request Broker Architecture (CORBA)
[6]. CORBA provides a stable model to cope with hetero-
geneity of distributed systems. Applications written ac-
cording to the CORBA standard are independent of target
implementation languages and operating systems. In
addition, they rely on brokers to automate object interac-
tion and to support flexible policies for object activation.
In the paper, we argue that mobile agents and CORBA,
which answer different needs, are not only compatible but
also complementary each to the other. We pursue the
integration of the two technologies, and, in particular, the
achievement of interoperability between heterogeneous
MA platforms and between mobile agents and non-MA-
based service components via compliance with CORBA-
based standards in the MA area.

Our ideas of interoperability and security have led to
the implementation of an MA programming framework,
called SOMA* (Secure and Open Mobile Agents), im-
plemented by using the Java 2 Platform, and designed for
the development and the support of applications in open
and global environments.

From the point of view of interoperability, the SOMA
platform provides application designers with facilities to
simplify the implementation of agents that can act as both
CORBA clients and servers. SOMA is also compliant
with the OMG Mobile Agent System Interoperability
Facility (MASIF) [7], which standardizes the basic func-
tions of MA frameworks for agent management and trans-
fer to external systems, whether MA-based or not.
MASIF is not the only CORBA-based standardization
effort in the agent area: from a different perspective, the
FIPA (Foundation for Intelligent Physical Agents) [8]
proposal mainly focuses on the definition of general stan-
dard languages and protocols for communication, coordi-
nation and management of heterogeneous agents. We are
working to integrate FIPA specifications in SOMA, in
order to answer the interoperability issues not covered by
MASIF, such as the message exchange between hetero-
geneous agents.

With regard to security, SOMA protects internal enti-
ties by providing an infrastructure designed on standard
cryptographic tools for authentication, authorization,
secrecy and integrity; in addition, SOMA interacts with
external entities by taking into account the CORBA Secu-
rity Services, as specified in MASIF.

2. Mobile Agents and CORBA

The term agent has many different meanings: in net-
work computing, mobile agents are computing entities
that can migrate during execution; in the Artificial Intelli-

* The SOMA platform is available at:
http://lia.deis.unibo.it/Research/SOMA/

gence (AI) field, intelligent agents are computing ele-
ments that embody high capacities of coordination. In the
following, we refer to mobile agents as programs that act
on behalf of a principal (user or organization) and can
autonomously migrate during the execution from one host
to another one to continue their operations there. Agents
can dynamically choose when and where they will move,
and can return results in an asynchronous fashion, thus
efficiently facing situations where network connections
are unreliable, bandwidth is scarce and even temporarily
unavailable. In addition, several agents can cooperate in
order to provide distributed and coordinated services.

These features suggest to consider the MA paradigm
in several application areas. For instance, systems man-
agement applications benefit from MA frameworks,
where agents can act on behalf of remote managers to
automatically perform management tasks, possibly by
moving locally to administered resources. Mobile agents
report significant events to the remote central authority
without congesting the network with the traffic due to a
continuous information exchange between the central
manager and the network resources [9] [10].

When dealing with mobile computing, agents can
minimize the requested bandwidth to access services on
the fixed network, can become the repository of user
profile information, and can dynamically distribute along
the interested network paths to permit Quality of Service
adaptation depending on both terminal capabilities and
current availability of resources. In addition, agents can
transport service results towards either requesting users or
nomadic terminals once they reconnect to different points
of attachment to the network [11].

The international committees of the telecommunica-
tion area have recognized the importance of structuring
systems on the basis of new paradigms and standards.
The example of Telecommunications Information Net-
working Architecture (TINA) suggests the possibility of
implementing distributed processing environments
(DPEs) that integrate MA-based components [12]. In
addition, several projects are going in the area of Intelli-
gent and Active Networks that find solutions based on the
movement of active entities capable of dynamically in-
jecting application- and user-specific behavior into the
network when needed [13-15].

Mobile agents can offer solutions also in the wide area
of electronic commerce in the Internet. The MA paradigm
provides asynchronicity between clients and servers, and
permits to free users from the need of controlling how
their requests proceed. A mobile agent can autonomously
roam the network to retrieve the most appropriate infor-
mation and can simply report it back to the user after
performing the needed computation.

CORBA is the key component of the OMG Object
Management Architecture (OMA) [6]. Its basic idea is to

provide a DPE in which distributed objects can transpar-
ently interact according to the C/S model.

CORBA strongly simplifies the realization of C/S dis-
tributed applications, by hiding both the implementation
and the location of server objects from requesting clients.
CORBA not only permits designers of distributed serv-
ices to abstract from the details related to platform het-
erogeneity and object distribution, but also allows to
integrate already implemented, even non OO-based, soft-
ware components. These components are wrapped with
an Interface Definition Language interface (legacy system
integration) that correspond to their behavior [16].

The increasing diffusion of CORBA-compliant appli-
cations, especially in the area of network and systems
management, together with the continuous publication of
new Object Services specifications and vendor imple-
mentations, create a large installed base of available
CORBA components. This contributes to make CORBA
an effective solution for fast prototyping complex distrib-
uted applications [16].

2.1. CORBA and MA Integration

CORBA and MA technologies are different from sev-
eral points of view. The most notable one is that CORBA
tends to assume that objects are allocated once and for all
at a fixed location before their registration at the Object
Request Broker (ORB), while mobile agents can dynami-
cally and autonomously migrate during execution de-
pending on time-dependent conditions.

Another relevant difference is MA awareness of cur-
rent locations and of the locations of needed resources,
basic property to permit informed dynamic decisions
about migration. At the opposite, CORBA tends to hide
the physical location of a server object when answering
client invocations. Obviously, the ORB knows the alloca-
tion of registered objects, but this information is typically
invisible to client objects and application designers.
Transparency stems from the CORBA specification and
design that simplify the implementation of services in
distributed systems, by creating an abstraction of a local
concentrated computing environment.

Another difference is in diffusion. CORBA has
reached a widely accepted standardization and has a large
base of compliant resources, systems and service compo-
nents. On the contrary, the novelty of the MA program-
ming paradigm has led to propose a great variety of dif-
ferent and non-interoperable MA platforms.

All these considerations suggest that CORBA and MA
technologies are not opposite choices but can integrate
and complement very well. In fact, a flexible environment
for the provision of Internet services can benefit from
agent mobility at run-time together with the possibility of
transparent remote agent interaction, from the availability

of different degrees of visibility of resources in the global
system, and from the integration with legacy service
components via standard interfaces.

The opportunity of an integration of CORBA and MA
is also demonstrated by the standardization efforts that
have emerged to achieve interoperability between hetero-
geneous mobile agents. Even if coming from different
research communities and different scientific back-
grounds, both the MASIF and FIPA proposals adopt
CORBA as the standard bridge to overcome heterogene-
ity.

2.2. OMG MASIF

In our opinion, interoperability among different MA
systems is a key issue for widening the diffusion of MA-
based commercial applications. Interoperability requires
to identify the aspects of the MA technology subject to
standardization. The OMG has worked on the specifica-
tion of MASIF, an agent interoperability standard, built
within the CORBA framework, to support agent mobility
and management. The goal of MASIF is to achieve
interoperability among existing MA platforms from dif-
ferent manufacturers, without forcing any radical modifi-
cation, but simply by extending implementation with
specific “add-on” modules.

MASIF does not suggest standardization of local agent
operations such as agent interpretation, serialization,
execution and deserialization, because these actions are
application specific, and there is no reason to limit MA
system implementations. MASIF proposes the standardi-
zation for agent and agent system names, for agent system
types and for location syntax. It specifies two interfaces:
the MAFAgentSystem interface provides operations for
the management and transfer of agents, whereas the MAF-

Finder interface supports the localization of agents and
MA systems in the scope of an administered locality. A
MAFAgentSystem object should interact internally with
MA system-specific services, and provides the associated
CORBA interface to external users.

Interoperability also means opening MA systems to
new security threats coming from the interaction with
external components. The MASIF standard recognizes the
need for security and its management: all MASIF imple-
mentations are required to introduce security mechanisms,
policies and tools, built upon the CORBA Security Serv-
ices in order to overcome the possible heterogeneity in
the security solutions adopted by the interworking com-
ponents.

2.3. FIPA

FIPA specifies the interfaces of the different compo-
nents for agent interaction with other entities such as

humans, other agents, non-agent software and the physi-
cal world. Being mainly proposed from the intelligent
agent area, FIPA puts the emphasis on the standardization
of agent communication, and a dedicated Agent Commu-
nication Language (ACL) is proposed for all communica-
tion between FIPA-compliant agents.

FIPA defines the concept of an agent platform offering
three basic services. These services are namely the Agent
Management System (AMS), the Directory Facilitator
(DF) and the Agent Communication Channel (ACC). The
AMS provides management functions that are similar to
the MAFAgentSystem ones, except for the notable differ-
ence that the FIPA AMS does not address the possibility
of migrating agents between heterogeneous MA plat-
forms. FIPA agents may offer their services to other
agents and make their services searchable in yellow pages
by the DF. Registration on a DF is discretionary while
registering on the AMS is mandatory on any agent plat-
form. Finally, the ACC enables communication between
agents on the same platform and between possibly het-
erogeneous platforms, by offering a message forwarding
service. Reachability between platforms is obtained by
making the forward service available over the CORBA
ORB whose integration is considered mandatory for any
FIPA-compliant MA platform. Agent messages are trans-
ferred on top of the CORBA IIOP.

While the AMS and DF services provide functionality
similar to the MASIF MAFAgentSystem and MAF-

Finder, a specific characteristic of the FIPA standardi-
zation proposal is the agent communication via the defi-
nition of an interoperable ACL. In addition, FIPA agents
acquire a predictable behavior being described by com-
mon semantics defined in the interpretation of a common
language. This is achieved by the concept of communica-
tion acts [8].

3. Interoperability in MA Programming
Frameworks

Several MA systems have been proposed and imple-
mented in the last few years [9] [17-21]. They differ in
many aspects: the programming language adopted for
agent coding (from scripting languages to OO ones), the
type of agent mobility (weak/strong) and the way it is
implemented (depending on whether they modify the
virtual machines they execute on top of), the primitives
provided for agent name resolution, communication and
control, and the available security features.

Despite the approach variety in designing MA sys-
tems, some trends are largely in common. Interpreter-
based programming environments represent the common
basis for most MA programming frameworks. In particu-
lar, Java is frequently chosen not only for portability, fast
prototyping and easy integration with the Web, but also

for its security features, such as type checking and fine-
grained resource access control. In addition, security has
attracted deep interests: many MA platforms provide at
least a subset of the security services required to imple-
ment MA applications in open untrusted environments.
Interoperability, instead, has not received yet the due
attention, and a definite common trend on how to achieve
it and even its meaning is still unclear in the context of
mobile agents.

Interoperability is sometimes confused with accessi-
bility that is only a first basic step towards the former:
users should have access to MA applications not only
from the same MA platform of the application imple-
mentation, via system-specific protocols and interfaces,
but also from other different systems via widely diffused
interfaces such as Web browsers. We consider
interoperability a much wider property: it enables full
interaction between heterogeneous systems, whether MA-
based or not, by permitting cooperation between all ex-
isting components in the provision of new and flexible
network-centric services.

CORBA helps in answering this requirement. On the
one hand, compliance with CORBA allows MA applica-
tions to be accessed by any CORBA client, independently
of its implementation. On the other hand, the same MA
applications can invoke other (even legacy) systems
functions via CORBA interfaces. The MA programming
framework itself can take advantage of the growing set of
CORBA Object Services available from ORB vendors.

A final level of interoperability concerns the possibil-
ity of interoperation of heterogeneous MA platforms. At
the very least, we need features for agent management
and tracking, and for migrating agents among MA sys-
tems. In addition, there is the need to exchange informa-
tion between heterogeneous agents. The compliance with
MASIF and FIPA can provide this kind of
interoperability.

A few MA frameworks have already approached the
issue of interoperability with other systems and applica-
tions, whether MA-based or not. Those proposals pro-
mote CORBA as the standard integration technology. For
instance, Jumping Beans [18] implement their agents by
providing mobility to CORBA objects. Whenever a
Jumping Beans agent decides to migrate, however, it is
forced to move to a central server that becomes an ex-
change point, thus severely limiting the scalability of the
system. From the accessibility point of view, Voyager
[19] permits agents to be activated via an applet interface;
it additionally allows access from and to external objects
via CORBA. Aglets [20] provide an additional package
for running an aglet context on an HTTP-browser, and
have announced their intention to fully achieve MASIF
compliance in the near future. Finally, Grasshopper [21]
seems to be the commercial MA platform that most com-

pletely addresses interoperability: it permits Web connec-
tivity through external interfaces, allows interaction with
non MA-based objects via CORBA, and is currently the
only MA programming framework compliant to both
MASIF and FIPA.

4. The SOMA Programming Framework

SOMA offers to mobile agents a flexible execution
environment built on top of a distributed infrastructure of
services. These services include basic agent functions and
more complex features necessary to design and develop
network-centric applications. In addition, the openness of
the SOMA infrastructure allows to dynamically extend
the programming framework by adding new agent-based
services, even built on the already provided functions.

Figure 1 depicts the SOMA infrastructure that consists
of two service layers. The lower layer, which provides
the basic functionality for SOMA agents, includes:
• the identification service that permits to associate any

system entity with a globally unique identifier. SOMA
entities include agents, resources, service components
and principals, i.e. users/organizations responsible for
agent execution;

• the communication service that provides tools for coor-
dination and communication between possibly mobile
entities. When hosted in the same execution locality,
agents interact by means of shared objects, such as
blackboards and tuple spaces for tight cooperation.
Otherwise, agents can perform coordinated tasks by ex-
changing asynchronous messages that are delivered to
agents also in case of migration;

• the migration service that supports the transport of one
entity that requests to change its allocation. The reallo-
cated entity should be traced also in the new location
by any entity in need of its services, and, if it is active,
should transparently restart its execution at the new lo-
cation;

On the basis of this first level of features, an upper layer
of MA-based services is provided in SOMA:
• the naming service that organizes globally unique iden-

tifiers in naming systems to make possible the tracing
of entities even if they move. This service allows to put
together a set of different naming systems (DNS-,
CORBA-, and LDAP-compliant [22] [6] [23]), possibly
characterized by different resolution policies, and is
currently implemented by a coordinated set of dedi-
cated agents;

• the security service that aims to protect both mobile
agents and hosting execution localities. Authentication
is based on standard certificates and on a public key in-
frastructure; authorization extends the Java standard
mechanisms for access control; secrecy is achieved by
integrating the cryptographic libraries furnished by ex-

ternal providers; integrity has required the development
of MA-specific protocols for the protection of mobile
agents from the execution environment;

• the interoperability service that allows SOMA agents to
interwork with existing software and hardware compo-
nents via compliance with CORBA IIOP specification.
In addition, SOMA implements the MASIF interface,
thus permitting the interaction of SOMA agents with
other MASIF-compliant MA platforms. A more de-
tailed description of the SOMA interoperability service
is presented in Section 4.1 and 4.2.

Transport Layer

Other DPE CORBA DPE

SOMA Lower Layer Services

Com
m

un
ica

tio
n

Id
en

tif
ica

tio
n

M
ig

ra
tio

n

SOMA Upper Layer Services

In
ter

op
er

ab
ili

ty

Se
cu

rit
y

Nam
in

g

Application Programming Environment

Network-centric
Service

Figure 1. SOMA architecture for the design of
network-centric services

In addition to providing this service infrastructure for
mobile agents, SOMA offers locality abstractions to de-
scribe any kind of interconnected system, ranging from
simple Intranet LANs to the Internet (see Figure 2). Any
node hosts at least one place for agent execution; several
places are grouped into domain abstractions that corre-
spond to network localities. In each domain, a default
place is in charge of inter-domain routing functionality
and integration with legacy components via CORBA. The
mobile place is suitable for supporting mobile devices: it
enhances the place locality abstraction with specific
functions for automatic reconfiguration when changing
domain.

Place2

Default
Place

Place3

Place1

Domain A

CORBA
Legacy System

CORBA
Legacy System

Place1

Default
Place

Place2

Domain B

Mobile
Place

Place2

Default
Place

Place1Domain C

Mobile
Place

CORBA

Figure 2. SOMA locality abstractions

Other details about the design and implementation of
the SOMA programming framework are presented else-
where [24] [25] and are out of the scope of this paper that
concentrates on the SOMA interoperability features.

4.1. SOMA Interoperability

SOMA faces four different challenges to provide
interoperability (see Figure 3):
1. an agent may call external CORBA objects (SOMA

agents as CORBA clients);
2. an agent may publish its interface to one ORB (SOMA

applications as CORBA servers);
3. any external entity may access SOMA through the

standard MASIF interface (interoperability between
SOMA and other CORBA components);

4. an agent may send/receive messages to/from any agent
platform via the FIPA ACC forward service (communi-
cation interoperability between SOMA agents and
FIPA-compliant agents).

 C
O

R
B

A
 O

R
B

SOMA
system

MAFFinderMAFFinder

MAFAgent
System

MAFAgent
System

MAFFinder
MAFFinder

MAFAgent
System

MAFAgent
System

CORBA
C/S

MASIF-compliant
MA system

CORBA
Server

1

2
CORBA
Client

3
3

1) SOMA agents as CORBA clients
2) SOMA agents as CORBA servers
3) MASIF interoperability

MASIFBridge

Figure 3. SOMA compliance with CORBA

The first two features are provided by the CORBA C/S
extension of SOMA: agents can play the role of CORBA
clients and can also register themselves as CORBA serv-
ers to offer access points to an application outside the
SOMA system. Even if there is no conceptual problem in
a mobile agent registering itself as a CORBA server, we
currently grant this possibility only to SOMA agents that
do not migrate during their lifetime (stationary agents) to
avoid the overhead of registering/unregistering with the
CORBA Naming Service at every migration.

The third feature is a more complex issue and SOMA
addresses it via MASIF compliance. Any external system
can control remote agents of a MASIF-compliant MA
system via the MAFAgentSystem interface: MASIF de-
fines methods for suspending/resuming/terminating
agents and for moving agents from one MA platform to
another one. The interoperation is significant only when
the two interworking systems present a compatibility

base, that is the same implementation language, or com-
patible externalization mechanisms. Agent tracking func-
tions permit the tracing of agents registered with MAF-
Finder, introduced to provide an MA name service,
because the CORBA Naming Service is not suitable for
entities that are intrinsically and frequently mobile.
SOMA takes into account the security problems that stem
from interacting with external components and provides
solutions compliant with MASIF security features.

About the fourth interoperability point, at the moment
SOMA agents can communicate via proprietary mecha-
nisms and protocols, but can also decide to exploit the
CORBA middleware to coordinate via shared CORBA
objects. Agent communication is outside the scope of
MASIF: for this reason, we have decided and are now
completing the integration of an additional module to
provide full compliance with FIPA. SOMA mainly fo-
cuses on the implementation of the ACC because it pro-
vides interoperability for communication between hetero-
geneous agents that is not covered by the MASIF compli-
ance. The SOMA ACC is available as a place facility that
agents exploit to convert messages into the corresponding
ACL format and vice versa, with an approach similar to
the one of Jade [24]. The implementation of the AMS and
DF facilities are mapped into the analogous functionality
for agent management and registration already available
in the SOMA MAFAgentSystem and MAFFinder mod-
ules.

4.2. SOMA Interoperability Implementation

The SOMA programming framework achieves
interoperability by extending its basic functions. In par-
ticular, places in charge of interoperating are extended
with the CORBABridge add-on that is composed by two
modules: the first one (CORBA C/S) simplifies the design
of SOMA entities as CORBA clients/servers; the second
one (MASIFBridge) implements the MASIF functionality.

Since MASIF implementation increases the code di-
mension of SOMA places, our default configuration does
not extend all places with the MASIFBridge module, but
only the default place of each domain; the CORBA C/S
module instead is lightweight, and many places in the
same domain may use it to access the CORBA bus, either
for calling external services or for registering as servers.

Any SOMA agent, resident at a CORBA C/S extended
place, is able to act as a CORBA client/server through
static (IDL stub/skeleton) and dynamic (Dynamic Invo-
cation Interface/Dynamic Skeleton Interface) invoca-
tions/registrations. Our implementation is based on the
VisiBroker 4 ORB [27]. However, it is portable, with no
modification at all, on any other ORB implementation
compliant to the CORBA 2.2 specification. In fact, we
have only used the portable functions provided by the

Internet Inter-ORB Protocol and the Portable Object
Adapter [28], introduced to overcome possible incom-
patibility between different ORB products.

Our MASIFBridge module already implements the ba-
sic functionality for agent management and naming: the
create_agent(), fetch_class(), receive_

agent(), get_MAFFinder() methods in the
MAFAgentSystem class, and all the methods in the MAF-
Finder class. We are currently integrating the additional
features specified in the MASIF standard to achieve full
conformity. We are also testing SOMA interoperability
by designing applications in which our agents cooperate
with mobile agents from Grasshopper.

The implementation work to achieve SOMA
interoperability via full compliance with CORBA has
been simplified by the fact that SOMA is completely
written in Java. In our experience, CORBA and Java have
demonstrated to integrate with one another in a synergic
way. The former provides network transparency, while
the latter achieves implementation transparency via the
Java Virtual Machine common software layer. In addi-
tion, Java is deeply integrated with the Web, thus offering
universal accessibility and a potentially wide user base to
CORBA. For instance, a dynamic download of one applet
with a CORBA client can produce the invocation of a
CORBA server object from a CORBA-enhanced Web
browser, such as Netscape Communicator 4.x.

5. Designing Applications in SOMA: the
MA_Install Example

The SOMA infrastructure simplifies the design of
complex MA-based applications and their integration
with already existing services. First of all, SOMA is im-
plemented in Java and can benefit from all the advantages
of object-orientation: inheritance, polymorphism and
reuse that help in the rapid development of both proto-
types and market-ready applications. In addition, SOMA-
based applications can exploit a large set of available
services, either provided by the SOMA programming
framework itself or accessible via SOMA agents that act
as CORBA clients. Finally, the MASIFBridge extension
makes it possible to perform complex and coordinated
tasks in cooperation with mobile agents running in other
MASIF-compliant MA frameworks.

SOMA has been used for the design and the imple-
mentation of an environment for the management of net-
works, systems and services called MAMAS (Mobile
Agents for the Management of Applications and Systems)
[24]. In MAMAS, agents act on behalf of administrators
and fulfil administration needs by moving and executing
on different nodes. MAMAS makes possible to delegate
management actions to mobile agents, simplifying the
administrator duty and providing the automation of con-

trol actions. Any administrator can implement her policy
by using mobile agents, and can propagate new system
policies at runtime by agents, with no need to shutdown
the system. The MAMAS environment already provides a
set of MA-based management functionality, from moni-
toring the state of a distributed system to controlling and
coordinating replicated resources. In addition, it is easy to
tailor new agents to new specific administration needs.

As an example of a MAMAS management service,
Figure 4 shows a scenario which extensively exploits the
interoperability features of the SOMA CORBA-Bridge
add-on. The MA_Install service installs a new program on
a constrained subset of the hosts in the system. The serv-
ice makes use of a number of coordinated agents that
dynamically identify target hosts during the installation
process on the basis of the current system state: for each
administration domain, the program is installed on the
hosts whose free space in the local file system satisfies a
predefined constraint. In the following, we sketch the
main steps of the installation process.

Place3

Default
Place

Place2

SOMA
DomainA

Administered Region

Default
Place

Place2

SOMA
DomainC

MASIF
Place

Place1

MASIF-compliant
RegionD

Place3

Default
Place

Place2

Place1

SOMA
DomainB

Place1

Install
Service

Place1

Place2

Place3

Install
Service

Figure 4. The MA_install application

1. The MA_install application is registered as a CORBA
server object (CORBA Naming and Trading Services)
and is available to all CORBA clients that satisfy the
security requirements of the system (CORBA Security
Service). For example, a user can employ a standard
Web browser interface to invoke MA_install by means
of a CORBA client applet. The internal implementation
of MA_install, provided by specialized SOMA agents,
is completely hidden from the client.

2. The MA_install service is accessible via a stationary
agent (SA) that can be present on several places of the
administered region (service replication). In the figure,
CORBA binds the applet request to the SA instance on
<Place1, DomainA>. The SA sends a mobile install-
ing agent to the default place in DomainA in order to
collect information about other SOMA domains and

about other MA systems that are running in the admin-
istered region and registered with the MAFFinder. For
any SOMA domain, the installing agent duplicates it-
self and sends its clones there by using SOMA-specific
migration mechanisms. For every other MASIF-
compliant domain, it controls type compatibility with
SOMA, and, in case of compatibility, it sends there its
clones. This behavior is implemented with a few lines
of code, as shown in Figure 5.

3. All agents autonomously perform their tasks in parallel
in each domain, by migrating from one place to another
one. They collect information about local disk space;
on this basis, they can decide where to install the pro-
gram and finally command local installation.

4. The client of MA_install has the possibility to stop the
installation process at any time. The stationary agent
can terminate all other MA_install agents, by using ei-
ther the SOMA proprietary features for agent tracking
and management or the MAFAgentSys-

tem.terminate_agent()method. At the moment we
are testing our FIPA ACC implementation while it is
used to exchange stop messages between the different
agents involved in the MA_install service.
We can consider our MA_Install application to give an

idea of the cost of interoperability, and in particular of the
cost for agent migration when using the MASIF interface.
The experimental results have been carried out in a
SOMA system composed of several domains, and we
have measured the cost for migration between default
places of different domains. Table 1 compares the aver-
age cost of the native migration mechanism of SOMA
with the one imposed by the MASIF interface. The results
have been obtained in a 10-Mbit Ethernet LAN of 300-
MHz PentiumII PCs with Windows NT.

As we expected, the MASIF agent migration is more
expensive than the SOMA proprietary one, as reported in
the Total columns. In detail, the Total columns represent
the cost for moving one agent between two default places,
and contain all the overhead associated to establish a
connection between previously unconnected places. The
initial setup overhead is not paid when considering suc-
cessive migrations of agents between the same default
places, as can be seen in the Successive Migrations col-
umns.

Figure 5. Agent migration between SOMA and
MASIF-compliant agent system

The initial overhead is differently motivated in the
MASIF interface and in the proprietary migration mecha-
nism. In the former case, there is a preliminary phase in
which the first agent has to obtain the initial reference to
the destination MAFAgentSystem (phase 1). The first
phase includes the invocation of the CORBA Naming
Service to solve the name of the source MAFAgentSys-
tem, the request for the reference of the source MAF-
Finder, and the final request to the MAFFinder for the
destination MAFAgentSystem reference. Successive
migrations can avoid this overhead by maintaining a
“stringified” reference to the destination MAFAgentSys-

tem (only about 50 ms for name resolution). The phase 2
column of MASIF migration measures the interval be-
tween the invocation of MAFAgentSystem.receive_
agent() and the restarting of agent execution in the
destination place. In SOMA proprietary migration, the
initial overhead is required in order to establish a dedi-
cated TCP connection between the SOMA default places

/* It obtains a reference to its MAFFinder object */
my_MAFFinder = my_MA_System.get_MAFFinder();

/* It obtains the list of the agent systems registered with */
/* my_MAFFinder (locations) and converts it in places */
/* enumeration, which uses the SOMA naming format */
locations = my_MAFFinder.

lookup_agent_system(any_name, any_type);
places = CORBAClient.convert(locations);

while (places.hasMoreElements())
 { remote_MA_system=places.nextElement();
 agent_system_type =

 remote_MA_system.get_agent_system_info();

/* It clones itself and sends its copy to the remote agent system */
/* by means of SOMA-specific methods: clone and go */

if (agent_system_type.is_SOMA_type()) then
{ copy_of_me = this.clone();
 copy_of_me.go(remote_MA_system,

method_to_start_from)}
/* It clones itself and sends its copy to the remote agent system */
/* by using SOMA clone and MAFAgentSystem. */
/* receive_agent methods */
 else if (agent_system_type.

SOMA_compatible()) then
{ copy_of_me = this.clone();

remote_MA_system.receive_
agent(copy_of_me,…)

 }

 else { System.out.println("MA System" +
remote_MA_system.name() + "is not
SOMA compatible");

 System.out.println("I cannot
command the installation there!")

 }
 }

…}

public class MA_Install extends SOMA_Agent

{ …
/* At this point, the MA_Install mobile agent is on */
/* <DefaultPlace, DomainA> */

/* It obtains a reference to its MAFAgentSystem object */
/* through CORBA Naming Service and CORBA C/S module
*/
my_MA_System = CORBAClent.narrow(nameService.

resolve(MAFAgentSystem));

of different domains; the overhead due to this connection
establishment does not affect successive migrations.

The experiments show that the SOMA migration is
faster than the MASIF one, even if, in the case of succes-
sive migrations for 50kB-sized agents, the MASIF per-
formance is only about 10% worse than the SOMA pro-
prietary one. This is mainly due to the fact that both the
VisiBroker ORB and the SOMA framework use the same
Java serialization/deserialization mechanisms, and the
serialization/deserialization overhead represents the most
relevant factor with the increasing of agent size. The
performance obtained for MASIF migration, however, is
acceptable and demonstrates the viability of the MASIF
approach to interoperability.

Table 1. Time performance for agent migration
through MASIF/SOMA transfer methods

MASIF
Migration (ms)

SOMA
Migration (ms)Agent

Size
(kB)

Phase 1 Phase 2 Total Succ.
Migr.

Total Succ.
Migr.

5 660 633 1293 687 699 454
50 645 3215 3860 3267 3204 2919

6. Conclusions

The design of network-centric Internet services moti-
vates the adoption of new programming paradigms. The
paper integrates two solution directions, mobile agents
and CORBA, that are sometimes considered diverging
and in contrast.

On the one hand, global network systems force to dis-
tribute responsibilities to a plurality of components, able
to operate autonomously and in need of coordinating with
each other. In this context, MA technology represents a
clean and uniform approach to a wide spectrum of appli-
cation areas, from network and systems management to
mobile computing, from distributed information retrieval
to electronic commerce. On the other hand, in large cor-
porate and inter-corporate networks, which are inevitably
heterogeneous, CORBA is the most widely accepted
integration technology to deal with network, platform and
programming language diversity. CORBA allows design-
ers to concentrate on high level problems of the applica-
tion domain instead of worrying about the implementa-
tion details connected to distributed heterogeneous envi-
ronments. In particular, in the MA field, CORBA-based
standards such as MASIF and FIPA can play a central
role to achieve interoperability by providing standard
bridges among proprietary MA implementations.

Our work has focused on the integration of CORBA
and mobility, in order to combine the benefits of both C/S
and MA paradigms. The implementation of SOMA is an
example of how such integration can produce a flexible

and secure programming infrastructure, able to interoper-
ate with other systems, whether MA-based or not, and in
which building complex distributed applications can be
easier than in traditional programming environments. The
implementation of SOMA has already shown that the
compliance with the CORBA-based MASIF standard can
achieve reasonable efficiency. In addition to the use of
SOMA agents for network and systems management, we
are working on different application domains that stress
the interoperability issue, such as the implementation of a
SOMA-based middleware to support user, terminal and
resource mobility and the development of SOMA-based
information retrieval services for distributed and hetero-
geneous museum data.

Acknowledgements

Investigation supported by the Italian “Consiglio Nazion-
ale delle Ricerche” in the framework of the Project
“Global Applications in the Internet Area: Models and
Programming Environments” and by the University of
Bologna (Funds for Selected Research Topics: "An inte-
grated Infrastructure to support Secure Services").

References

[1] A. Fuggetta, G.P. Picco, and G. Vigna, "Understanding
Code Mobility", IEEE Transactions on Software Engi-
neering, Vol. 24, No. 5, May 1998.

[2] J.W. Stamos, and D.K. Gifford, "Remote Evaluation",
ACM Transaction on Programming Languages and Sys-
tems, Vol. 12, No. 4, Oct. 1990.

[3] D.B. Lange, and D. Milojicic (eds.), 1st Int. Symposium on
Agent Systems and Applications and 3rd Int. Symposium on
Mobile Agents (ASAMA’99), IEEE Computer Society
Press, Palm Springs, CA, Nov. 1999.

[4] M. Wooldridge, and K. Decker (eds.), Special Section on
Agents on the Net, IEEE Internet Computing, Vol. 4, No.
2, Mar. 2000.

[5] G. Vigna (ed.), Mobile Agents and Security, Lecture Notes
in Computer Science, Vol. 1419, Springer-Verlag, 1998.

[6] Object Management Group, CORBA/IIOP Rev 2.2, OMG
Document formal/98-07-01, http://www.omg.org/library/,
Feb. 1998.

[7] GMD FOKUS, and IBM Corp, Mobile Agent Facility
Specification, Joint Submission supported by Crystaliz
Inc., General Magic Inc., the Open Group, OMG TC
Document orbos/98-03-09,
ftp://ftp.omg.org/pub/docs/orbos/98-03-09.pdf, Sep. 1998.

[8] Foundation for Intelligent Physical Agents – FIPA’99
version 0.2, http://www.fipa.org/.

[9] A. Karmouch (ed.), Special Section on Mobile Agents,
IEEE Communications, Vol.36, No.7, July 1998.

[10] P. Bellavista, A. Corradi and C. Stefanelli, "An Integrated
Management Environment for Network Resources and
Services”, IEEE Journal on Selected Areas in Communi-

cation, Special Issue on Recent Advances in Network
Management and Operations, Vol. 18, No. 5, May 2000.

[11] P. Bellavista, A. Corradi and C. Stefanelli, “A Mobile
Agent Infrastructure for Terminal, User and Resource Mo-
bility”, IEEE/IFIP Network Operations and Management
Symposium (NOMS 2000), Honolulu, HI, Apr. 2000.

[12] Telecommunications Information Networking Architecture
Consortium, TINA DPE Architecture, http://www.tinac.
com/, Mar. 1998.

[13] T. Magedanz, and R. Popescu-Zeletin (eds.), Intelligent
Networks – Basic Technology, Standards and Evolution,
Int. Thomson Computer Press, London, June 1996.

[14] T.M. Chen, and A.W. Jackson (eds.), Special Issue on
Active and Programmable Networks, IEEE Network Maga-
zine, Vol. 12, No. 3, May/June 1998.

[15] S. Covaci (ed.), Active Networks, 1st Int. Working Confer-
ence (IWAN’99), Springer Verlag, Lecture Notes in Com-
puter Science, Vol. 1653, Berlin, Germany, June 1999.

[16] K. Seetharaman (ed.), Special Section on CORBA, ACM
Communications, Vol.41, No.10, Oct. 1998.

[17] N.M. Karnik, and A.R. Tripathi, “Design Issues in Mobile-
Agent Programming Systems”, IEEE Concurrency, Vol. 6,
No. 3, July-Sep. 1998.

[18] Ad Astra Engineering Inc. – Jumping Beans, http://www.
JumpingBeans.com/.

[19] ObjectSpace - Voyager, http://www.objectspace.com/.
[20] IBM Japan – Aglets SDK1.1, http://www.trl.ibm.co.jp/

aglets/.
[21] IKV++ - Grasshopper 2, http://www.ikv.de/products/.
[22] P. Albitz, and C. Liu, DNS and BIND, 3rd Edition, O'Reilly

& Associates, Sep. 1998
[23] T. Howes, and M. Smith, LDAP: Programming Directory -

Enabled Applications with Lightweight Directory Access
Protocol, Macmillan Technical Publishing, Jan. 1997.

[24] P. Bellavista, A. Corradi, and C. Stefanelli, “An Open
Secure Mobile Agent Framework for Systems Manage-
ment”, Journal of Network and Systems Management, Spe-
cial Issue on Mobile Agent-based Network and Service
Management, Vol. 7, No. 3, Sep. 1999.

[25] P. Bellavista, A. Corradi, and C. Stefanelli, “Protection and
Interoperability for Mobile Agents: A Secure and Open
Programming Environment”, IEICE Transactions on
Communications, Special Issue on Autonomous Decen-
tralized Systems, Vol. E83-B, No. 5, May 2000.

[26] CSELT - Jade, http://sharon.cselt.it/projects/jade/.
[27] Borland-Inprise – VisiBroker 4 for Java, http://www.in-

prise.com/visibroker/.
[28] Object Management Group, The Portable Object Adapter,

OMG Document formal 99-07-15, http://www.omg.org/
cgi-bin/doc?formal/99-07-15, July 1999.

