
The Smart-M3 Semantic Information Broker (SIB) Plug-in Extension:
Implementation and Evaluation Experiences

Paolo Bellavista, Veronica Conti, Carlo Giannelli
DISI – University of Bologna, Italy

{paolo.bellavista, veronica.conti, carlo.giannelli}@unibo.it

Jukka Honkola
Innorange Oy, Helsinki, Finland

jukka.honkola@gmail.com

Abstract— Smart spaces are gaining relevance as promising
deployment environments for novel classes of applications
stemming from the dynamic discovery and interaction between
smart objects and the resources available in their physical
localities, e.g., seamlessly exploiting smartphones to control
embedded home equipment. The Semantic Information Broker
(SIB) of the Smart-M3 platform can well support
interoperability of statically unknown devices and
service/application components in a smart space based on
lightweight semantically-tagged data sharing. The paper
focuses on the experience made and the lessons learned from
the work of design, implementation, deployment, and
experimental validation/evaluation of the SIB “Plug-in”
extension. This extension allows SIB administrators to
personalize and extend SIB installations simply and with a
well-defined methodology, by cleanly adding plug-in extensions
that can support domain- and deployment-specific facilities,
thus opening new market opportunities for Smart-M3
exploitation. The reported results show the feasibility and
effectiveness of the proposed approach: in particular, we
report the experience made with a notable example of plug-in
component that can measure the runtime-offered SIB quality
of service, expressed as a set of concise performance indicators.

Keywords- Smart spaces, ubiquitous computing, lightweight
semantic technologies, interoperability, dynamic extensibility

I. INTRODUCTION

The enormous market of smartphones with different
forms of wireless connectivity, coupled with the increasing
computing capabilities of embedded devices deployed in a
pervasive way, is pushing for smart space solutions, e.g. to
support the seamless discovery and invocation of locally
available services seamlessly. For instance, let us consider a
home environment where an Android smartphone can
dynamically join the user’s home smart space and allow to
remotely monitor the oven temperature and to dim the light
intensity while on the sofa. Or, as another simple example,
imagine tourists who can dynamically gather information
related to the city they are visiting by interacting with a
smart traffic light, where they can possibly post their own
geographically-tagged comments that will be made available
to future visitors when in traffic light proximity.

However, notwithstanding that the smart space concept
has been around for several years, the actual industrial
exploitation of smart spaces has been limited by several
factors, first of all, the difficulties of interoperating among
heterogeneous devices in an open and statically

unpredictable deployment environment. It is recognized that
smart applications should be able to dynamically join smart
spaces without any pre-configuration and invoke/provide
services without any a-priori knowledge of the hosting
hardware/software infrastructure. To this purpose, the Smart-
M3 middleware proposes a relevant approach supporting
smart space resource interworking at the data level
(interoperability at the information level), i.e., by enabling
information sharing among heterogeneous devices through a
standardized access protocol and lightweight semantic
techniques for data self-description. In particular, the
Semantic Information Broker (SIB) component maintains
shared data in a smart space by exploiting Resource
Description Framework (RDF) triples to describe them
according to a common ontology [1]. Knowledge Processors
(KPs), possibly running on different devices participating to
the smart space, interact each other by publishing and
reading data to/from the SIB via the Smart Spaces Access
Protocol (SSAP). The idea is that developers can easily and
rapidly provide new smart applications by creating and
deploying KPs that access SIB shared data via SSAP. Prior
work has already demonstrated that Smart-M3 can be
effectively adopted in several heterogeneous scenarios,
ranging from remote monitoring of sensor data provided by
constrained devices [2] to multimedia provisioning [3].

Within the framework of the EU SOFIA project [4] and
while working in different vertical domains, it was
recognized the opportunity to define and run special
management-oriented third-party components internally to
the SIB, in order to smoothly and effectively extend the SIB
functionality when needed, e.g., in given deployment
scenarios or for specific and application-oriented
management purposes. One of the goals is to easily obtain
differentiated and personalized versions of the same SIB,
with extended built-in functionality, in a clean and well-
disciplined way. Management-oriented third-party
components are expected to be designed and implemented
only by SIB developers and administrators, who are
responsible for SIB personalization, deployment, and
management. Their typical use could include discarding
“old” triples in the SIB and saving them on persistent storage
to reduce current memory occupation, reconciling possibly
conflicting SIB data (also by removing some of them), and
aggregating SIB data in more concise indicators. This
interface, called plug-in extension, has been realized at the
SIB adaptation layer and offered for the inclusion of internal
third-party management components implemented in the C

language. The plug-in extension bypasses the standard SSAP
SIB access and runs locally to the SIB, thus enabling the
Smart-M3 platform to effectively host privileged (also in
terms of achievable performance) and easily implementable
internal third-party components for runtime management.

The paper reports about the experience made and the
lessons learned from the work of design, implementation,
deployment, and experimental validation/evaluation of the
SIB plug-in extension. This extension, originally presented
for the first time in this paper, allows SIB developers and
administrators to personalize and extend SIB installations in
a simple way, by dynamically adding plug-in components
that can realize domain- and deployment-specific facilities.
In particular, the paper presents primary design/
implementation insights about our recent implementation of
the plug-in extension for the Smart-M3 SIB version and
quantitative experimental results about its performance
evaluation. The presented results show the feasibility and
effectiveness of the approach. In addition, several plug-in
components have already been realized on top of our plug-in
interface, also to validate the solution in practical case
studies. Among them, it is worth mentioning a plug-in
component for the metering of the SIB-offered quality of
service in terms of a set of concise performance indicators.
The results of the periodic operation of this plug-in
component are stored in the SIB itself; they contribute to the
performance profiling of a given SIB installation, by offering
performance-related data that can be usefully exploited by
“regular” application-level KPs to dynamically select their
most proper SIB, among the available ones, during the
discovery phase and based on the performance results it was
recently able to achieve.

Section 2 provides some details of the Linux-based
Smart-M3 SIB implementation, which we extended with the
plug-in interface, whose design and implementation is
presented in Section 3. Section 4 focuses on how we have
implemented the SIB metering plug-in component based on
both “regular” KPs and the introduced plug-in extension.
Finally, related work and conclusive remarks end the paper.

II. SMART-M3 SIB IMPLEMENTATION:
STRENGTHS AND LIMITATIONS

Smart-M3 is the Linux-based SIB reference
implementation proposed and developed by Nokia. It
supports information interoperability via decoupled
interaction and standard information representation. On the
one hand, KPs can publish and gather information that is
shared on Smart-M3, without any direct mutual interaction;
on the other hand, information is stored based on common
ontology models and common data formats. In this way,
Smart-M3 gets the notable advantage of being device-,
domain-, and vendor-independent: users are free to use the
preferred device to exploit for accessing their smart space
regardless of the manufacturer (multi-vendor); applications
can seamlessly perform operations that involve a set of
devices (multi-device) available in the smart space;
application developers and their companies can focus on
consumers’ interests by adopting the same concept and
technology in different application domains (multi-domain).

While Smart-M3 actually provides interoperability
among heterogeneous devices and applications in a domain-
independent fashion, its current implementation still exhibits
some weaknesses, thus contributing to prevent Smart-M3
from being widely adopted in the mass market of nowadays
smart space users. For instance, Smart-M3 proponents are
extending the current Smart-M3 implementation to support
access control and security management (secure SSAP),
autonomous discovery and composition to create complex
services based on simpler ones automatically, and SIB
federation to easily access multiple SIBs as if they were a
unique smart space entity. Furthermore, there are several
additional features that Smart-M3 could provide to increase
its value and efficiency, e.g., garbage collection to delete
obsolete data from the RDF store and profiling features to
publish SIB capabilities in order to facilitate SIB selection
when multiple options are available in the smart space
(SSAP version, memory availability, CPU load, and so on).

In its current implementation SIB capabilities are defined
at compile-time: it is not possible to dynamically add/remove
or enable/disable features in a selective manner, e.g., in
relation to specific requirements depending on the
deployment environment and the targeted applications. At
the same time, there is the need of keeping Smart-M3 very
lightweight, in order to make it suitable for a wide set of
devices with heterogeneous capabilities, ranging from
desktop PCs to low-end mobile-phones. For this reason, SIB
improvements up to now have been limited to few
paramount features every SIB should provide [5], e.g., secure
SSAP and service composition, that is, mandatory features
for the new release of the technology. The only possible
method to dynamically add features is deploying KPs;
however, they can interact with the RDF store only via
SSAP, with the non-negligible negative effects of imposing
communication overhead and limiting RDF management
capabilities to what statically included in the SSAP API.

III. PLUG-IN EXTENSION FOR DYNAMIC SIB

CUSTOMIZATION

In this paper we propose to modify the SIB architecture
to allow the execution of new components inside the SIB,
with the objective of enabling the well-disciplined
customization of Smart-M3 with additional features that
overcome KP limitations while maintaining its lightweight
architecture. In this way it will be possible to customize the
SIB by dynamically adding or removing features only if and
when required, also at runtime, as detailed in the following.

In particular, the idea is that smart space developers and
SIB administrators can register new software components
(e.g., third-party services developed and compiled
independently from Smart-M3) to run inside the SIB and
access the RDF store directly (see the Adaptation layer in
Fig. 1 [1]). Management operations at the RDF store level
may improve SIB efficiency, e.g., a software component that
operates as garbage collector to remove obsolete and useless
data, or that performs complex reasoning to aggregate/infer
additional data, or that translates data in response to
modifications in the associated description ontology, or that
performs context pre-processing and information filtering. In

this way, it is possible to achieve the notable benefit of
modifying the SIB behavior requiring neither to re-compile
nor to restart it; each SIB can be tailored de/activating and
adding/deleting features in relation to specific objectives.

Figure 1. The SIB architecture in the Smart-M3 reference

implementation.

A. Plug-in Template

Mainly for performance and efficiency motivations, we
have designed SIB extensibility in order to allow plug-in
extensions to directly interact with the RDF store without
any specific restriction. The only requirement is that plug-in
extensions adhere to a well-defined but general interface
suitable for the development of a wide set of features.
Moreover, since plug-in extensions may have exclusive and
privileged access to the RDF store (see the following), the
plug-in interface should be used by skilled and trusted
developers, e.g., SIB administrators with deep knowledge of
Smart-M3 details. In particular, we have designed the plug-in
interface so that extensions must offer the following features:
1. evaluateState, which exploits any available information

(internal to the SIB or more usually saved in the RDF
store) to dynamically determine whether there is the
need to activate the plug-in extension. For instance, it is
possible to specify to activate a garbage collector
extension component only if a given amount of RDF
triples have been added/modified/deleted or if a certain
time period has passed since the last garbage collection
operation;

2. run, which includes the operational behavior of the
plug-in extension. Tasks should be performed in
multiple cycles, to provide the capability of periodically
checking whether the above activation condition is still

verified, by possibly stopping the execution of the
extension component (see also the feature below);

3. stop, which forces the termination of the extension
component. That may be useful to guarantee fair use of
local resources, e.g., interrupting a plug-in extension
after a given period if it is overloading the local node.

Note that plug-in extension developers are in charge of
correctly implementing the above functionality based on a
well-known template, described in the following, by
adhering to a specific programming discipline and
registering extension components to the SIB. Let us point out
also that the proposed extensibility model is independent
from the specific implementation of the SIB and can be
applied regardless to the underlying operating system and
exploited programming language. However, to provide a
proof of concept implementation, we have specifically
considered the Smart-M3 SIB implementation, written in C
and running on Linux, which imposed us some constraints
and influenced how we have decided to effectively realize
the plug-in interface previously described. In particular, our
plug-in extensions are implemented as Linux dynamic linked
libraries, i.e., Shared Objects: in this way, plug-in extensions
can be easily loaded/unloaded at runtime without stopping
the SIB execution; moreover, it is possible to clearly separate
the code of the SIB and of its extension components (the SIB
footprint per se does not change, while plug-in extensions
can be unregistered and deleted in order to reduce overhead
and occupied disk space, which is sometimes required in
low-end mobile devices with limited hardware resources).

In the following, to show a practical example of usage,
we report a simple case of implementation of evaluateState,
run and stop features as C functions:

enum boolean FALSE=0, TRUE;
…
boolean stop = FALSE;

void stop(){
 // developers should implement this method
 stop = TRUE;
}

boolean evaluateState(){
 boolean active;
 active = TRUE; // in case it is required...
 active = FALSE; // in case it is NOT required...
// to activate this component in the next iteration
 return active;
}

void run(){
 while((stop!=TRUE) && (have more work)){
 // actual task of the component
 }
 // reset the value of the stop variable
 stop = FALSE;
}

B. Plug-in Runtime Management

As already stated, plug-in management is performed at
the Adaptation Layer, with the objective of enabling direct
access to the RDF store without exploiting SSAP. In this
way, plug-in extensions can use low-level and highly-
efficient read, write, and query operations: other entities

(either plug-in extensions or KPs) cannot access concurrently
the RDF store when one plug-in has started its execution, to
avoid any possible interference with the active plug-in
operation. To achieve these goals, we have designed out
plug-in runtime management solution structured into three
primary components: Plug-in Entry Point, Plug-in Manager,
and Plug-in Timer, as depicted in Fig. 2).

Plug-in Entry Point offers an API to register and
unregister plug-in extensions. plug-in developers can
add/remove extension components very easily, either
copying their Shared Object files into a given directory or
remotely transferring them via TCP/IP. In both cases, Plug-
in Entry Point checks the compliance of the plug-in
extension to be installed with the standard template, by
verifying that the extension actually provides
evaluateState(), run(), and stop() functions.

Plug-in Manager periodically activates the currently
registered plug-in extensions by invoking their run()
function. The Smart-M3 architecture has been slightly
modified to execute plug-in extensions inside the SIB
daemon scheduler; Plug-in Manager executes registered
extensions in the SIB scheduling loop, after insert operations
and before query ones; the rationale is to make query
operations to work on the already modified RDF store as
soon as possible.

Plug-in Timer plays the role of ensuring fairness in
terms of plug-in extension execution time. Whenever Plug-in
Manager starts the execution of an extension, Plug-in Timer
monitors its execution time and invokes its stop() function
in case a given threshold has been passed. Thus, plug-in
extensions are forced to gracefully release access to the RDF
store, e.g., by possibly storing state related to their task
execution prior to interrupting themselves and recovering it
when restarting their task at the following activation.
Additional details and the source code of the plug-in
extension prototype can be found at the SOFIA Web site [4]
and at the associated SourceForge repository -
http://sourceforge.net/projects/smart-m3/.

Smart-M3 Scheduler

Plug-in Manager

Plug-in
Entry Point

Plug-in
Timer

TCP/IP
n

…
Plug-in

1

Figure 2. Modifications to the Smart-M3 SIB to support plug-in

extensions.

IV. A NOTABLE EXAMPLE OF PLUG-IN EXTENSION

COMPONENT: SIB PERFORMANCE PROFILING

We have tested the plug-in architecture presented in
Section 2 and its implementation integrated with Smart-M3
by designing and deploying a SIB performance profiling
feature, with the two-fold objective of validating the
soundness of the proposed plug-in architecture and of
offering an additional smart space functionality of relevance
for smart application developers. In fact, we claim that SIB
profiling can allow KPs to select the SIB that dynamically
best fits their performance requirements: KPs may discover
multiple SIBs even during service provisioning (nodes
hosting SIBs can abruptly join and leave the network),
heterogeneous not only in terms of supported features, e.g.,
with a different set of plug-in extensions, but also
considering computing capabilities (varying depending on
installed hardware and current computational load). Let us
stress that anyway the plug-in architecture can be exploited
to develop a wide set of other features that can benefit from
direct and exclusive access to the RDF store, e.g., ranging
from garbage collection to ontology-based inferencing.

A. SIB Profiling Performance Indicators

Also in order to well evaluate the efficiency and
effectiveness of our plug-in extension implementation, we
have prototyped two different options for SIB profiling, one
based on the operations of a regular KP and the other based
on an extension component that exploits our plug-in
interface. The two options are implemented, respectively,
based on the following components:
 Profiling KP, i.e., an SSAP-based regular KP accessing

the RDF store, in competition with other KPs, as usual.
The performance achievable by a regular KP depends on
the executing node current conditions, in terms of load,
network traffic, … The SSAP protocol is expected to
increase latency and overhead to access the RDF store if
compared with native query operations at the adaptation
layer. Moreover, SIB access is shared among multiple
concurrent KPs, by possibly adding a source of further
delay in insert/delete/query execution;

 Profiling Plug-in, i.e., a plug-in extension component
with direct and exclusive access to the RDF store. SIB
profiling based on the plug-in extension allows to
test/assess the capabilities of the SIB-hosting node more
accurately since, in this case, other KPs and plug-in
extensions cannot interfere with the execution of the
profiling tasks included in the plug-in.

It is worth noting that both approaches can produce
results useful to compare the performance expected to be
achieved by different available SIBs. In fact, the former
represents the performance results that a regular KP can
observe when accessing the SIB. Instead, the latter provides
an ideal upper bound that KPs are not able to exceed: this
value is particularly suitable for long-standing KPs, willing
to compare SIBs performance not only based on recent
monitoring results but also in relation to their potential
capabilities, e.g., after temporary and current overload.

We propose the adoption of two indicators to
quantitatively evaluate SIB performance by regular KPs and
plug-in extensions (the lower, the better):
 CP = (KP insert + 10 * KP query + KP delete / 10) / 3;
 BP = (plug-in insert + 10 * plug-in query + plug-in

delete / 10) / 3.
The rationale is that both Current Performance (CP) and

Best Performance (BP) evaluate performance results by
performing several insert/query/delete operations repeatedly:
triples are generated in a random way, inserted in one
transaction, and queried/deleted one by one. The same
operations are repeated 100 times, split in 10 different cycles
to adhere to the plug-in programming discipline. The query
and delete values are multiplied and divided by 10
respectively, because we experimentally observed that they
take about 1/10 and 10 times the insert execution time. In
this way, after that normalization, it is possible to get a
homogeneous value easier to manage for comparison
purposes.

In addition, for the sake of simplicity, we propose a third
indicator that is a simple combination of the two above:
 RP = CP / BP

By definition, the Relative Performance (RP) value is in
the [1, ∞] range, where 1 is the best value since it means that
current performance is equal to the best performance it is
possible to achieve.

In other words, CP plays the role of the relevant indicator
to estimate the current SIB performance, BP to know the best
performance a SIB can achieve independent on current load
conditions, and RP to know how much the SIB is currently
loaded. For instance, a KP interested in quickly retrieving
some information is likely to exploit the SIB with best
(lowest) CP value, while a KP aiming at repeatedly
accessing a SIB for a long time period may prefer the SIB
with best (lowest) BP since it provides the best upper-bound
performance. Finally, RP can be used to properly balance
workload on available SIBs: a KP not interested in high
performance could select the SIB with best (lowest) RP
despite CP/BP values in order to avoid to further load an
already largely occupied SIB. Only to mention a very simple
example, the RP evaluation could be useful in a smart space
including two SIBs, one hosted on a high-performance server
already serving many KPs and one on a laptop not serving
any KP. While the former provides greater BP and CP
values, a KP without strict performance requirements could
select the latter by achieving the benefits of not further
loading the server and of accessing a less loaded SIB (see
Section 4.2.2 for additional details).

B. Evaluating the SIB Profiling Components

We have implemented the Profiling Plug-in and the
Profiling KP respectively in the C language and in
Python+Java. In our implemented prototype, the Profiling
Plug-in executes only once a day since it measures rather
static performance that is unlikely to vary very often (its
value mainly depends on hardware characteristics). Instead,
the Profiling KP runs every two hours to monitor the daily
performance trend and executes in the same node hosting the
SIB, in order to avoid network traffic overhead. As a result

of its operation, the Profiling Plug-in inserts in the RDF store
the triple “http://sofia.org/sib_internal#sib_properties”,
“:best_performances”, BP_value representing the BP value.
Similarly, the Profiling KP inserts the triples
“http://sofia.org/sib_internal#sib_properties”,
“:current_performances”, CP_value and
“http://sofia.org/sib_internal#sib_properties”,
“:relative_performances”, RP_value in the SIB RDF store.

We have performed several tests to assess the
effectiveness and correct working of the proposed plug-in
architecture and performance indicators. The used testbed
consists of two Linux nodes (Ubuntu distribution 10.10 and
11.04) with only one KP running on each node (to avoid
excessive delays due to processor scheduling); for briefness
sake, we identify the two nodes as:
 High: Intel Core2 Duo P8400 2.26GHz, 3GB RAM;
 Low: Intel Pentium M processor 1,10GHz, 500MB

RAM.
The Profiling Plug-in and KP gather CP/BP/RP values when
the SIB alternatively resides in one of these nodes. To
achieve significant CP values, the daily trend of each single
SIB has been evaluated while imposing different loads by
means of workload KPs specifically designed to emulate
some common tasks, composed by cycles with a
heterogeneous mix of insert/delete/query operations (see
Table I). Each cycle includes 8 insertions and 2 deletes,
while at the end of each cycle one triple is added in a query
list; finally, triples in the query list are queried one by one.

TABLE I. DAILY WORKLOAD TO SIMULATE SIB WORKLOAD

Daily time Workload Conditions

1:00, 3:00. 5:00,
7:00, 23:00

No workload KPs

9:00 1 workload KP, 18 cycles

11:00, 13:00 1 workload KP, 100 cycles

15:00 2 workload KPs from different nodes, 20 cycles

17:00 2 workload KPs, from different nodes, 40 cycles

19:00
2 workload KPs, from different nodes, 20 and 40
cycles

21:00 1 workload KP, 40 cycles

Fig. 3 shows the daily trend of CP and BP values related

a single node: the SIB alternatively runs on High (left) and
Low (right); BP values are 0.86 for High and 1.24 for Low.
The reported results clearly show that the adopted
performance indicators depend on node workload and
hardware capabilities: High has lower execution time than
Low, since the former is equipped with a more powerful
processor and greater memory resources.

Then, we have tested our SIB profiling solution
exploiting two KPs with very different behavior and
performance requirements:

 FastKP, executing few operations with strict delay
requirements (representative of the operations of a CPU-
bound non-interactive KP);

 SlowKP, executing several operations, but without strict
delay requirements (representative of the operations of
an IO-bound KP, e.g., interacting with a user).

In our envisioned profiling-enabled scenario, first of all,
KPs look for and join the available SIBs to gather CP/BP/RP
values; then, KPs evaluate the obtained performance
indicators and keep connected only with the SIB best fitting
their requirements, i.e., the SIB with best CP in case of
FastKP, the SIB with best RP in case of SlowKP. Note that
KPs can exploit CP/BP/RP values and combine them as they
prefer to choose their “best” SIB; in the following, for the
sake of simplicity, we focus on CP and RP to underline their
suitability to achieve a good tradeoff between best
performance and workload balancing.

1 3 5 7 9 11 13 15 17 19 21 23

0

10

20

30

40

50

60

70

80

90

100

110

120

130

Daily time

B
P
 a
n
d
 C
P

CP
BP

1 3 5 7 9 11 13 15 17 19 21 23

0

10

20

30

40

50

60

70

80

90

100

110

120

130

Daily time
Figure 3. CP and BP when the SIB runs on High (left) and Low (right).

Secondly, Fast/Slow KPs work by performing insert,

query, and delete operations. In particular, FastKP operates
10 inserts, 5 queries, and 1 delete: each operation type is
performed in an aggregated manner, e.g., 10 inserts
correspond to only one SIB interaction, in order to optimize
operation processing. SlowKP performs 100 inserts, 50
queries and 10 deletes, thus emulating a greater workload in
terms of SIB requests. In addition, each SlowKP operation is
performed separately, e.g., 100 SIB interactions to perform
100 inserts, to mimic inter-operation activity, e.g., waiting
for data provided by other KPs.

In order to evaluate how CP/BP/RP can give relevant
indications for the SIB choice, in the following we provide
two different comparisons:
1. FastKP chooses the SIB randomly vs. the one with best

CP (only FastKP executes in the smart space);
2. SlowKP chooses the SIB with lowest CP vs. the one

with best RP (SlowKP executes while FastKP already
accesses the SIB with best CP).

Fig. 4 shows the average execution time (10 runs for each
case) of FastKP (left) and SlowKP (right). When FastKP
exploits CP to properly evaluate and select the most suitable
SIB, its execution time relevantly lowers from 0.63s (left
column) to 0.35s (right column). Instead, when SlowKP
exploits RP, the execution time rises from 13.62 to 23.08s. It
is worth noting that time execution growth for SlowKP is not
a crucial issue since SlowKP has not strict latency
requirements. In addition, the exploitation of RP allows to
better consume smart space resources because SlowKP

selects the SIB not already accessed by FastKP. In fact, it is
thus possible to distribute the workload on the available SIBs
more evenly (see Table II): by adopting RP, SlowKP can
exploit the less loaded (more idle) SIB.

FastKP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Random
CP

E
xe

cu
tio

n
 ti

m
e

 (
s

)

Slow KP

0.0

5.0

10.0

15.0

20.0

25.0

Only CP
CP and RP

E
xe

cu
tio

n
 ti

m
e

 (
s

)

Figure 4. KP execution time when adopting CP and RP for SIB selection.

TABLE II. CPU AVERAGE CONSUMPTION OF SIB WHEN BOTH
FASTKP AND SLOWKP RUN (SIBD IS THE MAIN SMART-M3 PROCESS;
THE SIB-TCP PROCESS PROVIDES TCP-BASED ACCESS TO SMART-M3).

Node High Low

Component sibd sib-tcp sibd sib-tcp

Both Fast/ SlowKP
use CP

3.62% 1.02% 0.00% 0.00%

FastKP uses CP,
SlowRP uses RP

1.00% 0.01% 2.56% 0.56%

Finally, Table III and Fig. 5 show the overhead that KPs

have to pay for SIB performance-based comparison before
selection, i.e., to join to available SIBs, query CP/BP/RP
indicators on them, and evaluating their suitability. Table 3
points out that comparison overhead is greatly lower than
execution time, while Fig. 6 underlines that SIB joining and
performance indicator gathering have the greatest impact on
overhead. In other words, comparison overhead grows
almost linearly in relation to the number of available SIBs to
interrogate and compare. However, even in the challenging
case of FastKP requiring small execution delays, the steps of
joining, gathering, and comparing impose delay that are
largely lower than execution time, thus demonstrating that
the proposed solution imposes very little overhead. In fact,
the SIB selection overhead may be well balanced by the
capability of choosing the proper SIB, thus allowing the
reduction of overall execution time in the smart space.

TABLE III. EXECUTION TIME AND OVERHEAD
COMPARISON.

 FastKP SlowKP

Execution

(s)
Comparison

(s)
Execution

(s)
Comparison

(s)

Both FastKP and
SlowKP use CP

0.35 0.02 13.62 0.04

FastKP uses CP,
SlowRP uses RP

0.35 0.02 23.08 0.03

FastKP Slow KP

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SIB Comparison
Join+query (Low)
Join+query (High)

Figure 5. The different elements composing the SIB comparison

overhead.

V. RELATED WORK

Several contributions in the literature recognize the
importance of supporting heterogeneous device
interoperability to actually push the spread of open and
flexible smart spaces. For example, [6] presents
standardization efforts to develop a universal interaction
solution with diverse devices, by specifically focusing on
user interaction. Possible approaches can be categorized in
either universal user interface languages, allowing to
describe user interfaces based on an abstract language, or
user interface remoting, exploiting service discovery and
agreed presentation protocols to interact with remote devices.
Space Integration Services (SIS) achieve device interaction
by supporting the dynamic mapping of locations, e.g.,
physical spaces or devices, related to different smart spaces.
In this way, the data published in a location of a smart space
are made visible also to other smart spaces to which the
location is mapped [7].

By focusing on interoperability among smart space
software components, [8] exploits standard communication
protocols such as SOAP Web Services and agreed
presentation common metadata schemas based on
XML/RDF. [9] exploits a RDF-based Resource Information
Base (RIB) as the resource sharing environment. RIB
contains information that devices are willing to share, thus
allowing remote heterogeneous devices to easily discover
available service components and to dynamically compose

them, e.g., to provide a new virtual service stemming from
the mash-up of available and more basic components.

Other contributions propose the exploitation of
ontologies and reasoners to further increase interoperability
among heterogeneous devices [10]. For instance, SocioSpace
exploits the IP Multimedia Subsystem (IMS) standard
specification to integrate Smart Spaces and social networks,
by adopting Friend of a Friend (FOAF) as the common
syntactic vocabulary to exchange and represent social
network data [11]. Shared Ontologies for Pervasive
Computing (SO4PC) proposes to adopt i) a core ontology
(SO4PC Core) defining common generic vocabularies and ii)
additional ontologies (SO4PC Extensions) extending the
core one to support specific types of applications [12].
Finally, Smart Space Event Ontology (SSEO) uses semantic
reasoning to compose different semantic events triggered by
heterogeneous devices [13]. To this purpose, SSEO exploits
a semantic adaptor to translate sensor-gathered events into a
shared primitive format and a semantic reasoner to infer
from them human-readable and machine-processable
semantic events, easily sharable among heterogeneous
devices. However, these solutions do not provide the
capability of interoperating at the data level in a dynamic
way as Smart-M3 can do by including metadata descriptions
in its RDF store; in addition, these solutions do not provide
any capability of adding novel features to the smart space
support platform at runtime in order to further increase its
flexibility and to tailor it for a specific deployment
environment and application domain.

VI. CONCLUSIONS

Our proposed SIB extensibility solution based on the
plug-in architecture allows to customize and personalize the
SIB behavior dynamically in relation to smart space
objectives and administrator requirements. In particular, we
have modified the Linux-based Smart-M3 implementation to
allow the dynamic de/activation of extension components,
possibly developed by third parties, implemented as Shared
Objects. In this way we achieve the twofold objective of
keeping the SIB architecture very lightweight (suitable even
for low-end and resource-constrained mobile phones) and of
enabling the possibility to add new features to the SIB
behavior dynamically, depending on the targeted application
and deployment environment.

The presented SIB profiling service test-case not only
provides performance indicators useful to select the SIB best
fitting the current KP requirements, but also demonstrates
that regular KPs and Plug-in extensions can be used together
to collect performance data under different perspectives. In
both cases, the reported performance results show the
feasibility of the approach in terms of limited overhead, for
all most practical smart application cases of common
interest. We truly believe that this design/implementation
work, freely available for download, can relevantly help the
community of researchers/practitioners working on smart
space interoperability at the information level and/or on
Smart-M3-based smart spaces to extend the available SIB
implementations with ad-hoc functionality of specific
interest for their application scenarios, thus leveraging the

adoption of the proposed approach in very differentiated
application domains and growing the associated community
of developers.

ACKNOWLEDGMENT

This research activity, accomplished within the
framework of the Artemis JTI SOFIA project, has been
possible also thanks to the support of EIT ICT Labs
(Helsinki node) and Nokia. Our thanks also go to Petri Liuha
and Vesa Luukkala from Nokia for the fruitful and enjoyable
discussions we had the opportunity to have with them, in
order to improve and refine the architecture and prototype of
the Smart-M3 SIB plug-in extension interface.

REFERENCES
[1] J. Honkola, H. Laine, R. Brown, O. Tyrkko, "Smart-M3

Information Sharing Platform", IEEE Symp. on Computers
and Communications (ISCC), pp.1041-1046, IEEE Press,
2010.

[2] J. Kiljander, M. Etelapera, J. Takalo-Mattila, J. Soininen,
"Opening Information of Low Capacity Embedded Systems
for Smart Spaces", 8th Workshop on Intelligent Solutions in
Embedded Systems (WISES), pp. 23-28, 2010.

[3] S. Balandin, I. Oliver, S. Boldyrev, A. Smirnov, N. Shilov,
A. Kashevnik, "Multimedia Services on Top of M3 Smart
Spaces", Int. Conf. on Computational Technologies in
Electrical and Electronics Engineering (SIBIRCON), pp.
728-732, 2010.

[4] “SOFIA Project – Smart Objects For Intelligent
Applications”, funded through the European Artemis
programme, http://www.sofia-project.eu/

[5] A. D'Elia, J. Honkola, D. Manzaroli, T. Salmon, "Access
Control at Triple Level: Specification and Enforcement of a
Simple RDF Model to Support Concurrent Applications in

Smart Environments", Int. Conf. Smart Spaces and Next
Generation Wired/Wireless Networking, LNCS 6869, pp. 63-
74, 2011.

[6] Choonhwa Lee, S. Helal, Wonjun Lee, "Universal
Interactions with Smart Spaces", IEEE Pervasive Computing,
vol.5, no.1, pp. 16- 21, 2006.

[7] D. Bernini, D. Micucci, F. Tisato, "A Platform for
Interoperability via Multiple Spatial Views in Open Smart
Spaces", IEEE Symp. on Computers and Communications
(ISCC), pp. 1047-1052, 2010.

[8] B. Simon, S. Sobernig, F. Wild, S. Aguirre, S. Brantner, P.
Dolog, G. Neumann, G. Huber, T. Klobucar, S. Markus, Z.
Miklos, W. Nejdl, D. Olmedilla, J. Salvachua, M. Sintek, T.
Zillinger, "Building Blocks for a Smart Space for Learning",
Sixth Int. Conf. on Advanced Learning Technologies,
pp.309-313, 2006.

[9] K- Sohn, Ki-Hyuk Lee, Taehyun Kim, Sangshin Lee, Jaeho
Kim, "Resource Sharing Using RDF in Ubiquitous Smart
Space", Int. Conf. on Convergence Information Technology,
pp. 2062-2065, 2007.

[10] X. Wang, J.S. Dong, C.Y. Chin, S.R. Hettiarachchi, D.
Zhang, "Semantic Space: an Infrastructure for Smart
Spaces", IEEE Pervasive Computing, vol.3, no.3, pp. 32- 39,
2004.

[11] A. Hasswa, H. Hassanein, "SocioSpace: an Adaptive
Service-oriented Architecture that Integrates Smart Spaces
and Social Networks through the IP Multimedia Subsystem",
IEEE Symp. on Computers and Communications (ISCC), pp.
85-90, 2011.

[12] Jun-Feng Man, Qing Chen, Xiao-Heng Deng, Yin-An Qiu,
"The Design and Implementation of Shared Ontologies for
Smart Space Application", Proc. of 2005 Int. Conf. on
Machine Learning and Cybernetics, vol.1, pp. 125-131,
2005.

[13] Zang Li, Chao-Hsien Chu, Wen Yao, R.A. Behr, "Ontology-
Driven Event Detection and Indexing in Smart Spaces",
IEEE Fourth Int. Conf. on Semantic Computing (ICSC), pp.
285-292, 2010.

