
SIMULATING MINORITY GAME WITH TuCSoN

Enrico Oliva
Mirko Viroli

Andrea Omicini
DEIS, ALMA MATER STUDIORUM—Università di Bologna

via Venezia 52, 47023 Cesena, Italy
E-mail:{enrico.oliva,mirko.viroli,andrea.omicini}@unibo.it

ABSTRACT

Minority Game is receiving an increasing interest because
it models emergent properties of complex systems including
rational entities, such as for instance the evolution of finan-
cial markets. As such, Minority Game provides for a simple
yet stimulating scenario for system simulation.

In this paper, we aim at showing new perspectives in agent-
based simulation by adopting a novel MAS meta-model
based on agents and artifacts, and by applying it to Minor-
ity Game simulation. To this end, we adopt the TuCSoN
infrastructure for agent coordination, and its logic-based tu-
ple centre abstractions as artifact representatives. By imple-
menting Minority Game over TuCSoN, we show some of
the benefits of the artifact model in terms of flexibility and
controllability of the simulation.

INTRODUCTION

Minority Game (MG) is a mathematical model that takes
inspiration from the “El Farol Bar” problem introduced by
Brian Arthur (Arthur 1994). It is based on a simple scenario
where at each step a set of agents perform a boolean vote
which conceptually splits them in two classes: the agents in
the smaller class win. In this game, a rational agent keeps
track of previous votes and victories, and has the goal of
winning throughout the steps of the game—for which a ratio-
nal strategy has to be figured out. Several researches showed
that, although very simple, this model takes into account cru-
cial aspects of some interesting complex systems coupling
rationality with emergence: e.g. bounded rationality, hetero-
geneity, competition for limited resources, and so on. For
instance, MG is a good model to study market fluctuation, as
an emergent property resulting from interactions propagating
from micro scale (agent interaction) to macro scale (collec-
tive behaviour).

As showed by Renz and Sudeikat (2005), a multiagent sys-
tem (MAS) can be used to realise a MG simulation—there,
BDI agents provide for rationality and planning. An agent-
based simulation is particularly useful when the simulated
systems include autonomous entities that are diverse, thus

making it difficult to exploit the traditional framework of
mathematical equations.

In this paper we proceed along this direction, and adopt a
novel MAS meta-model based on the notion of artifact (Ricci
et al. 2006). The notion of artifact is inspired by Activ-
ity Theory (Ricci et al. 2003): it represents those abstrac-
tions living in the MAS environment that provide a function,
which agents can exploit to achieve individual and social
goals. The engineering principles promoted by this meta-
model makes it possible to flexibly balance the computa-
tional burden of the whole system between autonomy of the
agents and the designed behaviour of artifacts.

In order to implement MG simulations we adopt the
TuCSoN infrastructure for agent coordination (Omicini and
Zambonelli 1999), which introduces tuple centres as artifact
representatives. A tuple centre is a programmable coordina-
tion medium living in the MAS environment, used by agents
interacting by exchanging tuples (logic tuples in the case of
TuCSoN logic tuple centres). As we are not concerned much
with the mere issues of agent intelligence, we rely here on a
weak form of rationality, through logic-based agents adopt-
ing pre-compiled plans called operating instructions (Viroli
and Ricci 2004).

By implementing MG over TuCSoN, we can experiment
with flexibility and controllability of the artifact model, and
see if and how they apply to the simulation – in particular, ar-
tifacts allow for a greater level of controllability with respect
to agents. To this end, in this paper we show how the model
allows some coordination parameters to be changed during
the run of a simulation with no need to stop the agents: this
can be useful e.g. to change the point of equilibrium, control-
ling the collective behaviour resulting by interactions propa-
gated from the entities at the micro level.

The remainder of this paper is organised as follows. First, we
introduce the general simulation framework based on agents
and artifacts. Then, we provide the reader with some relevant
details of the Minority Game. Some quantitative results of
MG simulation focussing on system dynamics and run-time
changes are presented, just before final remarks.



THE TuCSoN FRAMEWORK FOR SIMULATION

The architecture proposed for MAS simulation is based on
TuCSoN (Omicini and Zambonelli 1999), which is an in-
frastructure for the coordination of MASs. TuCSoN pro-
vides agents with an environment made of logic tuple cen-
tres, which are logic-based programmable tuple spaces. The
language used to program the coordination behaviour of tu-
ple centres is ReSpecT, which specifies how a tuple centre
has to react to an observable event (e.g. when a new tuple
is inserted) and has to accordingly change the tuple-set state
(Omicini and Denti 2001). Tuple centres are a possible in-
carnation of the coordination artifact notion (Omicini et al.
2004), representing a device that persists independently of
agent life-cycle and provides services to let agents partici-
pate to social activities.

In our simulation framework we adopt logic-based agents,
namely, agents built using a logic programming style, keep-
ing a knowledge base (KB) of facts and acting according to
some rule—rules and facts thus forming a logic theory. The
implementation is based on tuProlog technology1 for Java-
Prolog integration, and relies on its inference capabilities for
agent rationality. Agents roughly follow the BDI architec-
ture, as the KB models agent beliefs while rules model agent
intentions.

To coordinate agents we take inspiration from natural sys-
tems like ant-colonies, where coordination is achieved
through the mediation of the environment: our objective is
to have a possibly large and dynamic set of agents which co-
ordinate each other through the environment while bringing
about their goals.

Externally, we can observe overall system parameters by in-
specting the environment, namely, the tuple centres agents
interact with. In this way we can try different system be-
haviours changing only the coordination behaviour of the en-
vironment. Furthermore we can change, during the simula-
tion, some coordination parameters (expressed as tuples in a
tuple centre), programming and then observing the transition
of the whole system either to a new point of equilibrium or
to a divergence.

Three kinds of agents are used in our simulation: player
agents, monitor agents and tuning agents (as depicted in Fig-
ure 1): all the agents share the same coordination artifact.
The agent types differ because of their role and behaviour:
player agents play MG, the monitor agent is an observer of
interactions which visualises the progress of the system, the
tuning agent can change some rules or parameters of coordi-
nation, and drives the simulation to new states. Note that the
main advantage of allowing a dynamic tuning of parameters
instead of running different simulations lays in the possibil-
ity of tackling emergent aspects which would not necessarily

1http://tuprolog.alice.unibo.it

Monitor

Tuning

Agent

Coordination Artifact

Player

Figure 1: TuCSoN Simulation Framework for MG

appear in new runs.

The main control loop of a player agent is a sequence of ac-
tions: observing the world, updating its KB, scheduling next
intention, elaborating and executing a plan. To connect agent
mental states with interactions we use the concept of action
preconditions and perception effects as usual.

MINORITY GAME

MG was introduced and first studied by Challet and Zhang
(1997), as a means to evaluate a simple model where agents
compete through adaptation for finite resources. MG is a
mathematical representation from ‘El Farol Bar’ problem in-
troduced by Arthur (1994), providing an example of induc-
tive reasoning in scenarios of bounded rationality. The game
consists in an odd number N of agents: at each discrete time
step t of the game an agent i takes an action ai(t), either 1
or −1. Agents taking the minority action win, whereas the
majority looses. After a round, the total action result is cal-
culated as:

A(t) =
N∑
i

ai(t)

Beliefs

Agent mental state

Preconditions

Effects

Desires

Intentions

Action Perception

Preconditions

Effects

Figure 2: Agent Architecture



Figure 3: Typical Time evolution of the Original MG with
N = 51, m = 5 and s = 2

In order to take decisions agents adopt strategies. A strategy
is a choosing device that takes as input the last m winning
results, and provides the action (1 or −1) to perform in the
next time step. The parameter m is the size of the memory
of the past results (in bits), and 2m is therefore the potential
past history that defines the number of possible entries for a
strategy.

The typical strategy implementation is as follows. Each
agent carries a sequence of 2m actions, called a strategy,
e.g. [+1,+1,−1,−1,+1,−1,+1,+1]. The information on
past wins is mapped on a natural number between 0 and
2m − 1, which is used as position in the above sequence
of the next action to take: for instance, if [−1,+1,−1]
is the past winning group, we read it as 010 (that is,
2), and accordingly pick the decision in position 2 inside
[+1,+1,−1,−1,+1,−1,+1,+1], that is −1.

Each agent actually carries a number s ≥ 2 of strategies.
During the game the agent evaluates all its strategies accord-
ing to their success, and hence at each step it decides based
on the most successfull strategy so far. Figure 3 shows a typ-
ical evolution of the game.

One of the most important applications of MG is in the mar-
ket models: Challet et al. (2000) use MG as a coarse-grained
model for financial markets to study their fluctuation phe-
nomena and statistical properties. Even though the model is
coarse-grained and provides an over-simplified micro-scale
description, it anyway captures the most relevant features of
system interaction, and generates collective properties that
are quite similar to those of the real system.

Another point of view, presented e.g. by Parunak et al.
(2002), considers the MG as a point in space of a Resource
Allocation Game (RAG). In this work a generalisation of MG
is presented that relaxes the constraints on the number of
resources, studying how the system behaves within a given
range.

In a more recent paper, Renz and Sudeikat (2005) observe
that MG players could be naturally modelled as agents with
a full BDI model, and use a new adaptive stochastic MG with
dynamically evolving strategies in the simulation.

Figure 4: Variance of the Game with 11 Random Agents

MG Performance

In order to track the performance of an MG system, the
most interesting quantity is variance, defined as σ2 =
[A(t)−A(t)]2: it shows the variability of the bets around
the average value A(t). In particular, the normalised version
of variance ρ = σ2/N is considered.

Generally speaking, variance is the inverse of global effi-
ciency: as variance decreases agent coordination improves,
making more agents winning. Variance is interestingly af-
fected by the parameters of the model, such as number of
agents (N ), memory (m) and number of strategies (s): in par-
ticular, the fluctuation of variance is shown to depend only on
the ratio α = 2m/N between agent memory and the number
N of agents.

For large values of α—the number of agents is small with
respect to the number of possible histories—the outcomes are
seemingly random: the reason for this is that the information
that agents observe about the past history is too complex for
their limited processing analysis.

When new agents are added, fluctuation decreases and agents
perform better by choosing randomly, in this case ρ = 1 and
α ≈ 1/2, as visible in the results of our simulation in Figure
4—the game enters into a regime where the loosing group is
close to N/2, hence we might say coordination is performing
well.

If the number of agents increase further, fluctuations rapidly
increase beyond the level of random agents and the game
enters into the crowded regime. With a low value of α the
value of σ2/N is very large: it scales like σ2/N ≈ α−1.

The results of other observations suggest that the behaviour
of MG can be classified in two phases: an information-rich
asymmetric phase, and an unpredictable or symmetric phase.
A phase transition is located where σ2/N attains its mini-
mum (αc = 1/2), and it separates the symmetric phase with
α < αc from an asymmetric phase with α > αc.

All these cases have been observed with the TuCSoN simu-
lation framework described in next section.



THE SIMULATION FRAMEWORK

The construction of MG simulations with MASs is based on
the TuCSoN framework and on tuProlog as an inferential
engine to program logic agents. The main innovative aspect
of this MG simulation is the possibility of studying the evo-
lution of the system with particular and different kinds of
agent behaviour at the micro level, imposed as coordination
parameters which are changed on-the-fly.

Operating Instructions

Each agent has an internal plan, structured as an algebraic
composition of allowed actions (with their preconditions)
and perceptions (with their effects), that enables the agent to
use the coordination artifact to play the MG. This plan can be
seen as Operating Instructions (Viroli and Ricci 2004), a for-
mal description based on Labelled Transition System (LTS)
that the agent reads to understand what its step-by-step be-
haviour should be. Through an inference process, the agent
accordingly chooses the next action to execute, thus perform-
ing the cycle described in Section 2.

Operating instructions are expressed by the following theory:

firststate(agent(first,[])).
definitions([
def(first,[],...),
def(main,[S],

[act(out(play(X)),pre(choice(S,X))),
per(in(result(Y)),eff(res(Y))),
agent(main,[S])]

),
...

]).

The first part of operating instructions is expressed by term
first, where the agent reads the game parameters that are
stored in the KB, and randomly creates its own set of strate-
gies.

In the successive part main, the agent executes its main cy-
cle. It first puts tuple play(X) in the tuple space, where
X = ±1 is agent vote. The precondition of this ac-
tion choice(S,X) is used to bind in the KB X with the
value currently chosen by the agent according to strategy S.
Then, the agent gets the whole result of the game in tuple
result(Y) and applies it to its KB. After this perception,
the cycle is iterated again.

Tuple Centre Behaviour

The interaction protocol between agents and the coordination
artifact is then simply structured as follows. First each agent
puts the tuple for its vote. When the tuples for all agents have
been received, the tuple centre checks them, computes the

result of the game—either 1 or−1 is winning—and prepares
a result tuple to be read by agents.

The ReSpecT program for this behaviour is loaded in the
tuple centre by a configuration agent at bootstrap, through
operation set_spec(). The following ReSpecT reaction
is fired when an agent inserts tuple play(X), and triggers
the whole behaviour:

reaction(out(play(X)),(
in_r(count(Y)),
Z is Y+1,
in_r(sum(M)),
V is M+X,
out_r(sum(V)),
out_r(count(Z))

)).

This reaction considers the bet (X) counts the bets (Z)
and computes the partial result of the game (V). When
all the agents have played, the artifact produces the tuple
winner(R,NS,T1,T2,last/more), which is the main
tuple of MG coordination.

reaction(out_r(count(X)),(
rd_r(numag(Num)),
X=:=Num,
in_r(totcount(T)),
P is T+1,
rd_r(game(G)),
in_r(sum(A)),
out_r(sum(0)),
rd_r(countsession(CS)),
in_r(count(Y)),
out_r(count(0)),
%%calculate variance
in_r(qsum(SQ)),
NSQ is A*A+SQ,
out_r(qsum(NSQ)),
%%calculate mean
in_r(totsum(R)),
NewS is R+A,
out_r(totsum(NewS)),
rd_r(tuning1(T1)),
rd_r(tuning2(T2)),
out_r(winner(A,P,CS,T1,T2,G)),
out_r(totcount(P))

)).

Figure 5: Interface of the Monitor Agent



Figure 6: Variance of the System with Initial Parameters
N = 5 and m = 3

The winner tuple contain the result of game (R), the num-
ber of step (NS), two tuning parameters (T1 and T2) and one
constant to communicate agents whether they have to stop or
to play further (last/more). Figure 5 reports the graphical
interface of the monitor agent that during its life-time reads
the tuple winner and draws variance.

The simulation architecture built in this way allows for on-
the-fly change of some game configuration parameters—
such as the dimension of agent memory—with no need to
stop the simulation and re-program the agents.

By changing the parameters, the tuning agent can drive the
system from an equilibrium state to another, by control-
ling agent strategies, the dimension of memory, or the num-
ber of losses that an agent can accept before discarding a
strategy. This agent observes system variance, and decides
whether and how to change tuning parameters: reference
variance is calculated by first making agents playing the
game randomly—see Figure 4. The new value of parameters
is stored in tuple centre through tuples tuning1(T1) and
tuning2(T2), the rules of coordination react and update
the information that will be read by the agents.

Simulation Results

The result of the tuned simulation in Figures 6 and 7 shows
how the system changes its equilibrium state and achieves a
better value of variance.2 In this simulation the tuning agent
is played by a human that observes the evolution of the sys-
tem and acts through the tuning interface to change the coor-
dination parameters, such as threshold of losses and memory,
hopefully finding new and better configurations. The intro-
duction of the threshold of losses in the agent behaviour is
useful when the game is played by few agents: these param-
eters enable system evolution and a better agent cooperative
behaviour.

2In Figure 6, the first phase of equilibrium is followed by a second one
obtained by changing the threshold parameter S = 5. Finally, a third phase
is obtained changing the dimension of the memory to m = 5.

Figure 7: System Evolution of the Variance in Figure 6

CONCLUSION

In this paper, we aim at introducing new perspectives on
agent-based simulation by adopting a novel MAS meta-
model based on agents and artifacts, and by applying it to Mi-
nority Game simulation. We implement and study MG over
the TuCSoN coordination infrastructure, and show some
benefits of the artifact model in terms of flexibility and con-
trollability of the simulation. In particular, in this work we
focus on the possibility to build a feedback loop on the rules
of coordination driving a system to a new and better equi-
librium state. Many related agent simulation tools actually
exist: as this paper is a starting point, we plan to perform a
systematic comparison of their expressiveness and features.
In the future, we are interested in constructing an intelligent
and adaptive tuning agent with a BDI architecture, substitut-
ing the human agent in driving the evolution over time of the
system behaviour.

REFERENCES

Arthur, W. B. 1994, May. Inductive reasoning and bounded
rationality (the El Farol problem). American Economic
Review 84 (2): 406–411.

Challet, D., M. Marsili, and Y.-C. Zhang. 2000, February.
Modeling market mechanism with minority game. Phys-
ica A: Statistical and Theoretical Physics 276 (1–2): 284–
315.

Challet, D., and Y.-C. Zhang. 1997, December. Emergence
of cooperation and organization in an evolutionary game.
Physica A: Statistical and Theoretical Physics 246 (3–4):
407–418.

Jennings, N. R., C. Sierra, L. Sonenberg, and M. Tambe.
(Eds.) 2004, 19–23 July. 3rd International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2004), New York, USA. ACM.

Omicini, A., and E. Denti. 2001, June. Formal Re-
SpecT. Electronic Notes in Theoretical Computer Sci-
ence 48:179–196.



Omicini, A., A. Ricci, M. Viroli, C. Castelfranchi, and
L. Tummolini. 2004, 19–23 July. Coordination artifacts:
Environment-based coordination for intelligent agents.
See Jennings et al. (2004), 286–293.

Omicini, A., and F. Zambonelli. 1999, September. Coordi-
nation for Internet application development. Autonomous
Agents and Multi-Agent Systems 2 (3): 251–269.

Parunak, H. V. D., S. Brueckner, J. Sauter, and R. Savit.
2002, 15–19 July. Effort profiles in multi-agent re-
source allocation. In 1st International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS
2002), ed. C. Castelfranchi and W. L. Johnson, 248–255.
Bologna, Italy: ACM.

Renz, W., and J. Sudeikat. 2005. Modeling Minority Games
with BDI agents – a case study. In Multiagent System
Technologies, ed. T. Eymann, F. Klügl, W. Lamersdorf,
M. Klusch, and M. N. Huhns, Volume 3550 of LNCS, 71–
81. Springer. 3rd German Conference (MATES 2005),
Koblenz, Germany, 11-13 September 2005. Proceedings.

Ricci, A., A. Omicini, and E. Denti. 2003, April. Activity
Theory as a framework for MAS coordination. In En-
gineering Societies in the Agents World III, ed. P. Petta,
R. Tolksdorf, and F. Zambonelli, Volume 2577 of LNCS,
96–110. Springer-Verlag.

Ricci, A., M. Viroli, and A. Omicini. 2006, March. Pro-
gramming MAS with artifacts. In Programming Multi-
Agent Systems, ed. R. P. Bordini, M. Dastani, J. Dix,
and A. El Fallah Seghrouchni, Volume 3862 of LNAI,
206–221. Springer. 3rd International Workshop (PRO-
MAS 2005), AAMAS 2005, Utrecht, The Netherlands,
26 July 2005. Revised and Invited Papers.

Viroli, M., and A. Ricci. 2004, 19–23 July. Instructions-
based semantics of agent mediated interaction. See Jen-
nings et al. (2004), 102–109.


