On the Problem of Over-clustering in Tuple-based Coordination Systems

Matteo Casadei¹ Ronaldo Menezes² Robert Tolksdorf³ Mirko Viroli¹

¹Alma Mater Studiorum - Università di Bologna {m.casadei,mirko.viroli}@unibo.it

²Florida Institute of Technology - Melbourne, USA rmenezes@cs.it.edu

³Freie Universität Berlin, Institut für Informatik tolk@inf.fu-berlin.de

SASO 2007 Work-In-Progress Track Boston - USA July 11, 2007

3

Introduction (1)

Scenario

- Coordination of active entities in open distributed scenarios by tuple-space systems
- Specific issue: tuple distribution and organization in a network of distributed tuple spaces

Why is tuple distribution and organization an important issue?

- It affects the scalability of a system
- ... indeed, if tuples are organized in a specific way, we can obtain a better system's scalability
- For instance, if similar tuples are kept close to each other it is easier for processes to find the specific tuple they need!

Э

Introduction (2)

Tuple Organization: important issues

• Keeping similar tuples close to each other makes processes too dependent on aggregating nodes

 This leads to over-clustering: system's robustness is affected

Objectives

- Exploiting **self-organization** to build a tuple-space architecture with a scalable tuple-distribution mechanism
- Avoiding over-clustering

・ロット (雪) () () () ()

A Strategy to Organize Tuples

Developed by taking inspiration from ant's brood sorting

Aim of the Strategy

- Storing a tuple in a node with a high concentration of similar tuples
- Metaphor:
 - **out**s are **ants** carrying items and searching for a suitable node where to drop food
 - tuples are items of different kind carried by ants

How Tuple Distribution Works (0)

Phases

- Our tuple-distribution strategy is composed of two phases:
 - **Storing decision phase**: does a tuple have to be stored in the current node?
 - **Movement phase**: what is a good neighbor where to move a tuple?

Similarity Function

- How similar are two tuples tu and te?
 - $\delta(tu, te) = [0, 1]$

3

How Tuple Distribution Works (1)

Storing Decision Phase

- Drop probability $P_D = \left(\frac{F}{F+K}\right)^2$:
 - Concentration of tuples similar to tu: $F = \sum_{\forall t \in TS} \delta(tu, t)$
 - *K* is the number of hops left to an *out*-ant before storing the carried tuple *tu*
 - K is initially set to Step_{MAX}

How Tuple Distribution Works (2)

Movement Phase

• \forall neighbor *j*, determine the **movement probability**

$$P_j = \frac{F_j}{\sum_{i=1}^n F_i}$$

- F_j : concentration of tuples similar to tu in tuple space j
- <u>n</u> = 1 F_i: concentration of tuples similar to tu in the neighborhood of the current tuple space

Simulation Results

- 14 tuple spaces
- Tuples belonging to 4 different templates
- Insertion of 200 tuples per template

•
$$\delta(tu, te) = \begin{cases} 1 & template(tu) = template(te) \\ 0 & otherwise \end{cases}$$

Results: Spatial Entropy

• 20 simulations per *Step_{MAX}* value

Almost complete clustering!

Simulation Results

- 14 tuple spaces
- Tuples belonging to 4 different templates
- Insertion of 200 tuples per template

•
$$\delta(tu, te) = \begin{cases} 1 & template(tu) = template(te) \\ 0 & otherwise \end{cases}$$

Results: Spatial Entropy

OVER-CLUSTERING!

A Solution to Over-Clustering

Max-Size

. . .

- For each node and tuple template, introduction of a *Max-Size* parameter in order to:
 - Regulate the maximum size of the clusters in the network by
 - ... modifying P_D when a cluster gets as big as *Max-Size*

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

Anti-Over-Clustering Simulation

- Same test instance
- Insertion of tuples belonging to one template
 - Occurrence of 60 *out* operations per tuple space: 840 tuples, in total

Anti-Over-Clustering Simulation: Results

Conclusion and Future Work

Conclusion

- Developed a self-organizing strategy to tuple-distribution problem
 - Made some experiments with larger scale-free networks (100-1000 nodes)
- · Found a first solution to avoid over-clustering

Future Work

- Experimenting with dynamic similarity functions to solve over-clustering with no need of a *Max-Size* parameter
- Devising a tuple-retrivial strategy based on what we have gotten regarding tuple-distribution

3

Forewords

Conclusion

Thank you for your time!

