
FOCLASA 2005 Preliminary Version

A Framework for Engineering Interactions in
Java-based Component Systems

Antonio Natali, Enrico Oliva, Alessandro Ricci, Mirko Viroli

DEIS, Alma Mater Studiorum, Università di Bologna,
via Venezia 52, I-47023 Cesena, Italy
{anatali,eoliva}@deis.unibo.it
{a.ricci,mirko.viroli}@unibo.it

Abstract

This paper describes a Java-based framework for the development of component-
based software systems supporting the specification of the logic of component inter-
actions as a first-class aspect. Java is used as the reference development language.

On the one side, the framework makes it possible to specify the logic of interaction
at the component-level, in terms of input and output interfaces, the events generated
and observed by a component, and related information about the management of
the control flow. On the other side, it is possible to specify the logic of interaction at
the inter-component level, providing a modelling and linguistic support for designing
and (dynamically) programming the glue among the components, enabling general
forms of observation, control and construction of the interaction space.

As a result, the framework supports the coordination of components at different
levels: from interoperability among heterogeneous and unknown components, to the
support for dynamic introduction, removal and update of components, to general
coordination patterns, such as workflow.

The framework adopts first-order logic as the reference computational model for
describing and defining the logic of interaction: the modalities adopted by compo-
nents to interact, the coordination laws gluing the components and the interaction
events occurring in the system are expressed as facts and rules. They compose the
(evolving) logic theories describing and defining the interaction at the system level,
and can be observed and controlled at runtime to allow dynamic re-configurability.

1 Introduction

Nowadays component-based technologies and frameworks (often referred to
as componentware) can be considered mainstream approaches for designing
and developing complex software systems [13]. Examples of most used frame-
works include EJB (Enterprise Java beans) as part of the J2EE architec-
ture, CCM (CORBA Component Model) as part of CORBA middleware, and

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Natali, Oliva, Ricci, Viroli

DCOM/COM+ and its future incarnations on the .NET platform [13]. Also
some service-oriented frameworks, such as OSGi [11], can be considered essen-
tially as component-based frameworks, where components are called services.

Generally speaking, existing mainstream approaches are all essentially
based on a sort of “LEGO-like” vision of software systems: the focus is on the
notion of component as a basic brick to compose systems, both at design and
runtime. The composition is made possible essentially by explicitly declar-
ing the interfaces that a component provides for exploiting its services and
requires for being able to realise its services. Interfaces act as the formal de-
scription of the dependencies which connect together the components — as the
joints for (LEGO) bricks. Accordingly, this leads software engineers to reason
on application design and development in terms of structural composition of
entities.

Actually, such an approach can be considered quite weak when dealing with
the engineering of modern software systems, where component interactions
and related dynamics are essential elements. Current mainstream approaches
do not provide first-class support for specifying and managing interactions
among components: most of the support concerns solving static dependencies
where components are (dynamically) introduced or removed from the system.
Back to the LEGO-metaphor, it is not sufficient to have bricks which are
composed and linked together for asserting that the overall brick construction
works from a dynamic point of view: some kind of dynamics and interaction
can lead the overall system to break down, even if the bricks are (statically)
connected in a right way and do their job properly.

In this work we present a framework for supporting component-based sys-
tems on top of object-oriented mainstream technologies such as Java, which
provides a first-class support for representing, enacting and controlling the
interactions inside the system. The approach does not consider the individual
component as the center of the design and development of a component-based
systems: this role is instead played by the the logic of interaction, which glues
components together, according to a notion of interaction richer than the one
that can be specified e.g. with standard object-oriented interfaces. In particu-
lar, the framework makes it possible to characterise the logic of interaction at
two different levels: at the component level, specifying the interactive capa-
bilities of individual components; and at the system level, specifying the laws
that define and govern interactions which do not concern a specific compo-
nent of the system, but characterise the overall ensemble of the components
together.

In the overall, the framework makes it possible to design and develop
component-systems adopting mainstream technologies — including other
component-based framework such as OSGi and EJB — but providing a sup-
port for managing interactions at an higher level of abstraction, focussing on
the logic of interaction.

The remainder of this article is organised as follows: Section 2 presents

2

Natali, Oliva, Ricci, Viroli

Fig. 1. Architectural view of components and kernel

the principles on which the framework is based, Section 3 describes how the
framework is realised on top of the Java platform, Section 4 focuses on a
concrete instance of kernel based on first-order logic, Section 5 exemplifies the
approach describing a simple component-based system built on the framework,
and finally Section 6 concludes the paper.

2 The Framework: Vision

The framework introduces two first-class abstractions to represent the compo-
nents and the environment where they are immersed, so as to better support
both the micro (component) and macro (system) levels: actors 1 and kernels
(see Fig. 1).

Actors play the role of components of a system, as the basic unit of de-
ployment, embedding some kind of business logic. They are meant to execute
some kind of task such as the provision of a service, triggered by the recep-
tion of some form of stimuli. As components, actors can be introduced and
removed dynamically into / from the kernel.

Kernels explicitly represent component environments, providing actors
with specific services for supporting their interaction. A system then is com-
posed by a kernel and a dynamic set of actors, linked and connected through
the same kernel. To some extent, the kernel abstraction is similar to the notion
of container as found in current component frameworks, extended toward the
idea of configurable and programmable coordination medium [4]. As happens
for the actors, also kernels can be dynamically extended and replaced.

1 In spite of the name, the notion of actor is not directly linked to the actor abstraction as
introduced by Carl Hewitt, but it rather refers to a component capable of interacting, as
explained in the following

3

Natali, Oliva, Ricci, Viroli

2.1 Interaction Signals and Interaction Primitives

From the interaction viewpoint, actors can be conceived as normal objects with
the capability of generating and perceiving interaction signals. In particular,
they provide their service by reacting to the reception of some interaction
signals, and trigger the execution of services by generating signals.

Interaction signals are the basic bricks of the vocabulary of interac-
tion which can be used to define the logic of interaction characterising the
component-system. In this framework such a notion is represented in the sim-
plest way, as a couple (n, v), where n identifies the name of the signal and
v the information content. Each component is characterised by the set of
interaction signals that it can eventually generate (output interface) and the
set of interaction signals that it can receive (input interface) during its life.
Such sets must be explicitly defined for each component and are declared /
published in the environment when the component is introduced in the sys-
tem. So, interaction signals are meant to specify a form of interaction among
actors minimising the (static) dependencies among them: the components do
not interact directly with other components directly knowing their references
and invoking methods, but indirectly generating and perceiving shared set of
signals.

For what concerns the output interface, the kernel provides actors with a
basic set of interaction primitives, which actors can use to generate interaction
signals. Such primitives are actually important for characterising some basic
aspect of the interaction semantics, in particular the attitude or intention of
the act and what is expected from that act. Currently the basic set accounts
for three primitives:

• notify - used to emit an interaction signal to make some kind of information
related to the state or the behaviour of the component observable to other
components. The actor emitter is not interested in receiving any kind of
information as a result of the operation;

• inform - used to emit an interaction signal to inform its environment of
some information, in order to trigger some kind of activity or to answer to
a request received in the past. The primitive succeeds if (and when) the
information has been completely delivered into the environment, otherwise
a InformException is generated;

• invoke - used to emit an interaction signal to execute a service and receive
the corresponding result. The primitive works then as a traditional RPC or
method invocation, with the result provided as the return parameter of the
call. The primitive generates an exception InvokeException if the service
cannot be delivered.

It is worth noting that all the primitives are meant to generate a signal without
specifying the target actor: the component or set of components that will
receive the signal depend on the specific logic of interaction defined for the

4

Natali, Oliva, Ricci, Viroli

Fig. 2. Kernel default behaviour for notify, inform and invoke primitives

system and enacted by the kernel, as shown in next subsection.

Generally speaking the set of the primitives defines and constrains the
expressiveness of the interaction support provided by a kernel. The objective
here is to factorise the interaction needs that are most frequently found when
building component-based systems, abstracting away from how interaction
takes place (e.g. either through message passing or shared memory, either
local or distributed) and which technology is used, focussing exclusively on the
logics of the interaction. Accordingly, the same primitives — with the same
semantics — could be supported at the deployment stage by different kinds of
kernel, adopting different kind of implementation strategies and technologies,
depending on the computational and hardware environment.

Dually to the set of interaction primitives to emit signals, each actor must
provide an interface with a doAction operation, which is used — from the
environment point of view — to obtain the services that the actor is able to
deliver. In particular, doAction specifies the behaviour of the actor reacting
to the reception of any interaction signal that the actor declared among its
input signals. The operation can directly return some result — representing
the return value of the service invoked, and can generate a DoActionException
to represent some kind of runtime error related to the execution of the service,
for instance a (semantic) violation of the contract due to wrong arguments.
The execution of the service can result also in the generation of output signals
(using notify / inform / invoke primitives), for instance for notifying some
kind of event or for executing some other services.

2.2 Kernel mediation and Interaction Laws

The role of the kernel is then to act as the glue which enables, mediates and
controls the generation of output interaction signals of some components which
can become input interaction signals for other components. In other words,

5

Natali, Oliva, Ricci, Viroli

from a logical point of view, the kernel plays the role of a interaction arti-
fact, factorising services for managing component dependencies and dynamic
interactions.

The default behaviour of a kernel is to enable interactions based on the
name of interaction signals that actors declared to generate or to perceive. In
particular (see Fig. 2 for a graphical description):

• a signal generated by an actor with a notify causes the execution of the
doAction operation — with the interaction signal as a parameter — of
all the actors that listed the signal among the input ones. The emitter
actor is not interested in knowing any information about the effects of the
invocation, so the kernel could e.g. to do its best in order to realise the call
as asynchronously as possible;

• a signal generated with an invoke causes the execution of doAction on one
actor chosen among all the actors that listed the signal among the input
ones. The return value of the invoke primitive is directly the result provided
by the doAction operation. In particular, the kernel is meant to provide the
best effort to find an actor executing the action without failures. So, if the
execution of the operation on the chosen actor fails (with the generation of
a DoActionException), another actor is to be — e.g. non-deterministically
— selected from the remaining ones and the operation doAction is to be
executed again on it; If no actor is found providing the services without
exceptions, then the invoke fails by generating a InvokeException.

• a signal generated with an inform causes the execution of a doAction on
all the actors that listed the signal among the input ones. The primitive
succeeds if the kernel is able to deliver the signal to everyone, i.e. to exe-
cute the doAction on all the actors, in spite of the possible generation of a
DoActionException by each actor.

Besides these basic interaction primitives, the kernel can actually be extended
to provides services for defining interaction laws in order to directly support
some basic patterns of interaction, beyond the basic gluing behaviour. These
laws can be specified during the (re-)configuration stage of the system, which
can take place anytime during the execution of the applications. The patterns
currently supported in the framework are actually some of the most frequently
used ones in mainstream component-based systems, such as Enterprise Java
Beans, but working here at an higher level of abstraction:

• event-listening – the kernel provides a support for allowing a dynamic set of
listener / reacting actors to observe a specific interaction signal generated
by a specific emitter actor;

• interaction-vetoing – the kernel provides a support for realising vetoed in-
teractions, i.e. interactions which actually take place only if no registered
actor issues a veto. More precisely, the kernel service makes it possible to
specify that a specific input signal for a specific receiver actor could be ve-

6

Natali, Oliva, Ricci, Viroli

toed by a certain vetoer actor; dynamically, an interaction signal directed
to the receiver is actually dispatched to the component only if none actors
specified as vetoers disagree.

More complex laws can be obtained by composing the specification of mul-
tiple simple reactions and veto rules. Others are currently investigated to
realise more coordination-oriented interaction patterns, enriching the basic
support provided by the kernel. Examples include the ability to specify con-
straints such as the order in which listeners are to be informed, or atomic-
ity/consistency as in transaction-like scenarios.

It is worth noting that enriching the description of interaction aspects
with semantics information improves the support for the principle of local
development of components, and — more generally — for engineering open
and extensible systems. Components are typically designed and developed
without an a-priori knowledge of the specific environments where they will be
deployed to; the availability of information concerning the semantics of the
interaction of a component — beyond the pure syntactic aspects — simpli-
fies their integration and dynamic gluing by the kernel: for instance, this is
achieved by applying some kind of coordination rules to enable interoperabil-
ity among components in spite of syntax and semantics mismatches among
the interactions signals generated / perceived.

2.3 Wired and In-The-Space Interaction Modalities

The kernel realises its mediation role by injecting into the actors the logics
necessary to realise interactions. In particular, this can take place according
to two basic different modalities, called in-the-space and wired, which can
basically be seen as different implementation approaches for the kernel. In
the former, the kernel is actually a logical and runtime entity, shared and
accessed any time a component is generating signals or is stimulated with
signals; in this case the logics injected into the components simply provides
for basic interaction acts towards the kernel. In the latter, all the peer-to-
peer logics of interaction is injected in the components, without any runtime
centralising entity. In other words, in the wired case the kernel is completely
distributed and injected directly in the components; the component system
at runtime becomes an interaction network, with actors playing the roles of
the nodes, logically immersed in a shared environment, but actually wired in
order to have direct, non-mediated interaction.

3 Specification and Implementation Issues

In this section we describe the main aspects of the current design of this
framework, including specification of architecture and implementation details.

The relationship between kernel and actor is realised exploiting the in-

7

Natali, Oliva, Ricci, Viroli

Fig. 3. Architectural view of elements in the framework

version of control (IoC) pattern 2 : some configuration code is in charge of
injecting a reference to the kernel inside the actor, so that the latter can di-
rectly access its environment without being responsible for retrieving it. In
Figure 3, the elements that compose the framework are represented. On the
one hand, an actor component should provide the interface IActor — namely
by implementing it —, defining the operations that it makes available to the
other actors and to the kernel. These include the methods to configure the
actor itself, as well as the method implementing the services realised by the
actor, used to receive signals. On the other hand, the actor component should
require the interface IKernel — namely, the kernel referenced by the actor
through the IoC pattern should implement the IKernel interface. This in-
terface includes the methods to register an actor to the kernel, to declare its
input and output signals, and to invoke kernel interaction primitives (to emit
signals).

Table 1 shows a possible way to classify these operations. The IActor

interface is used at configuration-time to inject the kernel into the actor in-
stance, and by the kernel at interaction-time to invoke services. Dually, the
IKernel interface is used at configuration-time to register an actor and its
signals, and by the actors at interaction-time to invoke interaction primitives.

Operations IActor IKernel

Configuration
time

Injecting the kernel Registering and declaring
signals to the kernel

Interaction
time

Requesting execution of ac-
tions/services

Invoking the interaction
primitives

Table 1
Interfaces structure

2 The IoC pattern is now becoming a standard approach for developing containers in
component-based systems (http://www.devx.com/Java/Article/27583)

8

Natali, Oliva, Ricci, Viroli

3.1 IActor

In the actual incarnation of our framework an actor is expressed as a Java
class, which has to implement the standard interface IActor:

interface IActor extends IActionBase, IActorSpecification {}

This interface simply extends IActionBase and IActorSpecification, respec-
tively describing interaction-time and configuration-time functionality. The former
simply provides method doAction — which has the semantics described in previous
section — is used to execute a service realised by the actor. In particular, this is
invoked by kernel as a response of a request coming from another actor, achieving
both the execution of a service and the return of a result. One such invocation can
also fail for a number of reasons — wrong arguments, failures in accessing back-end
services, and so on — in which case the execution throws an exception.

interface IActionBase {
Object doAction(String actionName,Object arg)

throws DoActionException;
}

The argument actionName represents the name of the service requested, the ar-
gument arg the input information provided for describing details of the requested
service; the output result is given type Object for generality.

The interface IActorSpecification provides all the operations used at
configuration-time, by which the presence of the actor in the system can be config-
ured.

public interface IActorSpecification {
public String getName();
public String [] getInputSignals();
public String [] getOutputSignalsNotify();
public String [] getOutputSignalsInvoke()
public String [] getOutputSignalsInform()
public void setKernel(IKernel kernel);
public IKernel getKernel();
public boolean isActive();

}

The method getName returns the name of the Actor — unique in the running
application. The method getInputSignals is used by the kernel to retrieve all the
input signals that the actor is able to process, namely, the actionName it is willing
to accept by a doAction. The methods getOutputSignalsNotify/Invoke/Inform
return the output signals that the actor can generate, namely the list of actionName
for the services it can request — either through a notify, invoke, or inform. The
methods setKernel and getKernel store and retrieve the reference to the kernel
where the actor is connected to — according to the IoC pattern. In the current
version of the framework the actors implement other interfaces that allow to inject
in the actor also some basic support of the JavaBeans component framework.

9

Natali, Oliva, Ricci, Viroli

3.2 IKernel

IKernel is the standard interface which any kernel has to implement, providing
those methods that each actor has access to — in order to either interact with
others or to register its input and output signals.

interface IKernel {
void notify(IActor emitter,String signalName,Object args);
void inform(IActor emitter,String signalName,Object args)

throws InformException;
Object invoke(IActor emitter,String signalName,Object args)

throws InvokeException;

void declareNode(String name, Class clazz, Object obj);
void declareInputSignals(IActor receiver, String[] signals);
void declareOutputSignalsNotify(IActor emitter, String[] signals);
void declareOutputSignalsInvoke(IActor emitter, String[] signals);
void declareOutputSignalsInform(IActor emitter, String[] signals);

}

As an actor can invoke a service in three different styles, this interface provides
the three corresponding methods notify, inform, and invoke. Method notify is
used to send a signal to interested actors without actually caring about any reply
result or either any acknowledgment, hence it throws no exception. Method inform
is used to send a signal to interested actors: no result is returned, but the end of the
operation means that all the interested actors processed the signal. Finally, method
invoke is used to request a service to one agent that can execute it, correspondingly
receiving a reply. In all cases, the kernel has the burden to retrieve actors (one or
more) able to execute a service with the specified name, invoke their doAction
name, and properly providing acknowledgment/reply to the emitting actor.

The other methods are used by the actor to register information about its in-
terface — in the component-based acceptation of the term. Methods declareNode,
declareInputSignal and declareOutputSignals, respectively register the pres-
ence of the actor in the system, its input signals (the services it realises), and its
output signals (the services it invokes on other actors).

3.3 Interaction Laws

Other than providing a basic interaction support, conceptually linking input and
output signals and guaranteeing the three different semantics of service requests,
a kernel can be implemented so as to support interaction laws. These are used in
all those cases where a more advanced coordination ability is to be charged upon
the kernel. As explained in previous section, examples of such laws include those
supporting event-listening and vetoer semantics.

Each such law is associated with a proper interface that the kernel class has
to implement. This interface provides the method (or methods) used to configure
the interaction law, thus extending the underlying semantics of subsequent calls
to methods IKernel.invoke, IKernel.inform, and IKernel.notify. This mech-
anism is thus used to change the default semantics of a kernel, where signals are

10

Natali, Oliva, Ricci, Viroli

associated to output signals solely based on the matching of their names.
For the event-listener interaction law, we have for instance the interface:

public interface IReactInteraction {
public void reactInteraction(
IActor reactor, IActor emitter, String signalName);

}

Method reactInteraction is to be implemented to realize the pattern publish-
subscribe: this is used to register the reactor to receive invocations of the signal
with name signalName executed by the actor emitter — namely reactor will
observe actions signalName of the emitter. One such law constrains the space of
interaction and limit the notify method of an actor for a determined signal and only
to the actor indicated in reactInteraction. Actually reactInteraction can be
exploited in the framework also for supporting the wired modality as described in
previous section. In particular, by calling a set of reactInteraction(O,E,S) we
fix the set of specific observers {O} that can observe the signal S emitted by E. By
doing so, at configuration time the kernel (in the reactInteraction) can inject in
the emitter actor a support for sending the signal directly to the specified observers,
without the mediation of the kernel itself.

Similarly, the vetoing functionality is supported by interface:

public interface IVetoInteraction {
public void vetoInteraction(
IActor vetoer, IActor receiver, String signalName);

}

By calling method vetoInteraction, the kernel is configured so that actor vetoer
can negatively reply to an output signal signalName produced by actor receiver.

These laws are just a subset of those a kernel can implement: further laws can
be realised by adding new interfaces.

4 A Logic-based Kernel

While developing our framework, we experimented various implementations for the
kernel, providing different ways to represent and manage interactions based on
different kinds of lower-level technologies.

Among the others, we found the logic programming paradigm quite useful. The
corresponding kernel, called Logic Kernel, adopts first-order logic for describing
and enacting the logic of interaction, including both the interaction capabilities
of individual actors, and the coordination laws which define how the interactions
are globally managed. In other words, the kernel handles as logic theories both
the configuration of the system — actors immersed in the environment, their set
of input / output interaction signals, and the laws governing interactions — and
the interaction events that dynamically occur. The mediation and coordination
activities of this kernel are then realised by exploiting a logic engine (based on
Prolog), properly handling the occurring interactions based on the interaction laws
and the actors configuration.

11

Natali, Oliva, Ricci, Viroli

4.1 Implementation

This kernel is realised following the “in the space” modality, namely, as a run-time
abstraction where interaction signals are reified and properly managed. It is imple-
mented through a class LogicKernel implementing interface IKernel — namely,
a component providing the IKernel interface. Moreover, it also implements the
interface IContextLocal that provides functionality to load, save and execute a
logic theory, configuring and modifying the kernel at run-time. The implementa-
tion of this class is based on the tuProlog open source project we developed [5]
(http://tuprolog.sourceforge.net). This is a lightweight Prolog engine and
API written in Java which provides smooth integration of Prolog and Java pro-
gramming, allowing to either represent and invoke Prolog goals from Java, as well
as calling Java libraries within Prolog theories.

public interface IContextLocal {
public alice.tuprolog.Prolog getPrologEngine();
public void register(String term, Object obj);
public boolean loadTheory(String absPath);
public boolean saveTheory(String absPath);
public String standardQuery(String queryS);
public String query(String queryS);
public String nextSolution();
public alice.tuprolog.SolveInfo solve(String queryS);

}

Basically, this interface provides a wrapper to the API of tuProlog, with methods
to handle basic Prolog primitives to load and save theories, execute queries and
retrieve solutions, and so on.

By exploiting these functions, the LogicKernel has to realize the methods pro-
vided by the IKernel interface. The methods supporting configuration simply cause
a term — also called here a tuple — containing information on the arguments to
be reified in the knowledge base as follows:

declareNode — This method is used to register an actor in the kernel; an invoca-
tion is represented by the tuple node(NodeName, Class).

declareInputSignals — This method is used to register the input signals
an actor is interested in receiving; an invocation is represented by a tuple
reacts(Reactor, ActionName) for each signal specified in the input array.

declareOutputSignalsNotify/Invoke/Inform — These three methods are used
to register the output notify/invoke/inform signals an actor may receive; an
invocation is represented by a tuple declaresNotify(Emitter, ActionName),
declaresInvoke(Emitter, ActionName), or declaresInform(Emitter, ActionName),
for each signal specified in the input array.

These tuples are then actually seen as Prolog facts reacts/2, declaresNotify/2,
declareInvoke/2, declareInform/2 and node/2, inserted dynamically in the
knowledge based at configuration time.

Other than configuration details, also the occurrence of interactions between
actors are inserted in the knowledge base dynamically. A method trace in class

12

Natali, Oliva, Ricci, Viroli

LogicKernel writes in the knowledge base a term of the kind out(Emitter,
ActionName, Arg), where Emitter is the agent responsible for the interaction,
ActionName is the signal name, and Arg is the signal argument.

When a method invoke, inform, or notify is invoked on the kernel, a
corresponding prolog predicate invokeInTheSpace/4, informInTheSpace/3, and
notifyInTheSpace/3 is called, which is in charge of allowing the proper actors to
perceive the signal, supporting the precise semantics of each of the three primitive.

The implementation of predicate invokeInTheSpace/4 is as follows:

invokeInTheSpace(Emitter, ActionName, Arg, Res):-
reacts(Reactor,ActionName),
node(Reactor,Class),
declares(Emitter,ActionName),
Reactor <- doAction(ActionName, Cmd) returns Res,
!.

While the first three arguments are as usual, the last is an output, providing invo-
cation result. The predicate orderly (i) retrieves a Reactor willing to accept the
signal, (ii) checks whether it is registered as a node, (iii) checks whether it declared
the corresponding input signal, and finally (iv) invokes method doAction on it,
returning result Res. Note that in tuProlog, binary infix predicate <- is used to
invoke the method specified on the right-side over the Java object identified by the
reference specified on the left-side — with the optional final part returns specify-
ing the result. If such an invocation fails for some reason, predicate <- fails: for
the backtracking semantics of Prolog this causes predicate reacts to find another
solution, namely another Reactor. If the invocation is instead successful, the cut
predicate ! completes the execution. In the end, this preserves the semantics of
invoke primitive: the kernel will keep looking for one (and precisely one) actor that
successfully executes the service requested.

The implementation of predicate notifyInTheSpace/3 is as follows:

notifyInTheSpace(Emitter, ActionName, Arg):-
reacts(Reactor, ActionName),
node(Reactor,Class),
declaresNotify(Emitter, ActionName),
Reactor <- doAction(ActionName, Arg),
fail.

notifyInTheSpace(Emitter, ActionName, Arg).

Differently from the previous case, this predicate does not provide replies, but sim-
ply returns when its task is over. As a proper actor is found and its doAction
method is invoked, meta-predicate fail causes the Prolog engine to backtrack and
find another actor by predicate reacts. When no more such actors exist, the sec-
ond clause positively terminates the invocation. Note that if some invocation of
doAction would fail, this does not interfere at all with the engine execution. This
behaviour preserves the semantics of notify primitive: the kernel should find all
actors interested in the notification — the emitting actor being not interested about
some registered actor not perceiving the notification.

Finally, the implementation of predicate informInTheSpace/3 is as follows:

13

Natali, Oliva, Ricci, Viroli

Fig. 4. Inspector tool

informInTheSpace(Emitter,ActionName,Arg):-
assert(proceed(Emitter,ActionName)),
reacts(Reactor,ActionName),
proceed(Emitter, ActionName),
node(Reactor,Class),
declaresNotify(Emitter,ActionName),
retract(proceed(Emitter,ActionName)),
Reactor <- doAction(ActionName,Arg),
assert(proceed(Emitter,ActionName)),
fail.

informInTheSpace(Emitter,ActionName,Arg):-
proceed(Emitter,ActionName),
retract(proceed(Emitter, ActionName)).

This is similar to predicate notifyInTheSpace. The main difference is that
a fact proceed is reified in the space at the beginning and is dropped if some
doAction fails. As it is dropped the execution terminates negatively, otherwise when
all actors have been informed without exceptions the execution returns positively.
This behaviour preserves the semantics of inform primitive: the kernel should find
all actors interested in being informed — the emitting actor being interested in
whether all registered actors correctly perceived the signal.

A main advantage of the logic kernel approach is that it allows for easily track-
ing the occurrence of interactions and their management, namely, the true run-time
behaviour of the application. Figure 4 shows the Inspector tool of the frame-
work, used to display all the relevant information about state and evolution of the
logic kernel. In particular, this tool can inspect the current kernel configuration
(button selfDescribe), the interactions occurred and reified as out tuples (but-
ton showInteractions), the logic theory governing interaction laws — namely, the
coordination behaviour in the system — (button showTheory). The inspector tool
can be used to debug application and to modify the laws of interaction at run time,
to see and experiment different system evolutions.

So, typically the logic kernel is used in prototyping and debugging stages: when
the logic of interaction has proven correct a more efficient version of the system can
be obtained by wiring the interactions by means of the reactInteraction kernel

14

Natali, Oliva, Ricci, Viroli

primitive. In particular, in the Logic-Kernel such a primitive wires the emitter and
observers actors using the Java event-listener pattern.

5 A Simple Example: the Ping-Pong System

To give a flavour of framework classes and behaviour, here we consider a very
simple system, referred to as Ping-Pong, made by two components which must be
coordinated by a simple rule. The source code of the Java classes implementing
this example is reported in Fig. 5. The components are represented by the classes
PingActor and PongActor, referred here as respectively the ping actor and the pong
actor. The behaviour of the components is very simple: they react to the reception
of a specific input signal (ping for the ping actor, pong for the pong actor), and after
doing their job (just sleeping in our implementation) they emit a specific output
signal (pong for the ping actor and ping for the pong actor). Actors share the same
interaction signals: the signal generated by an actor triggers the execution of the
service by the other actor.

The simple coordination rule that we want to realise accounts for stopping the
interaction between the actors after N stages, i.e. after N generations of the ping -
pong couple of signals. The rule must be specified and enforced without changing the
behaviour of the individual actors. For this purpose, we define a vetoing interaction
law, with a new actor acting as vetoer of the input signals notified to the ping actor.
The vetoer essentially counts the number of times a ping signal is notified to the
actor and gives its consensus for the delivery of the signal to the ping actor only if
the number of signals is less than the N value.

Finally, in the main class the various parts of the system are created and con-
figured, including the kernel, the actors and the vetoing interaction law making the
vetoActor a vetoer for the input signal of pingActor. A ping signal is generated
in order to trigger the activities of the components.

6 Related Work and Conclusion

Several models and architectures for component specification and component com-
position can be found in literature, both in the context of coordination models and
languages [12,8] and in the context of software architectures [6], including ADL
(architectural description language) approaches such as [9,7,10]. Among the others,
two recent and notable examples are respectively Reo [1] and Rainbow [3]. Dif-
ferently from these approaches, the framework presented in this paper takes as a
reference context component-based technologies and frameworks that are currently
used in the mainstream, in particular based on object-oriented languages such as
Java. The objective is to inject in such contexts some of the principles and visions
that typically characterise most of the approaches found in the research, such as the
focus on interaction and coordination as a main engineering dimension, and the in-
troduction of first-class abstractions (media) for their specification and management
(exogenous coordination).

A distinguishing point of the framework with respect to current approaches
in literature is the investigation of first-order logic for specifying and representing
the logic of interaction, including the interaction contracts of the components (ac-

15

Natali, Oliva, Ricci, Viroli

public class PingActor extends AbstractActor {

public PingActor(String logo) {

super(logo);

}

public void doAction(String actionName, Object args) throws DoActionException{

try{

Thread.sleep(1000);

kernel.notify("ping","noArg");

} catch(Exception ex){ throw new DoActionException(); }

}

public String[] getInputSignals() { return new String[] {"pong"}; }

public String[] getOutputSignalsNotify() { return new String[] {"ping"}; }

}

public class PongActor extends AbstractActor {

public PongActor(String logo) {

super(logo);

}

public void doAction(String actionName, Object args) throws DoActionException{

try{

Thread.sleep(2000);

kernel.notify("pong","noArg");

} catch(Exception ex){ throw new DoActionException(); }

}

public String[] getInputSignals() { return new String[]{"ping"}; }

public String[] getOutputSignalsNotify() { return new String[]{"pong"}; }

}

public class VetoActor extends AbstractActor {

private int count;

private int max;

public VetoActor(String logo) {

super(logo);

count = 0;

}

public VetoActor(String logo, int max) {

super(logo);

count = 0;

this.max = max;

}

public Object doAction(String actionName, Object args) throws DoActionException {

return (count++ >= max);

}

public String[] getInputSignals() { return new String[]{"pong"}; }

}

}

public class TestPingPong {

public static void main (String [] args) {

kernel = new LogicKernel();

ping = new PingActor("pingActor");

ping.setKernel(kernel); //injection of the kernel

pong = new PongActor("pongActor");

pong.setKernel(kernel); //injection of the kernel

veto = new VetoActor ("vetoActor",3);

veto.setKernel(kernel); //injection of the kernel

kernel.vetoInteraction(veto,ping,ping.getInputSignals()[0]);

kernel.notify("ping","noArgs");

}

}

Fig. 5. Code for the Ping-Pong Example

16

Natali, Oliva, Ricci, Viroli

tors), the interaction / coordination laws gluing the components and the interaction
events actually happening at runtime. A somewhat similar approach working on
mainstream technologies is given by Composition-Filters — exploited in the context
of Aspect-Oriented Programming — where declarative rules are superimposed for
intercepting, filtering, re-routing, and changing the message traffic among objects
to support certain inter- and intra-class cross-cutting concerns [2].

Several research lines will be explored in future works. Among the others: the
enhancement of the basic set of interaction / coordination laws directly supported
by the kernel; the exploitation of the logic-based kernel for the engineering of self-
adapting and self-healing systems; the definition of a formal model for the framework
in order to specify and understand more rigorously the behaviour of component-
based system built on top it.

References

[1] Arbab, F., Abstract behavior types: a foundation model for components and their
composition, Science of Computer Programming 55 (2005), pp. 3–52.

[2] Bergmans, L. and M. Aksit, Composing crosscutting concerns using composition
filters, Communications of the ACM 44 (2001), pp. 51–57.

[3] Cheng, S.-W., A.-C. Huang, D. Garlan, B. Schmerl and P. Steenkiste, Rainbow:
Architecture-based self adaptation with reusable infrastructure, IEEE Computer
37 (2004), pp. 3–52.

[4] Denti, E., A. Natali and A. Omicini, Programmable coordination media, in:
D. Garlan and D. Le Métayer, editors, Coordination Languages and Models –
Proceedings of the 2nd International Conference (COORDINATION’97), LNCS
1282 (1997), pp. 274–288.

[5] Denti, E., A. Omicini and A. Ricci, Multi-paradigm Java-Prolog integration
in tuProlog, Science of Computer Programming (2005), in press. Available at
http://dx.doi.org/10.1016/j.scico.2005.02.001.

[6] Garlan, D., Software architecture: a roadmap, in: A. Finkelstein, editor, The
Future of Software Engineering, ACM Press, 2000 .

[7] Garlan, D., R. T. Monroe and D. Wile, Acme: an architecture description
interchange language., in: CASCON, 1997, p. 7.

[8] Gelernter, D. and N. Carriero, Coordination languages and their significance,
Communication of the ACM 35 (1992), pp. 96–107.

[9] Luckham, D. C. and J. Vera, An event-based architecture definition language,
IEEE Transactions on Software Engineering 21 (1995), pp. 717–734.

[10] Magee, J., N. Dulay, S. Eisenbach and J. Kramer, Specifying distributed software
architectures., in: ESEC (1995), pp. 137–153.

[11] Osgi service platform, http://www.osgi.org (1999).

17

Natali, Oliva, Ricci, Viroli

[12] Papadopoulos, G. A. and F. Arbab, Coordination models and languages,
Advances in Computers 46 (1998), pp. 329–400.

[13] Szyperski, C., D. Gruntz and S. Murer, “Components Software: Beyond Object-
Oriented Programming,” Addison-Wesley, 2002.

18

	Introduction
	The Framework: Vision
	Interaction Signals and Interaction Primitives
	Kernel mediation and Interaction Laws
	Wired and In-The-Space Interaction Modalities

	Specification and Implementation Issues
	IActor
	IKernel
	Interaction Laws

	A Logic-based Kernel
	Implementation

	A Simple Example: the Ping-Pong System
	Related Work and Conclusion
	References

