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Abstract— Smart spaces are gaining relevance as promising 
deployment environments for novel classes of applications 
stemming from the dynamic discovery and interaction between 
smart objects and the resources available in their physical 
localities, e.g., seamlessly exploiting smartphones to control 
embedded home equipment. The Semantic Information Broker 
(SIB) of the Smart-M3 platform can well support 
interoperability of statically unknown devices and 
service/application components in a smart space based on 
lightweight semantically-tagged data sharing. The paper 
focuses on the experience made and the lessons learned from 
the work of design, implementation, deployment, and 
experimental validation/evaluation of the SIB “Plug-in” 
extension. This extension allows SIB administrators to 
personalize and extend SIB installations simply and with a 
well-defined methodology, by cleanly adding plug-in extensions 
that can support domain- and deployment-specific facilities, 
thus opening new market opportunities for Smart-M3 
exploitation. The reported results show the feasibility and 
effectiveness of the proposed approach: in particular, we 
report the experience made with a notable example of plug-in 
component that can measure the runtime-offered SIB quality 
of service, expressed as a set of concise performance indicators. 

Keywords- Smart spaces, ubiquitous computing, lightweight 
semantic technologies, interoperability, dynamic extensibility 

I.  INTRODUCTION 

The enormous market of smartphones with different 
forms of wireless connectivity, coupled with the increasing 
computing capabilities of embedded devices deployed in a 
pervasive way, is pushing for smart space solutions, e.g. to 
support the seamless discovery and invocation of locally 
available services seamlessly. For instance, let us consider a 
home environment where an Android smartphone can 
dynamically join the user’s home smart space and allow to 
remotely monitor the oven temperature and to dim the light 
intensity while on the sofa. Or, as another simple example, 
imagine tourists who can dynamically gather information 
related to the city they are visiting by interacting with a 
smart traffic light, where they can possibly post their own 
geographically-tagged comments that will be made available 
to future visitors when in traffic light proximity. 

However, notwithstanding that the smart space concept 
has been around for several years, the actual industrial 
exploitation of smart spaces has been limited by several 
factors, first of all, the difficulties of interoperating among 
heterogeneous devices in an open and statically 

unpredictable deployment environment. It is recognized that 
smart applications should be able to dynamically join smart 
spaces without any pre-configuration and invoke/provide 
services without any a-priori knowledge of the hosting 
hardware/software infrastructure. To this purpose, the Smart-
M3 middleware proposes a relevant approach supporting 
smart space resource interworking at the data level 
(interoperability at the information level), i.e., by enabling 
information sharing among heterogeneous devices through a 
standardized access protocol and lightweight semantic 
techniques for data self-description. In particular, the 
Semantic Information Broker (SIB) component maintains 
shared data in a smart space by exploiting Resource 
Description Framework (RDF) triples to describe them 
according to a common ontology [1]. Knowledge Processors 
(KPs), possibly running on different devices participating to 
the smart space, interact each other by publishing and 
reading data to/from the SIB via the Smart Spaces Access 
Protocol (SSAP). The idea is that developers can easily and 
rapidly provide new smart applications by creating and 
deploying KPs that access SIB shared data via SSAP. Prior 
work has already demonstrated that Smart-M3 can be 
effectively adopted in several heterogeneous scenarios, 
ranging from remote monitoring of sensor data provided by 
constrained devices [2] to multimedia provisioning [3]. 

Within the framework of the EU SOFIA project [4] and 
while working in different vertical domains, it was 
recognized the opportunity to define and run special 
management-oriented third-party components internally to 
the SIB, in order to smoothly and effectively extend the SIB 
functionality when needed, e.g., in given deployment 
scenarios or for specific and application-oriented 
management purposes. One of the goals is to easily obtain 
differentiated and personalized versions of the same SIB, 
with extended built-in functionality, in a clean and well-
disciplined way. Management-oriented third-party 
components are expected to be designed and implemented 
only by SIB developers and administrators, who are 
responsible for SIB personalization, deployment, and 
management. Their typical use could include discarding 
“old” triples in the SIB and saving them on persistent storage 
to reduce current memory occupation, reconciling possibly 
conflicting SIB data (also by removing some of them), and 
aggregating SIB data in more concise indicators. This 
interface, called plug-in extension, has been realized at the 
SIB adaptation layer and offered for the inclusion of internal 
third-party management components implemented in the C 



language. The plug-in extension bypasses the standard SSAP 
SIB access and runs locally to the SIB, thus enabling the 
Smart-M3 platform to effectively host privileged (also in 
terms of achievable performance) and easily implementable 
internal third-party components for runtime management. 

The paper reports about the experience made and the 
lessons learned from the work of design, implementation, 
deployment, and experimental validation/evaluation of the 
SIB plug-in extension. This extension, originally presented 
for the first time in this paper, allows SIB developers and 
administrators to personalize and extend SIB installations in 
a simple way, by dynamically adding plug-in components 
that can realize domain- and deployment-specific facilities. 
In particular, the paper presents primary design/ 
implementation insights about our recent implementation of 
the plug-in extension for the Smart-M3 SIB version and 
quantitative experimental results about its performance 
evaluation. The presented results show the feasibility and 
effectiveness of the approach. In addition, several plug-in 
components have already been realized on top of our plug-in 
interface, also to validate the solution in practical case 
studies. Among them, it is worth mentioning a plug-in 
component for the metering of the SIB-offered quality of 
service in terms of a set of concise performance indicators. 
The results of the periodic operation of this plug-in 
component are stored in the SIB itself; they contribute to the 
performance profiling of a given SIB installation, by offering 
performance-related data that can be usefully exploited by 
“regular” application-level KPs to dynamically select their 
most proper SIB, among the available ones, during the 
discovery phase and based on the performance results it was 
recently able to achieve. 

Section 2 provides some details of the Linux-based 
Smart-M3 SIB implementation, which we extended with the 
plug-in interface, whose design and implementation is 
presented in Section 3. Section 4 focuses on how we have 
implemented the SIB metering plug-in component based on 
both “regular” KPs and the introduced plug-in extension. 
Finally, related work and conclusive remarks end the paper. 

II. SMART-M3 SIB IMPLEMENTATION: 
STRENGTHS AND LIMITATIONS 

Smart-M3 is the Linux-based SIB reference 
implementation proposed and developed by Nokia. It 
supports information interoperability via decoupled 
interaction and standard information representation. On the 
one hand, KPs can publish and gather information that is 
shared on Smart-M3, without any direct mutual interaction; 
on the other hand, information is stored based on common 
ontology models and common data formats. In this way, 
Smart-M3 gets the notable advantage of being device-, 
domain-, and vendor-independent: users are free to use the 
preferred device to exploit for accessing their smart space 
regardless of the manufacturer (multi-vendor); applications 
can seamlessly perform operations that involve a set of 
devices (multi-device) available in the smart space; 
application developers and their companies can focus on 
consumers’ interests by adopting the same concept and 
technology in different application domains (multi-domain). 

While Smart-M3 actually provides interoperability 
among heterogeneous devices and applications in a domain-
independent fashion, its current implementation still exhibits 
some weaknesses, thus contributing to prevent Smart-M3 
from being widely adopted in the mass market of nowadays 
smart space users. For instance, Smart-M3 proponents are 
extending the current Smart-M3 implementation to support 
access control and security management (secure SSAP), 
autonomous discovery and composition to create complex 
services based on simpler ones automatically, and SIB 
federation to easily access multiple SIBs as if they were a 
unique smart space entity. Furthermore, there are several 
additional features that Smart-M3 could provide to increase 
its value and efficiency, e.g., garbage collection to delete 
obsolete data from the RDF store and profiling features to 
publish SIB capabilities in order to facilitate SIB selection 
when multiple options are available in the smart space 
(SSAP version, memory availability, CPU load, and so on). 

In its current implementation SIB capabilities are defined 
at compile-time: it is not possible to dynamically add/remove 
or enable/disable features in a selective manner, e.g., in 
relation to specific requirements depending on the 
deployment environment and the targeted applications. At 
the same time, there is the need of keeping Smart-M3 very 
lightweight, in order to make it suitable for a wide set of 
devices with heterogeneous capabilities, ranging from 
desktop PCs to low-end mobile-phones. For this reason, SIB 
improvements up to now have been limited to few 
paramount features every SIB should provide [5], e.g., secure 
SSAP and service composition, that is, mandatory features 
for the new release of the technology. The only possible 
method to dynamically add features is deploying KPs; 
however, they can interact with the RDF store only via 
SSAP, with the non-negligible negative effects of imposing 
communication overhead and limiting RDF management 
capabilities to what statically included in the SSAP API. 

III. PLUG-IN EXTENSION FOR DYNAMIC SIB 

CUSTOMIZATION 

In this paper we propose to modify the SIB architecture 
to allow the execution of new components inside the SIB, 
with the objective of enabling the well-disciplined 
customization of Smart-M3 with additional features that 
overcome KP limitations while maintaining its lightweight 
architecture. In this way it will be possible to customize the 
SIB by dynamically adding or removing features only if and 
when required, also at runtime, as detailed in the following. 

In particular, the idea is that smart space developers and 
SIB administrators can register new software components 
(e.g., third-party services developed and compiled 
independently from Smart-M3) to run inside the SIB and 
access the RDF store directly (see the Adaptation layer in 
Fig. 1 [1]). Management operations at the RDF store level 
may improve SIB efficiency, e.g., a software component that 
operates as garbage collector to remove obsolete and useless 
data, or that performs complex reasoning to aggregate/infer 
additional data, or that translates data in response to 
modifications in the associated description ontology, or that 
performs context pre-processing and information filtering. In 



this way, it is possible to achieve the notable benefit of 
modifying the SIB behavior requiring neither to re-compile 
nor to restart it; each SIB can be tailored de/activating and 
adding/deleting features in relation to specific objectives. 

 

 
Figure 1.  The SIB architecture in the Smart-M3 reference 

implementation. 

A. Plug-in Template 

Mainly for performance and efficiency motivations, we 
have designed SIB extensibility in order to allow plug-in 
extensions to directly interact with the RDF store without 
any specific restriction. The only requirement is that plug-in 
extensions adhere to a well-defined but general interface 
suitable for the development of a wide set of features. 
Moreover, since plug-in extensions may have exclusive and 
privileged access to the RDF store (see the following), the 
plug-in interface should be used by skilled and trusted 
developers, e.g., SIB administrators with deep knowledge of 
Smart-M3 details. In particular, we have designed the plug-in 
interface so that extensions must offer the following features: 
1. evaluateState, which exploits any available information 

(internal to the SIB or more usually saved in the RDF 
store) to dynamically determine whether there is the 
need to activate the plug-in extension. For instance, it is 
possible to specify to activate a garbage collector 
extension component only if a given amount of RDF 
triples have been added/modified/deleted or if a certain 
time period has passed since the last garbage collection 
operation; 

2. run, which includes the operational behavior of the 
plug-in extension. Tasks should be performed in 
multiple cycles, to provide the capability of periodically 
checking whether the above activation condition is still 

verified, by possibly stopping the execution of the 
extension component (see also the feature below); 

3. stop, which forces the termination of the extension 
component. That may be useful to guarantee fair use of 
local resources, e.g., interrupting a plug-in extension 
after a given period if it is overloading the local node. 

Note that plug-in extension developers are in charge of 
correctly implementing the above functionality based on a 
well-known template, described in the following, by 
adhering to a specific programming discipline and 
registering extension components to the SIB. Let us point out 
also that the proposed extensibility model is independent 
from the specific implementation of the SIB and can be 
applied regardless to the underlying operating system and 
exploited programming language. However, to provide a 
proof of concept implementation, we have specifically 
considered the Smart-M3 SIB implementation, written in C 
and running on Linux, which imposed us some constraints 
and influenced how we have decided to effectively realize 
the plug-in interface previously described. In particular, our 
plug-in extensions are implemented as Linux dynamic linked 
libraries, i.e., Shared Objects: in this way, plug-in extensions 
can be easily loaded/unloaded at runtime without stopping 
the SIB execution; moreover, it is possible to clearly separate 
the code of the SIB and of its extension components (the SIB 
footprint per se does not change, while plug-in extensions 
can be unregistered and deleted in order to reduce overhead 
and occupied disk space, which is sometimes required in 
low-end mobile devices with limited hardware resources). 

In the following, to show a practical example of usage, 
we report a simple case of implementation of evaluateState, 
run and stop features as C functions: 

 
enum boolean FALSE=0, TRUE; 
… 
boolean stop = FALSE; 
 
void stop(){ 
  // developers should implement this method 
  stop = TRUE;  
} 

 
boolean evaluateState(){ 
  boolean active; 
  active = TRUE;  // in case it is required... 
  active = FALSE; // in case it is NOT required... 
// to activate this component in the next iteration 
  return active; 
} 
 
void run(){ 
  while( (stop!=TRUE) && (have more work) ){ 
    // actual task of the component 
  } 
  // reset the value of the stop variable 
  stop = FALSE;  
} 

B. Plug-in Runtime Management 

As already stated, plug-in management is performed at 
the Adaptation Layer, with the objective of enabling direct 
access to the RDF store without exploiting SSAP. In this 
way, plug-in extensions can use low-level and highly-
efficient read, write, and query operations: other entities 



(either plug-in extensions or KPs) cannot access concurrently 
the RDF store when one plug-in has started its execution, to 
avoid any possible interference with the active plug-in 
operation. To achieve these goals, we have designed out 
plug-in runtime management solution structured into three 
primary components: Plug-in Entry Point, Plug-in Manager, 
and Plug-in Timer, as depicted in Fig. 2). 

Plug-in Entry Point offers an API to register and 
unregister plug-in extensions. plug-in developers can 
add/remove extension components very easily, either 
copying their Shared Object files into a given directory or 
remotely transferring them via TCP/IP. In both cases, Plug-
in Entry Point checks the compliance of the plug-in 
extension to be installed with the standard template, by 
verifying that the extension actually provides 
evaluateState(), run(), and stop() functions. 

Plug-in Manager periodically activates the currently 
registered plug-in extensions by invoking their run() 
function. The Smart-M3 architecture has been slightly 
modified to execute plug-in extensions inside the SIB 
daemon scheduler; Plug-in Manager executes registered 
extensions in the SIB scheduling loop, after insert operations 
and before query ones; the rationale is to make query 
operations to work on the already modified RDF store as 
soon as possible. 

Plug-in Timer plays the role of ensuring fairness in 
terms of plug-in extension execution time. Whenever Plug-in 
Manager starts the execution of an extension, Plug-in Timer 
monitors its execution time and invokes its stop() function 
in case a given threshold has been passed. Thus, plug-in 
extensions are forced to gracefully release access to the RDF 
store, e.g., by possibly storing state related to their task 
execution prior to interrupting themselves and recovering it 
when restarting their task at the following activation. 
Additional details and the source code of the plug-in 
extension prototype can be found at the SOFIA Web site [4] 
and at the associated SourceForge repository - 
http://sourceforge.net/projects/smart-m3/. 
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Figure 2.  Modifications to the Smart-M3 SIB to support plug-in 

extensions. 

IV. A NOTABLE EXAMPLE OF PLUG-IN EXTENSION 

COMPONENT: SIB PERFORMANCE PROFILING 

We have tested the plug-in architecture presented in 
Section 2 and its implementation integrated with Smart-M3 
by designing and deploying a SIB performance profiling 
feature, with the two-fold objective of validating the 
soundness of the proposed plug-in architecture and of 
offering an additional smart space functionality of relevance 
for smart application developers. In fact, we claim that SIB 
profiling can allow KPs to select the SIB that dynamically 
best fits their performance requirements: KPs may discover 
multiple SIBs even during service provisioning (nodes 
hosting SIBs can abruptly join and leave the network), 
heterogeneous not only in terms of supported features, e.g., 
with a different set of plug-in extensions, but also 
considering computing capabilities (varying depending on 
installed hardware and current computational load). Let us 
stress that anyway the plug-in architecture can be exploited 
to develop a wide set of other features that can benefit from 
direct and exclusive access to the RDF store, e.g., ranging 
from garbage collection to ontology-based inferencing. 

A. SIB Profiling Performance Indicators 

Also in order to well evaluate the efficiency and 
effectiveness of our plug-in extension implementation, we 
have prototyped two different options for SIB profiling, one 
based on the operations of a regular KP and the other based 
on an extension component that exploits our plug-in 
interface. The two options are implemented, respectively, 
based on the following components: 
 Profiling KP, i.e., an SSAP-based regular KP accessing 

the RDF store, in competition with other KPs, as usual. 
The performance achievable by a regular KP depends on 
the executing node current conditions, in terms of load, 
network traffic, … The SSAP protocol is expected to 
increase latency and overhead to access the RDF store if 
compared with native query operations at the adaptation 
layer. Moreover, SIB access is shared among multiple 
concurrent KPs, by possibly adding a source of further 
delay in insert/delete/query execution; 

 Profiling Plug-in, i.e., a plug-in extension component 
with direct and exclusive access to the RDF store. SIB 
profiling based on the plug-in extension allows to 
test/assess the capabilities of the SIB-hosting node more 
accurately since, in this case, other KPs and plug-in 
extensions cannot interfere with the execution of the 
profiling tasks included in the plug-in. 

It is worth noting that both approaches can produce 
results useful to compare the performance expected to be 
achieved by different available SIBs. In fact, the former 
represents the performance results that a regular KP can 
observe when accessing the SIB. Instead, the latter provides 
an ideal upper bound that KPs are not able to exceed: this 
value is particularly suitable for long-standing KPs, willing 
to compare SIBs performance not only based on recent 
monitoring results but also in relation to their potential 
capabilities, e.g., after temporary and current overload. 



We propose the adoption of two indicators to 
quantitatively evaluate SIB performance by regular KPs and 
plug-in extensions (the lower, the better): 
 CP = ( KP insert + 10 * KP query + KP delete / 10 ) / 3; 
 BP = ( plug-in insert + 10 * plug-in query + plug-in 

delete / 10 ) / 3. 
The rationale is that both Current Performance (CP) and 

Best Performance (BP) evaluate performance results by 
performing several insert/query/delete operations repeatedly: 
triples are generated in a random way, inserted in one 
transaction, and queried/deleted one by one. The same 
operations are repeated 100 times, split in 10 different cycles 
to adhere to the plug-in programming discipline. The query 
and delete values are multiplied and divided by 10 
respectively, because we experimentally observed that they 
take about 1/10 and 10 times the insert execution time. In 
this way, after that normalization, it is possible to get a 
homogeneous value easier to manage for comparison 
purposes. 

In addition, for the sake of simplicity, we propose a third 
indicator that is a simple combination of the two above: 
 RP = CP / BP 

By definition, the Relative Performance (RP) value is in 
the [1, ∞] range, where 1 is the best value since it means that 
current performance is equal to the best performance it is 
possible to achieve. 

In other words, CP plays the role of the relevant indicator 
to estimate the current SIB performance, BP to know the best 
performance a SIB can achieve independent on current load 
conditions, and RP to know how much the SIB is currently 
loaded. For instance, a KP interested in quickly retrieving 
some information is likely to exploit the SIB with best 
(lowest) CP value, while a KP aiming at repeatedly 
accessing a SIB for a long time period may prefer the SIB 
with best (lowest) BP since it provides the best upper-bound 
performance. Finally, RP can be used to properly balance 
workload on available SIBs: a KP not interested in high 
performance could select the SIB with best (lowest) RP 
despite CP/BP values in order to avoid to further load an 
already largely occupied SIB. Only to mention a very simple 
example, the RP evaluation could be useful in a smart space 
including two SIBs, one hosted on a high-performance server 
already serving many KPs and one on a laptop not serving 
any KP. While the former provides greater BP and CP 
values, a KP without strict performance requirements could 
select the latter by achieving the benefits of not further 
loading the server and of accessing a less loaded SIB (see 
Section 4.2.2 for additional details). 

B. Evaluating the SIB Profiling Components 

We have implemented the Profiling Plug-in and the 
Profiling KP respectively in the C language and in 
Python+Java. In our implemented prototype, the Profiling 
Plug-in executes only once a day since it measures rather 
static performance that is unlikely to vary very often (its 
value mainly depends on hardware characteristics). Instead, 
the Profiling KP runs every two hours to monitor the daily 
performance trend and executes in the same node hosting the 
SIB, in order to avoid network traffic overhead. As a result 

of its operation, the Profiling Plug-in inserts in the RDF store 
the triple “http://sofia.org/sib_internal#sib_properties”, 
“:best_performances”, BP_value representing the BP value. 
Similarly, the Profiling KP inserts the triples 
“http://sofia.org/sib_internal#sib_properties”, 
“:current_performances”, CP_value and 
“http://sofia.org/sib_internal#sib_properties”, 
“:relative_performances”, RP_value in the SIB RDF store. 

We have performed several tests to assess the 
effectiveness and correct working of the proposed plug-in 
architecture and performance indicators. The used testbed 
consists of two Linux nodes (Ubuntu distribution 10.10 and 
11.04) with only one KP running on each node (to avoid 
excessive delays due to processor scheduling); for briefness 
sake, we identify the two nodes as: 
 High: Intel Core2 Duo P8400 2.26GHz, 3GB RAM; 
 Low: Intel Pentium M processor 1,10GHz, 500MB 

RAM. 
The Profiling Plug-in and KP gather CP/BP/RP values when 
the SIB alternatively resides in one of these nodes. To 
achieve significant CP values, the daily trend of each single 
SIB has been evaluated while imposing different loads by 
means of workload KPs specifically designed to emulate 
some common tasks, composed by cycles with a 
heterogeneous mix of insert/delete/query operations (see 
Table I). Each cycle includes 8 insertions and 2 deletes, 
while at the end of each cycle one triple is added in a query 
list; finally, triples in the query list are queried one by one. 

 

TABLE I.  DAILY WORKLOAD TO SIMULATE SIB WORKLOAD 

Daily time Workload Conditions 

1:00, 3:00. 5:00, 
7:00, 23:00 

No workload KPs 

9:00 1 workload KP, 18 cycles 

11:00, 13:00 1 workload KP, 100 cycles 

15:00 2 workload KPs from different nodes, 20 cycles 

17:00 2 workload KPs, from different nodes, 40 cycles 

19:00 
2 workload KPs, from different nodes, 20 and 40 
cycles 

21:00 1 workload KP, 40 cycles 

 
Fig. 3 shows the daily trend of CP and BP values related 

a single node: the SIB alternatively runs on High (left) and 
Low (right); BP values are 0.86 for High and 1.24 for Low. 
The reported results clearly show that the adopted 
performance indicators depend on node workload and 
hardware capabilities: High has lower execution time than 
Low, since the former is equipped with a more powerful 
processor and greater memory resources. 

Then, we have tested our SIB profiling solution 
exploiting two KPs with very different behavior and 
performance requirements: 



 FastKP, executing few operations with strict delay 
requirements (representative of the operations of a CPU-
bound non-interactive KP); 

 SlowKP, executing several operations, but without strict 
delay requirements (representative of the operations of 
an IO-bound KP, e.g., interacting with a user). 

In our envisioned profiling-enabled scenario, first of all, 
KPs look for and join the available SIBs to gather CP/BP/RP 
values; then, KPs evaluate the obtained performance 
indicators and keep connected only with the SIB best fitting 
their requirements, i.e., the SIB with best CP in case of 
FastKP, the SIB with best RP in case of SlowKP. Note that 
KPs can exploit CP/BP/RP values and combine them as they 
prefer to choose their “best” SIB; in the following, for the 
sake of simplicity, we focus on CP and RP to underline their 
suitability to achieve a good tradeoff between best 
performance and workload balancing. 
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Figure 3.  CP and BP when the SIB runs on High (left) and Low (right). 

 
Secondly, Fast/Slow KPs work by performing insert, 

query, and delete operations. In particular, FastKP operates 
10 inserts, 5 queries, and 1 delete: each operation type is 
performed in an aggregated manner, e.g., 10 inserts 
correspond to only one SIB interaction, in order to optimize 
operation processing. SlowKP performs 100 inserts, 50 
queries and 10 deletes, thus emulating a greater workload in 
terms of SIB requests. In addition, each SlowKP operation is 
performed separately, e.g., 100 SIB interactions to perform 
100 inserts, to mimic inter-operation activity, e.g., waiting 
for data provided by other KPs.  

In order to evaluate how CP/BP/RP can give relevant 
indications for the SIB choice, in the following we provide 
two different comparisons: 
1. FastKP chooses the SIB randomly vs. the one with best 

CP (only FastKP executes in the smart space); 
2. SlowKP chooses the SIB with lowest CP vs. the one 

with best RP (SlowKP executes while FastKP already 
accesses the SIB with best CP). 

Fig. 4 shows the average execution time (10 runs for each 
case) of FastKP (left) and SlowKP (right). When FastKP 
exploits CP to properly evaluate and select the most suitable 
SIB, its execution time relevantly lowers from 0.63s (left 
column) to 0.35s (right column). Instead, when SlowKP 
exploits RP, the execution time rises from 13.62 to 23.08s. It 
is worth noting that time execution growth for SlowKP is not 
a crucial issue since SlowKP has not strict latency 
requirements. In addition, the exploitation of RP allows to 
better consume smart space resources because SlowKP 

selects the SIB not already accessed by FastKP. In fact, it is 
thus possible to distribute the workload on the available SIBs 
more evenly (see Table II): by adopting RP, SlowKP can 
exploit the less loaded (more idle) SIB. 
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Figure 4.  KP execution time when adopting CP and RP for SIB selection. 

TABLE II.  CPU AVERAGE CONSUMPTION OF SIB WHEN BOTH 
FASTKP AND SLOWKP RUN (SIBD IS THE MAIN SMART-M3 PROCESS; 
THE SIB-TCP PROCESS PROVIDES TCP-BASED ACCESS TO SMART-M3). 

Node High Low 

Component sibd sib-tcp sibd sib-tcp

Both Fast/ SlowKP 
use CP 

3.62% 1.02% 0.00% 0.00%

FastKP uses CP, 
SlowRP uses RP 

1.00% 0.01% 2.56% 0.56%

 
 
Finally, Table III and Fig. 5 show the overhead that KPs 

have to pay for SIB performance-based comparison before 
selection, i.e., to join to available SIBs, query CP/BP/RP 
indicators on them, and evaluating their suitability. Table 3 
points out that comparison overhead is greatly lower than 
execution time, while Fig. 6 underlines that SIB joining and 
performance indicator gathering have the greatest impact on 
overhead. In other words, comparison overhead grows 
almost linearly in relation to the number of available SIBs to 
interrogate and compare. However, even in the challenging 
case of FastKP requiring small execution delays, the steps of 
joining, gathering, and comparing impose delay that are 
largely lower than execution time, thus demonstrating that 
the proposed solution imposes very little overhead. In fact, 
the SIB selection overhead may be well balanced by the 
capability of choosing the proper SIB, thus allowing the 
reduction of overall execution time in the smart space. 



TABLE III.  EXECUTION TIME AND OVERHEAD 
COMPARISON. 

 FastKP SlowKP 

 
Execution 

(s) 
Comparison 

(s) 
Execution 

(s) 
Comparison 

(s) 

Both FastKP and 
SlowKP use CP 

0.35 0.02 13.62 0.04 

FastKP uses CP, 
SlowRP uses RP 

0.35 0.02 23.08 0.03 
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Figure 5.  The different elements composing the SIB comparison 

overhead. 

V. RELATED WORK 

Several contributions in the literature recognize the 
importance of supporting heterogeneous device 
interoperability to actually push the spread of open and 
flexible smart spaces. For example, [6] presents 
standardization efforts to develop a universal interaction 
solution with diverse devices, by specifically focusing on 
user interaction. Possible approaches can be categorized in 
either universal user interface languages, allowing to 
describe user interfaces based on an abstract language, or 
user interface remoting, exploiting service discovery and 
agreed presentation protocols to interact with remote devices. 
Space Integration Services (SIS) achieve device interaction 
by supporting the dynamic mapping of locations, e.g., 
physical spaces or devices, related to different smart spaces. 
In this way, the data published in a location of a smart space 
are made visible also to other smart spaces to which the 
location is mapped [7].  

By focusing on interoperability among smart space 
software components, [8] exploits standard communication 
protocols such as SOAP Web Services and agreed 
presentation common metadata schemas based on 
XML/RDF. [9] exploits a RDF-based Resource Information 
Base (RIB) as the resource sharing environment. RIB 
contains information that devices are willing to share, thus 
allowing remote heterogeneous devices to easily discover 
available service components and to dynamically compose 

them, e.g., to provide a new virtual service stemming from 
the mash-up of available and more basic components. 

Other contributions propose the exploitation of 
ontologies and reasoners to further increase interoperability 
among heterogeneous devices [10]. For instance, SocioSpace 
exploits the IP Multimedia Subsystem (IMS) standard 
specification to integrate Smart Spaces and social networks, 
by adopting Friend of a Friend (FOAF) as the common 
syntactic vocabulary to exchange and represent social 
network data [11]. Shared Ontologies for Pervasive 
Computing (SO4PC) proposes to adopt i) a core ontology 
(SO4PC Core) defining common generic vocabularies and ii) 
additional ontologies (SO4PC Extensions) extending the 
core one to support specific types of applications [12]. 
Finally, Smart Space Event Ontology (SSEO) uses semantic 
reasoning to compose different semantic events triggered by 
heterogeneous devices [13]. To this purpose, SSEO exploits 
a semantic adaptor to translate sensor-gathered events into a 
shared primitive format and a semantic reasoner to infer 
from them human-readable and machine-processable 
semantic events, easily sharable among heterogeneous 
devices. However, these solutions do not provide the 
capability of interoperating at the data level in a dynamic 
way as Smart-M3 can do by including metadata descriptions 
in its RDF store; in addition, these solutions do not provide 
any capability of adding novel features to the smart space 
support platform at runtime in order to further increase its 
flexibility and to tailor it for a specific deployment 
environment and application domain. 

VI. CONCLUSIONS 

Our proposed SIB extensibility solution based on the 
plug-in architecture allows to customize and personalize the 
SIB behavior dynamically in relation to smart space 
objectives and administrator requirements. In particular, we 
have modified the Linux-based Smart-M3 implementation to 
allow the dynamic de/activation of extension components, 
possibly developed by third parties, implemented as Shared 
Objects. In this way we achieve the twofold objective of 
keeping the SIB architecture very lightweight (suitable even 
for low-end and resource-constrained mobile phones) and of 
enabling the possibility to add new features to the SIB 
behavior dynamically, depending on the targeted application 
and deployment environment. 

The presented SIB profiling service test-case not only 
provides performance indicators useful to select the SIB best 
fitting the current KP requirements, but also demonstrates 
that regular KPs and Plug-in extensions can be used together 
to collect performance data under different perspectives. In 
both cases, the reported performance results show the 
feasibility of the approach in terms of limited overhead, for 
all most practical smart application cases of common 
interest. We truly believe that this design/implementation 
work, freely available for download, can relevantly help the 
community of researchers/practitioners working on smart 
space interoperability at the information level and/or on 
Smart-M3-based smart spaces to extend the available SIB 
implementations with ad-hoc functionality of specific 
interest for their application scenarios, thus leveraging the 



adoption of the proposed approach in very differentiated 
application domains and growing the associated community 
of developers. 
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