
Experimenting with Stochastic Prolog as a
Simulation Language

Enrico Oliva, Luca Gardelli, Mirko Viroli, Andrea Omicini

Alma Mater Studiorum–Università di Bologna
Via Venezia, 52 - 47023 Cesena, Italy

{ enrico.oliva, luca.gardelli, mirko.viroli, andrea.omicini } @unibo.it

Abstract. While simulation is an established tool for scientific analysis,
it is recently gaining more interest also in other contexts, such as software
engineering. Hence, more and more attention is devoted to the develop-
ment of suitable simulation languages (and tools), as well as to their
exploitation in application development and run-time. As already expe-
rienced in the context of general-purpose programming languages, we
envision future developments towards expressiveness, with performance
issues becoming less and less relevant.

Along this direction, we propose a preliminary stochastic simulation
framework developed on top of a logic programming language, called
Stochastic Prolog : this framework allows us to run simulations directly
from Prolog-based specifications. Our objective, in this work, is to put
the basis for future research on logic stochastic language used for simu-
lation purpose. In our approach Prolog clauses can be labelled with rates
modelling temporal/probabilistic aspects. The main advantage of using
Prolog is that it is significantly more expressive than other languages
typically used in simulation, allowing complex specifications to be more
easily encoded. In order to evaluate our framework, we compare it with
the stochastic language defined by the PRISM tool, by discussing as case
study the collective sorting problem, a decentralised sorting strategy for
multiagent systems (MAS) inspired by behaviours observed in social in-
sects.

1 Introduction

There is a growing interest in simulation languages and tools, and an increasing
use of them throughout the engineering process. This is related to the increasing
complexity of today computational systems in both the scientific and the engi-
neering community: complexity implies that it is essentially infeasible to fully
predict the behaviour of a system from its design, since small changes in some
of the surrounding condition can lead system behaviour to diverging dynamics.
Simulation is hence used as a means to preview the behaviour of complex com-
putational systems without resorting to complete implementations, and possibly
using such observations to tune the design in the early phases of the engineering
process.



Many current simulation languages are based on stochastic extensions of
some very low-level language, such as Stochastic π-calculus [1], generic stochastic
process algebras for quantitative analysis such as EMPA [2], and verification-
oriented tools like PRISM [3]. As the systems to be modelled and simulated
tend to grow in complexity, such tools are more and more becoming inadequate.
What typically happens is that a designer is forced to define a system behaviour
using low-level mechanisms and tricks, much in the same way a programmer
in the 70s would have used Assembler for building a complex application. One
of the main reasons why this situation is persisting is that performance is still
usually considered the primary issue of simulation, rather than expressiveness of
the languages and frameworks.

Much in the same way programming languages evolved from low- to high-
level, including more and more expressive abstractions and requiring true virtual
machines in spite of a significant performance overhead, we envision a similar
situation for simulation languages and frameworks. Although we do not deny
the importance of performance in simulation, we believe it can and should be
handled at the level of the underlying execution engine: the designer is to be freed
from this problem, and has to leverage expressive languages for specifying system
behaviour. Towards this direction, we believe logic languages such as Prolog can
be used as a basis for developing suitable simulation languages, since: (i) they are
high-level, characterised by expressive and abstract constructs; (ii) they are still
core languages with few constructs, paving the the way towards formal analysis
of probabilistic properties; and (iii) they allow to easily exploit the rule-based
specification style—which is quite common in the context of distributed systems.

In this article we introduce a preliminary stochastic simulation framework on
top of the Prolog language, called Stochastic Prolog : to this purpose we follow a
probabilistic logic approach labelling clauses with rates. As a first step, we define
a base stochastic extension of first order logic in order to follow the framework
of Continuous Time Markov Chains CTMC [4]: rates define transition frequency
according to an exponential distribution, and in the case of race conditions they
implicitly define the probability for an action to be scheduled next.

As a second step, we evaluate our Stochastic extension of Prolog applying it to
the case of collective sorting, a decentralised sorting algorithm inspired by social
insects behaviours [5], and then compare it to the PRISM tool, taken here as a
reference language for simulation. In this case study, a multiagent system (MAS)
is composed of agents and tuple spaces: agents are in charge of moving tuples
from one space to another according to their type, until reaching full ordering
[6, 7]. We model a self-organising solution to the collective sorting problem using
both our framework and the PRISM tool, then compare the expressiveness of the
two solutions, finally showing how the framework proposed here can better scale
with system complexity.

The remainder of the article is structured as follows: in Section 2 we describe
the simulation framework; in Section 3 we provide a brief description of the case
study and provide specifications both for the PRISM tool and our framework; in
Section 4 we discuss related works and finally conclude.



2 A Stochastic Simulation Framework in Prolog

We describe a framework to run stochastic simulations based on Prolog logic lan-
guage in order to exploit the expressive power of a declarative language. Prolog is
very useful because of the uniform representation of code and data, both encoded
as first-order logic (FOL) clauses, which makes writing (meta-)interpreters quite
easy [8]. The framework allows the modelling of stochastic aspects, in particular
according to the CTMC model, an important class of stochastic processes widely
used in practice both to determine system performance and to predict system
behavior.

As a CTMC is basically an automata where transitions from one state to
another are labelled with rates, in our framework it is used to enhance a logic
program with rates driving the goal resolution process—the label-based approach
is commonly used to introduce stochastic aspects in formal languages, e.g. the
Stochastic π Calculus [1] and also in logic programming [9].

The basic idea of our framework is to use stochastic operation towards FOL
for simulation purpose. To this end it is necessary to add a couple of features to
FOL: 1) clauses annotated by rate, 2) stochastic inference relation.

Definition 1. A stochastic logic program is a set of clauses of the form r : h←
b1, . . . , bn and h← b1, . . . , bn where h and bi are atomic formula, r a frequency
value.

Syntactically, in a Stochastic Prolog program the set of labelled clauses are
expressed using the following notation: label:h:-b1,b2,..bn.. Namely, each
stochastic clause is a standard clause with a prefix label, which is a frequency
value (or rate) r(X), where X should be a ground number.

The semantic of a stochastic clause is defined by a possible world semantic of
a Herbrand interpretation of the classical underlying first order language. Thus
a C clause defined C = r : h ← b is true in a possible world W denoted as
W |= C if and only if C is true in the Herbrand interpretation belonging to W .
The values indicated in C clauses are the frequency rates that are used to choose
next ground instance Cθ and proceed with the resolution derivation process.

The stochastic inference relation for labelled clauses is inspired by Gillespie’s
algorithm [10] based on frequency values.

Definition 2. The stochastic inference is expressed by the following algorithm:

1. Find the set C of labelled clauses whose head h unifies with the current goal
b

2. Calculate rtot =
∑n

i=1 ri, where n is the cardinality of C, where ri is the rate
of Ci ∈ C

3. Generate a random number n1 ∈ [0, 1]
4. Evaluate the relation

k−1∑
i=1

ri ≤ n1 · rtot ≤
k∑

i=1

ri

in order to find k,



5. Next head to consider in the resolution process is the body of Ck ∈ C

More practically, the operational semantics of stochastic Prolog is expressed by
the meta-interpreter in Figure 1. From a Prolog point of view we have introduced
a probabilistic cut. The normal cut tells the the interpreter to remove a choice
point from the stack, eliminating a branch of solution tree and limiting the
backtracking. Instead, a probabilistic cut tells the meta-interpreter to make a
probabilistic choice in the SLD resolution tree, discarding the other possibilities.

Each execution of a program always corresponds to the production of a single
simulation trace, formed by a stream of simulation events each being a couple
event (State,Time)—where State is the Prolog goal to be solved yet, and Time
is the elapsed time. The goal resolution process depends on the kind of predicate
involved, briefly: standard predicates are solved as in Prolog, i.e., the top-most
clause is selected and others are reconsidered during backtracking; predicates
with rates are solved by randomly selected a clause (the higher the rate, more
likely they are selected) and causing an elapsed time according to the exponential
distribution (see below). The time t of each event in the simulation is calculated
only after the execution of a stochastic clause, and proportionally to the total
rate with an exponential distribution t = (1/rtot)∗ (ln(1/n2)) where n2 is a new
random number ∈ [0, 1].

As a basic example, let us consider a process in which each time unit a fair
coin is tossed a hundred of times, but with a 1% probability of failing, in which
case the process is to be stopped. Figure 1 lists the code for simulating this
system.

Example 1. Simple Stochastic Prolog Program for simulating a coin toss with
possible failures, and a possible trace. The predicate coin/1 expresses the fact
that the probability of tossing to head or tail is 49.5%, and probability of failure
is 1% (causing a failure of the process): then since the sum of rates is 100, each
tossing will take place at an average 0.01 of elapsed time. Predicate toss/0 drives
the process: after solving coin/1, if manhole is found the process is stopped,
otherwise it is reiterated again.

r(49.5):coin(head).
r(49.5):coin(tail).
r(1):coin(manhole).

toss() :- coin(X), continuation(X).
continuation(manhole) :- !.
continuation(_) :- toss().

---------------------------
?- solve_trace(toss(), 100, T).
yes.
T=[...,
event(28, coin(tail), 0.0102374),
event(29, coin(head), 0.0151458),



event(30, coin(head), 0.00339425),
event(31, coin(manhole), 0.00836014)]

Note that the result of the simulation is provided by a meta-interpreter solve trace,
accepting as input the initial state of the stochastic program (i.e. the goal to be
solved), a maximum elapsed time, and returning as output a sequence of events.
In order to ask the solution we hence try demonstrating goal solve_trace(+Goal,+Time,
-Trace). The output is a list of events, each with its own elapsed time. Such a
trace can easily be passed to a drawing program for generating charts.

2.1 A Prolog Implementation

The first implementation of Stochastic Prolog is easily achieved by exploiting the
well-known meta-programming capabilities of Prolog. Our meta-program struc-
ture in Figure 1 is similar to the standard Prolog interpreter solve [8]. Notice
that our meta-interpreter, in addition to normal clauses resolution, has to make
stochastic choices without backtracking, and calculate the simulation steps and
the simulation time. Currently, all the functionality required by Stochastic Pro-
log are developed by changing the standard resolution process of Prolog through
the meta-interpreter. The resolution is directed by label value and label type.
To introduce the label syntax label:clause, we define a new operator “:”
through definition :-op(500, yfx, ’:’). Rate labels are expressed by using
label predicates r(X). Technically, backtracking of labelled clauses is disabled
by the meta-interpreter using cuts operator. We can introduce also some spec-
ification facilities like p(X) label which means that all p(X):C unifiable clauses
have the frequency value that sum to 1. They are solved by randomly selecting
a clause (according to its probability) and causing no elapsed time.

Figure 1 shows the top level predicate of the interpreter, which is called to
start the simulation. Last clause of solve_trace/6 predicate realises most
of the selection process: all clauses matching Goal and with some label X are
retrieved combining built-in predicates findall/3 and clause/2. The stochastic
choice is made in selection/4 whose details are not reported for the sake of
brevity. The system has been tested with SWI-Prolog platform [11], but it could
have been tested with any other standard Prolog interpreter because only ISO
standard predicates are used.

3 Comparing Stochastic Prolog with PRISM

In order to evaluate our Stochastic Prolog framework, we consider the case of
collective sorting as described in [6, 7]. We first describe the problem, then we
model a self-organising solution according to the agent paradigm. We provide a
specification for both the PRISM tool and our Stochastic Prolog framework.

In this paper, we considered PRISM as a reference language for the sake of
comparison, for it is a paradigmatic case of how programming in such simu-
lation/verification languages hardly scale with the system complexity. Since a



solve_trace(Goal,Time,Trace):-

solve_trace(Goal,Time,Trace,0,NS,TBack).

solve_trace(_,Time,_,Time,_,T):-!,write(’STOP ’).

solve_trace(true,_,_,_,_,_):-!.

solve_trace((Goal1;Goal2),Time,Trace,Step,NS,TBack):-

!,(solve_trace(Goal1,Time,Trace,Step,NS,TBack);

solve_trace(Goal2,Time,Trace,Step,NS,TBack)).%Disjuction

solve_trace((Goal1,Goal2),Time,Trace,Step,NS,TBack):-

!,

solve_trace(Goal1,Time,Trace,Step,NS,TBack),

NS < Time,

solve_trace(Goal2,Time,Trace,NS,NS1,TBack).%Conjuction

solve_trace(Goal,Time,Trace,Step,NS,TBack):-

builtin(Goal),!,

call(Goal),NS = Step. %System predicate

solve_trace(Goal,Time,Trace,Step,NS,TBack):-

clause(Goal,B),

solve_trace(B,Time,Trace,Step,NS,TBack).%Normal predicate

solve_trace(Goal,Time,Trace,Step,NS,TBack):-

findall(X:(Goal:-B),clause(X:Goal,B),L),

not(empty_list(L)),!,

sum_up(L,Tot),

random(R), % 0-1 random number

Tot1 is Tot * R,

selection(L,Tot1,0,Rate:(G)), %make stochastic selection

arg(1,G,Goal),arg(2,G,Body),

label_eval(Tot,Rate,Step,Goal,NS),%eval label for step & time

solve_trace(Body,Time,Trace,NS,NS1,TBack1).%Label predicates

Fig. 1. The meta-interpreter code for predicates solve trace/3 and solve trace/6

PRISM specification defines a transition system, we expect the specification to
rapidly grow with the system complexity (number of guards increases): this is
often the case when dealing with non-trivial algorithms, such as the collective
sorting. What we expect using a more expressive language such as Prolog, is
that it should be possible to provide a more compact and simpler specification.

3.1 Case Study: Collective Sorting

In this section, we describe a particular decentralised sorting strategy called
collective sorting : the solution to this problem has been inspired by sorting
behaviours displayed by social insects [5]. Collective sorting has potential ap-
plications to both distributed software and physical environments, although,



from now on, we refer to a specific computational scenario based on the agent
paradigm.

We consider a distributed environment consisting of Linda-like tuple spaces
hosting tuples belonging to a limited set of kinds. The goal of the algorithm is to
distribute information across the tuple spaces, clustering similar information in
the same space while separating different kinds of information—see Figure 2. In
particular, we consider here the case where the number of tuple spaces is equal
to the number of tuple kinds—indeed, this is quite a general situation, in which
tuple kinds are actually groups identified at design-time, after the number of
tuple spaces is known.

Fig. 2. Dynamics of collective sorting. Given the system state on the left-hand side,
the algorithm eventually drive the system to the state displayed on the right-hand side

Each agent is responsible for keeping its own tuple space ordered. It adopts
a specific interaction protocol to evaluate the movement of some tuple: it sleeps
for a certain time, then wakes up and interact again. Doing so, it will work at
a certain rate (or frequency) r—where the time for executing the protocol is
supposed to be much smaller than 1/r. We proposed a solution to the collective
sorting problem for tuple-space-based systems, where each time unit an agent
performs a local observation (in its own tuple space) and a remote observation
(another tuple space chosen randomly), and evaluates whether a tuple has to be
moved away based on the outcomes [7]. The possible actions of such an agents
over the tuple spaces are hence the following:

– read a tuple “uniformly” over a tuple space—that is, each tuple matching
the request has the same probability of being picked (hence bigger groups of
a same kind are likely read more often)

– remove a tuple from a tuple space
– insert a tuple in to a tuple space

Note that from a simulation point of view, having n agents each with its own
working rate r is equivalent to having just one agent with working rate n ∗ r,



each time behaving like one of the n agents chosen probabilistically—each agent
has the same probability of being chosen. Hence, we consider the following single
agent protocol:

1. choose the source tuple space randomly
2. choose the destination tuple space randomly
3. uniformly read a tuple S from the source tuple space
4. uniformly read a tuple D from the destination tuple space
5. only if the tuple kinds are different, transfer a tuple of kind D from the

source to the destination

This self-organising algorithm is shown to bring the system towards ordering
independently of the initial configuration of tuples [7]—the ordering is yet com-
plete only by slightly changing the algorithm as shown in [6], but this issue is
of no interest here. The chart displayed in Figure 3 represents the dynamics of
collective sorting starting from initial situation TS1(20,20) and TS2(20,20): the
algorithm evolves the system towards the final state TS1(40,0) and TS2(0,40).
It is worth noting that the dual solution may have occurred as well, and it is not
possible to foretell where a specific cluster will appear.

0

5

10

15

20

25

30

35

40

45

Time

N
um

be
r o

f T
up

le
s

TS 1 TK 1 TS 2 TK 2

Fig. 3. The dynamics of the collective sorting, specifically tuple kind 1 in tuples space
1 and tuple kind 2 in tuple space 2

As a case to evaluate the simulation framework developed, we provide the
specifications for the basic version of collective sorting using both the PRISM
language and our framework.



3.2 Collective Sorting in PRISM

Among the many commercial and academic simulation frameworks, we have
chosen the PRISM tool [3] as a comparison: other than allowing simulation,
it offers a simple specification language and the possibility to perform formal
analysis. In general, it is a paradigmatic case of low-level stochastic language.

In PRISM, models are specified using a state-based language based on Reac-
tive Modules and is able to represent either probabilistic, non-deterministic and
stochastic systems using, respectively, Discrete-Time Markov Chains (DTMC),
Markov Decision Processes (MDP) and Continuous-Time Markov Chains (CTMC).
Components of a system are specified using modules and the state is modelled as
a set of finite-values variables: furthermore, modules composition and interaction
is achieved in a process algebra style.

According to the agent agenda defined in the previous section, in Figure 4 we
provide the PRISM commented specifications for collective sorting, considering
the basic case of two tuple spaces and two tuple kinds. The first part of the spec-
ification consists in constants, variables and formulas: the behaviour of the agent
is completely specified within the block module agent .. endmodule. Each step
in the agent agenda is encoded using one or more transitions, specified using the
notation [] guard -> rate_1 : update_1 + ... + rate_n : update_n;:
the guard is a boolean expression that, when verified, leads to one of the next
states specified in the updates according to the specified rates. The algorithm is
articulated in four steps:

Step 0 choose the source and the destination tuple spaces
Step 1 randomly draw a tuple from source tuple space and observe its kind
Step 2 randomly draw a tuple from destination tuple space and observe its kind
Step 3 depending on the tuple kinds decide whether to move the tuple or not

It is worth noting that several transitions occur with rate value equals decision:
this is an arbitrary large constant used to model a decisional process, i.e. a
process having a duration small in comparison with the other durations of the
system. It is easy to recognise that the PRISM language does not produce very
compact specifications: indeed, specifications tend to grow combinatorially with
the number of tuple spaces n (which directly influences the variables involved and
the number of guards). For instance, even with n > 5 the specifications grows
to several hundreds of rules: it is clear then that such a kind of language can
be used only as a low-level one, whereas more expressive languages are instead
required.

3.3 Collective Sorting in Stochastic Prolog

According to the agent agenda previously defined, we provide a Stochastic Prolog
specification for collective sorting—see Figure 5. While the PRISM specification
has been encoded for a specific instance, the prolog works for all instances of
collective sorting problem, where the number N of tuple kinds and tuple spaces



can be any greater than 1. This is a clear expressiveness advantage over the
PRISM language, where specifications grow very quickly.

A possible initial system with n = 2 is expressed by the following facts with
a probability label:

p(80):cell(1,1,80).
p(50):cell(1,2,50).
p(30):cell(2,1,30).
p(20):cell(2,2,20).
p(1):ts(1).
p(1):ts(2).

Fact cell(TS,TK,N) stands for N tuples of kind TK residing in tuple space
TS: we hence represent the system configuration with a matrix of weights. This
choice ensures that while reading a tuple on a tuple space, it is more likely to
get one of a bigger group. Moreover, we have two facts of the kind ts(X) with
same probability, used to pick a tuple space probabilistically. These facts are
considered as input state for the simulation, and could by changed throughout
via assertion and retraction as usual in Prolog.

In the general sense the overall system could be considered like an instance
of a CTMC. In the whole specification there is only one rule with a rate (with
head r(1):state(M)), responsible for setting the agent working rate to 1, and
four probabilistic selections: two for choosing source and destination tuple spaces
ts(S) and ts(D), and two for reading tuples in them cell(S,KS,NKS),cell(D
,KD,NKD).

There are three main predicates that are involved in the problem specifica-
tion: transfer/4, state/1 and start/0. The predicate transfer(+S,+D,+KS,
+KD) tests whether the transfer is possible or not and it accordingly executes
the transfer—it is worth noting that this modifies the rates of facts. There,
S and D are respectively tuple space source and destination identifiers, KS and
KD are tuple kind of source and tuple kind of destination. Predicates state/1,
state0/1, state1/2, state2/4 represent states during protocol execution, and
implement the CTMC: The M parameter contains the current state of system
i.e. the matrix with all probability values, which is reified as argument for being
tracked in the simulation trace. start predicate is called to start the simulation
process.

In order to run a simulation, we invoke the meta-goal solve_trace(start,
100, Trace), which produces as output the trace of the next 100 system states
with corresponding elapsed time, e.g. as follows:

event(44, state([24:cell(2, 2), 50:cell(1, 2),
26:cell(2, 1), 80:cell(1, 1)], 3), 0.767398)

event(45, state([50:cell(1, 2), 26:cell(2, 1),
23:cell(2, 2), 81:cell(1, 1)], 3), 1.54405)

event(46, state([50:cell(1, 2), 26:cell(2, 1),
80:cell(1, 1), 24:cell(2, 2)], 3), 0.455535)

event(47, state([80:cell(1, 1), 24:cell(2, 2),



49:cell(1, 2), 27:cell(2, 1)], 3), 0.834995)
event(48, state([24:cell(2, 2), 49:cell(1, 2),

26:cell(2, 1), 81:cell(1, 1)], 3), 0.119659)

In order to verify the generality of the Prolog specifications we evaluated the
collective sorting in the instance with 3 tuple spaces and hence a 3× 3 matrix,
as in Example 2.

Example 2. collective sorting simulation with N = 3

p(80):cell(1,1,80). p(50):cell(1,2,50). p(10):cell(1,3,10).
p(30):cell(2,1,30). p(20):cell(2,2,20). p(20):cell(2,3,20).
p(70):cell(3,1,70). p(60):cell(3,2,60). p(10):cell(3,3,10).
p(1):ts(1). p(1):ts(2). p(1):ts(3).

?- solve_trace(start,100,T).
...
event(97, state([
p(11):cell(1,3,11), p(55):cell(3,2,55), p(8):cell(3,3,8),
p(32):cell(2,1,32), p(75):cell(1,1,75), p(22):cell(2,2,22),
p(27):cell(2,3,27), p(51):cell(1,2,51), p(69):cell(3,1,69)]),
1.85357)

event(98, state([
p(11):cell(1,3,11), p(55):cell(3,2,55), p(8):cell(3,3,8),
p(75):cell(1,1,75), p(22):cell(2,2,22), p(27):cell(2,3,27),
p(69):cell(3,1,69), p(50):cell(1,2,50), p(33):cell(2,1,33)]),
0.959323)

event(99, state([
p(11):cell(1,3,11), p(55):cell(3,2,55), p(8):cell(3,3,8),
p(22):cell(2,2,22), p(69):cell(3,1,69), p(50):cell(1,2,50),
p(33):cell(2,1,33), p(26):cell(2,3,26), p(76):cell(1,1,76)]),
0.366512)
STOP

4 Conclusion

In this article, we propose a stochastic framework based on Prolog that allows to
perform stochastic simulation directly from Prolog specifications. The proposed
extension, called Stochastic Prolog, follows the same approach used in other lan-
guages such as Stochastic π-calculus [1]. Clauses are labelled either with rates or
probabilities, respectively modelling stochastic and probabilistic aspects: specifi-
cally rates define action duration according to an exponential distribution, while
next event scheduling is based on the Gillespie’s algorithm [10].



In the Logic Programming literature some concepts related to stochastic pro-
gramming have already been introduced, but to the best of our knowledge they
are not meant to target stochastic simulation. Muggleton [9] defines stochastic
logic programming, where a stochastic logic program P is a set of labelled clause
p : C with probability p ∈ [0, 1], and where for each symbol q in P the probability
label for all clauses with q head sum to 1. The meaning of the label in Muggleton
is probabilistic but it is not related to time or rate of execution. Therefore, our
work is apparently the first one putting together timing and probabilistic aspects
into Prolog, and then also the first to experiment it in the context of simulation
of complex computational systems.

In order to evaluate our simulation framework we compare the specification
of the collective sorting problem written in Stochastic Prolog with the same
one expressed with the PRISM tool. Thus, we show that Stochastic Prolog spec-
ifications are more compact even with the simplest problem instances: while
Stochastic Prolog specifications are not affected by the instance size, PRISM
specifications tend to quickly grow up to hundreds of transition rules even with
the simple case of N = 4—4 tuple spaces and 4 tuple kinds. Although a more
thorough study is now required, from this preliminary study it is clear that our
approach generally provides for much more expressiveness, and could hence be
used as an effective specification tool for system designers that need to simulate
complex applications.

Further explorations will first involve a semantic study of the language, cod-
ing more case studies to better evaluate it, then extend the language in several
ways, e.g. supporting concurrency operators as commonly found in process al-
gebras.

References

1. Priami, C.: Stochastic π-calculus. The Computer Journal 38(7) (1995) 578–589

2. Aldini, A., Bernardo, M., Gorrieri, R., Roccetti, M.: Comparing the QoS of Internet
audio mechanisms via formal methods. ACM Trans. Model. Comput. Simul. 11(1)
(2001) 1–42

3. University of Birmingham: The PRISM probabilistic model checker. Version
3.1.1 and documentation available online at http://www.prismmodelchecker.org
(September 2007)

4. Kulkarni, V.G.: Modeling and analysis of stochastic systems. Chapman & Hall,
Ltd., London, UK, UK (1995)

5. Deneubourg, J., Goss, S., Franks, N., , C. Detrain, A.S.F., Chrétien, L.: The dy-
namics of collective sorting: Robot-like ants and ant-like robots. In Meyer, J.A.,
Wilson, S.W., eds.: From Animals to Animats: Proceedings of the First Inter-
national Conference on Simulation of Adaptive Behavior. Classics. MIT Press,
Cambridge, MA, USA (February 1991) 356–363

6. Viroli, M., Casadei, M., Gardelli, L.: A self-organising solution to the collective sort
problem in distributed tuple spaces. In: Proceedings of the 2007 ACM Symposium
on Applied Computing (SAC 2007), Seoul, Korea, ACM (11–15March 2007) 354–
359 Special Track on Coordination Models and Languages.



7. Casadei, M., Gardelli, L., Viroli, M.: Simulating emergent properties of coordina-
tion in Maude: the collective sort case. Electronic Notes in Theoretical Computer
Science 175(2) (June 2007) 59–80 5th International Workshop on the Foundations
of Coordination Languages and Software Architectures (FOCLASA 2006).

8. Sterling, L., Shapiro, E.: The Art of Prolog: Advanced Programming Techniques.
2nd edn. Logic Programming. MIT Press, Cambridge, MA, USA (1994)

9. Muggleton, S.: Stochastic logic programs. In De Raedt, L., ed.: Proceedings of
the 5th International Workshop on Inductive Logic Programming, Department of
Computer Science, Katholieke Universiteit Leuven (1995) 29

10. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The
Journal of Physical Chemistry 81(25) (1977) 2340–2361

11. SWI-Prolog: Version 5.6.40. Documentation available online at http://www.swi-
prolog.org (September 2007)



ctmc
const int MAX=40;
const int decision = 1000000;
global t1k1 : [0..MAX] init 20;
global t1k2 : [0..MAX] init 20;
formula chooset1k1 = t1k1/content1;
formula chooset1k2 = t1k2/content1;
formula content1 = t1k1+t1k2;
global t2k1 : [0..MAX] init 20;
global t2k2 : [0..MAX] init 20;
formula chooset2k1 = t2k1/content2;
formula chooset2k2 = t2k2/content2;
formula content2 = t2k1+t2k2;

module agent
//Variables encoding agent internal state
step : [0..3] init 0;
ts : [1..2];
td : [1..2];
s : [1..2];
d : [1..2];
//Randomly choose source and destination tuple spaces
[] step = 0 & content1 != 0 & content2 != 0 ->

decision : (ts’ = 1) & (td’ = 2) & (step’=1) +
decision : (ts’ = 2) & (td’=1) &(step’=1);

// Choose source tuple kind
[] step = 1 & ts = 1 & content1 != 0 & content2 != 0 ->

chooset1k1 * decision : (s’ = 1) & (step’ = 2) +
chooset1k2 * decision : (s’ = 2) & (step’ = 2);

[] step = 1 & ts = 2 & content1 != 0 & content2 != 0 ->
chooset2k1 * decision : (s’ = 1) & (step’ = 2) +
chooset2k2 * decision : (s’ = 2) & (step’ = 2);

// Choose destination tuple kind
[] step = 2 & td = 1 & content1 != 0 & content2 != 0 ->

chooset1k1 * decision : (d’ = 1) & (step’ = 3) +
chooset1k2 * decision : (d’ = 2) & (step’ = 3);

[] step = 2 & td = 2 & content1 != 0 & content2 != 0 ->
chooset2k1 * decision : (d’ = 1) & (step’ = 3) +
chooset2k2 * decision : (d’ = 2) & (step’ = 3);

[] step = 3 & s = d ->
decision : (step’=0);

//Tuple space source 1, Tuple space destination 2
[] step = 3 & ts = 1 & td= 2 & s = 1 & d = 2 &

t1k2 > 0 & t2k2 < MAX ->
1.0 : (step’=0) & (t1k2’ = t1k2 - 1) & (t2k2’=t2k2 + 1);

[] step = 3 & ts = 1 & td= 2 & s = 1 & d = 2 &
t1k2 = 0 ->
1.0 : (step’=0);

[] step = 3 & ts = 1 & td= 2 & s = 2 & d = 1 &
t1k1 > 0 & t2k1 < MAX ->
1.0 : (step’=0) & (t1k1’ = t1k1 - 1) & (t2k1’=t2k1 + 1);

[] step = 3 & ts = 1 & td= 2 & s = 2 & d = 1 &
t1k1 = 0 ->
1.0 : (step’=0);

//Tuple space source 2, Tuple space destination 1
[] step = 3 & ts = 2 & td= 1 & s = 1 & d = 2 &

t2k2 > 0 & t1k2 < MAX ->
1.0 : (step’=0) & (t2k2’ = t2k2 - 1) & (t1k2’=t1k2 + 1);

[] step = 3 & ts = 2 & td= 1 & s = 1 & d = 2 &
t2k2 = 0 -> 1.0 : (step’=0);

[] step = 3 & ts = 2 & td= 1 & s = 2 & d = 1 &
t2k1 > 0 & t1k1 < MAX ->
1.0 : (step’=0) & (t2k1’ = t2k1 - 1) & (t1k1’=t1k1 + 1);

[] step = 3 & ts = 2 & td= 1 & s = 2 & d = 1 &
t2k1 = 0 -> 1.0 : (step’=0);

endmodule

Fig. 4. Collective sorting specifications in the PRISM language



transfer(S,D,KS,KD) :-

retract(p(N1):cell(S,KS,NKS)),

retract(p(N2):cell(D,KD,NKD)),

(N1 == 0,Nout1 is 0,Nout2 is N2;

N1 =\= 0,exec(N1,N2,Nout1,Nout2)),

assert(p(Nout1):cell(S,KS,Nout1)),

assert(p(Nout2):cell(D,KD,Nout2)).

exec(TkS,TkD,TkSa,TkDa) :-

TkDa is TkD + 1,

(TkSa is TkS - 1).

r(1):state(M):- ts(S),state0(S).

state0(S) :- ts(D),state1(S,D).

state1(S,S) :- !,state0(S).

state1(S,D) :-

cell(S,KS,_),

cell(D,KD,_),

state2(S,D,KS,KD).

state2(S,D,K,K) :- !,start.

state2(S,D,KS,KD) :-

transfer(S,D,KS,KD),

findall(R:(cell(X,Y,N)),R:(cell(X,Y,N)),M1),

state(M1).

start:- ts(S),state0(S).

Fig. 5. Collective sorting N ×N specification in Stochastic Prolog


