
Social-aware Differentiated Visibility of

Home-to-Home Shared Resources in Spontaneous Networks

Paolo Bellavista, Carlo Giannelli, Stefano Poli
CIRI-ICT & DISI – University of Bologna – Italy

{paolo.bellavista, carlo.giannelli, stefano.poli6}@unibo.it

Abstract — The widespread adoption of online social networking
to upload and share user-generated personal content rises novel
issues related to the management of content ownership and pri-
vacy. To retain content ownership, we have previously designed
and implemented an original solution for social-driven content
sharing in home-to-home federated and spontaneous networks.
This paper relevantly enhances our solution by proposing novel
mechanisms to tune the visibility of shared resources based on
the dynamic evaluation of social relationship tightness, inferred
through social data gathered from widespread online social net-
works. On the one hand, the proposal autonomously evaluates the
tightness of social relationships based on the primary guideline
that the more users interact the tighter their relationships are.
Moreover, it determines a default decision tree suitable for many
application scenarios and enables its dynamic personalization
based on user’s feedback. On the other hand, it defines and sup-
ports a grammar to define visibility filters: runtime visibility of
shared resources is automatically tuned based on both relation-
ship tightness and defined filters. The presented prototype
demonstrates how to effectively design/implement the proposal
and the feasibility of our approach in terms of performance.

Keywords: spontaneous networking, social networking, re-
source sharing, visibility filtering, relationship tightness.

I. INTRODUCTION

The daily digital experience of users is increasingly character-
ized by the exploitation of multiple Online Social Networks
(OSNs) to remotely interact by exploiting a wide and heteroge-
neous set of mechanisms. For instance, Facebook is massively
used to exchange messages among users both in a public and
private manner (posting on friends’ walls and sending private
messages respectively), while Twitter is mostly exploited to
write short messages about specific topics (hashtag mecha-
nism) and get updates about the activity of other users (follow-
er mechanism). Furthermore, OSNs are widely adopted also as
platforms to share resources. For instance, users frequently up-
load personal pictures and videos on Facebook and share them
with friends, eventually commenting upon their own and oth-
er’s content. On the opposite, Twitter is mainly exploited to
advertise the location of content, e.g., twitting the URL of a
news article or of a YouTube video.

Considering the diffusion of OSNs, it is of primary im-
portance to ensure users’ privacy providing suitable policies
and easy-to-use tools to actually enforce privacy management.
Also pushed by governments and users [1], OSNs have intro-
duced mechanisms to differentiate the visibility of information

and resources. For instance, Facebook allows to put user’s con-
tacts in different sets, such as close friends, colleagues, and ac-
quaintances; then, it is possible to finely tune the visibility of
posts and resources by explicitly specifying which sets of users
should be able to access them. However, users do not seem to
widely exploit this filtering mechanism and often rely on de-
fault visibility filters, either because of the time needed to ex-
plicitly categorize their relationships and their visibility filters
for shared resources, or because they do not know the availabil-
ity of this mechanism at all. Moreover, Twitter has the default
behavior of accepting new followers without any explicit
agreement of users. Despite the adopted OSN is either Face-
book or Twitter, less careful users could share posts and re-
sources with a much wider set of people they had actually in-
tended to, by inadvertently violating their own privacy desider-
ata. In addition, industrial and academic researchers have re-
cently focused their interests on how to manage ownership of
contents shared on OSNs [2-4]. In fact, users are currently used
to lose (at least part of) control on their contents when they up-
load them on OSNs. Eventually, data are migrated to loca-
tions/countries with laws not completely ensuring users’ priva-
cy, while profiling algorithms are commonly employed to dig
users’ content and prompt personalized advertisements. More-
over, users cannot be sure that their data are actually removed
once they delete them or close their accounts.

We have recently proposed an original middleware allow-
ing to share content in a social-driven way while fully preserv-
ing content ownership [5]. Our solution gathers and exploits
social identities and relationships to dynamically interconnect
home subnets of users linked by social relationships. Thus, in
another perspective, we exploit social data gathered from tradi-
tional OSNs to enable automatic content sharing in a peer-to-
peer way. However, the shared content is directly sent from the
device storing it to the device requesting it, without any storage
support by third parties (see background in Section II).

While providing an effective and easy-to-use mechanism to
share resources and to maintain content ownership, our solution
inherits the visibility limitations of OSNs themselves. Since
home-to-home interconnections are based on OSN social rela-
tionships, it may be difficult to suitably tune inter-home re-
source access, also considering that most of the times users
specify only one type of relationship, e.g., Facebook friendship
and Twitter follower/following. For instance, to tune the visi-
bility of a DLNA Media Server offered by a Network-Attached
Storage (NAS), users would be able to only specify that their
Facebook friends can access it (while Twitter followers not, for

instance), while they should be able to explicitly categorize
their relationships one by one to get finer-grained visibility.
Moreover, even users more concerned by privacy issues and
categorizing their relationships in different sets may find diffi-
cult and time-consuming to appropriately associate suitable vis-
ibility rules to every shared resource.

The paper proposes a novel solution that dynamically eval-
uates and exploits the tightness of users’ relationships to make
easier the management of their content sharing. The access to
shared resources is supervised by portable visibility filters dis-
tinguishing relationships as “tight”, “regular”, and “loose”, in-
dependently from the type of OSN or the specified relation-
ships. In particular, the proposed solution is original in:

a) autonomously evaluating the tightness of social relation-
ships based on how much and how frequently users have
socially interacted in the past. The primary simplifying
guideline is that the more two users interact, the tighter
their relationship is (more sophisticated strategies are out
of the scope of this paper and can be easily integrated in
our framework). Our solution generates a decision tree tak-
ing into consideration several parameters of OSNs, e.g.,
the amount of exchanged private messages and pictures
where both users are tagged (Facebook) and the number of
re-tweets (Twitter);

b) supporting a default decision tree suitable for most of the
users as well as its dynamic personalization based on
user’s feedback. On the one hand, we have developed a
default model based on an explicit user survey to achieve a
coarse-grained ready-to-use decision tree. On the other
hand, users can easily refine the default model by specify-
ing the tightness of (part of) their relationships used to
generate a highly personalized decision tree;

c) providing a well-defined grammar to specify high-level
filters. The proposed grammar models shared resource
consumption into three phases, i.e., discovery, browsing,
and access, allowing to filter with per-phase per-service
granularity. Moreover, users can define filters with dif-
ferentiated granularity levels, by selecting the most ap-
propriate granularity based on their requirements, skills,
and willingness. On the one hand, our solution allows to
specify portable filters based on relationship tightness, thus
abstracting from the specific characteristics of the used
OSN or type of relationships it supports. On the other
hand, it enables the definition of ad-hoc filters, specifically
designed for a given OSN or relationship;

d) performing runtime visibility tuning of shared resources
based on dynamically evaluated social tightness and appli-
cable filters, by efficiently monitoring ingress/egress pack-
ets, by modifying their content, or even by dropping them.
In particular, our solution adopts a whitelist approach, hid-
ing resources as long as there is not a specific rule allow-
ing them.

Let us highlight that our middleware can easily apply to heter-
ogeneous OSNs and shared services. For instance, our current
prototype i) integrates with Facebook and Twitter by exploiting
their data and relationships, and ii) supports filters for both leg-
acy DLNA Media Servers and our built-in File Sharing service;

as better detailed in the following, it can be easily extended to
integrate with additional OSNs and with other sharing services.

The rest of the paper is structured as follows: Section II
briefly describes our previous work, by detailing how our mid-
dleware enables social-driven home-to-home spontaneous net-
working and peer-to-peer resource sharing. Section III presents
our original mechanisms to dynamically evaluate the tightness
of social relationships, while Section IV describes our model of
service discovery/invocation and our filter specification gram-
mar. Sections V and VI provide details about our prototype im-
plementation and its performance, respectively; related work
and conclusions end the paper.

II. RAMP MIDDLEWARE FOR SOCIAL-DRIVEN HOME-TO-
HOME RESOURCE SHARING

Our middleware supports home-to-home resource sharing
based on the creation of User Centered Networks (UCNs) and
their automatic federation [5]. We start from UCNs that are
personal overlays that tightly interconnect devices owned by a
unique social identity. Devices are typically located in different
physical networks and are virtually interconnected to easily
support full sharing of data belonging to the same user. Then,
we enable UCN federations that represent the dynamic and
loosely interconnection of UCNs associated with different so-
cial identities and linked by social relationships.

Figure 1 shows how UCNs and their federation can be easi-
ly exploited to share content without third-party infrastructures.
Cate associates her Internet-connected devices to her Facebook
profile, thus automatically generating a UCN composed of her
tablet, gateway, and NAS. Now Cate’s tablet can effortlessly
upload pictures directly to her NAS Web server via HTTP,
even if the latter resides in her private home LAN. Further-
more, since Alice and Cate are friends on Facebook, their
UCNs are federated, thus supporting to browse DLNA AV
Media Server content stored in Cate’s NAS from Alice’s smart
TV as if they were in the same IP subnet, by exploiting legacy
mass-market solutions based on standard UPnP. To this pur-
pose, we have developed a UPnP Proxy supporting the trans-
parent dispatching of UPnP messages to remote nodes located
at multi-hop distance, with no need of additional hard-
ware/software components on legacy UPnP devices. Therefore,
we can overcome the traditional UPnP limitation of intercon-
necting devices only if located in the same subnet [6].

Smart TV

Internet

Alice's home Cate's home

NASGateway

Cate's
tablet

Alice's UCN Cate's UCN

Gateway

192.168.1.x 192.168.2.x

UPnP album
browsing

HTTP
picture
upload

ADSL ADSL

UMTS

Figure 1. Example of federated UCNs.

The previous version of our middleware also supported a basic
and coarse-grained filtering mechanism. For instance, it al-
lowed specifying visibility rules with per-device granularity,

allowing to hide services offered by a given node. In addition,
it supported per-relationship filters, requiring users to specify
rules for each social relationship of each OSN they are regis-
tered to. This paper relevantly advances our previous solution,
by supporting a finer-grained filtering mechanism allowing to
differentiate among discovery, browsing, and access phases,
and supporting the definition of articulated rules based on so-
cial relationship tightness. Thus, the user experience is largely
improved and the definition of portable cross-OSN visibility
rules is made relevantly easier.

Let us stress that the target scenario is characterized by de-
vices located in different IP subnets managed in a completely
decentralized and uncoordinated way, e.g., NAS/desktops in
home LANs of different users together with mobile terminals
connected to the Internet via operator-managed UMTS net-
works. In fact, our middleware takes advantage of spontaneous
networks [7] composed of different private subnets with heter-
ogeneous and possibly conflicting IP address spaces. To this
purpose, we rely on our Real Ad-hoc Multi-hop Peer-to-peer
(RAMP) framework, supporting the seamless dispatching of
packets among collaborative nodes (http://lia.deis.unibo.it/ Re-
search/RAMP/). A detailed and general description of RAMP
is out of the scope of the paper (see [6, 8, 9]); in this section we
simply provide a short description of primary RAMP facili-
ties/characteristics to permit the full understanding of the origi-
nal extensions proposed here.

RAMP provides application developers with APIs to sup-
port fast prototyping of collaborative applications over sponta-
neous networks. It supports end-to-end unicast/broadcast over
heterogeneous multi-hop paths, by exploiting nodes willing to
share their local resources and by estimating sharing opportuni-
ties via novel context indicators, such as joint mobility [9, 10].
In addition, it supports peer-to-peer collaborative services via
registration, advertising, and discovery mechanisms. For in-
stance, on top of RAMP API we have implemented the File
Sharing service. On the server side (node offering the File
Sharing service), to make the new service available to RAMP
nodes, there is only the need to register it locally (register-
Service method) and simply wait for requests (receive meth-
od). In our implementation, a File Sharing request may be for
either the list of available files or the download of a given file.
In both cases the File Sharing service replies directly to the re-
quester (sendUnicast method), with no need to manage the
underlying network heterogeneity and complexity (transparent-
ly provided by our middleware). On the client side, there is on-
ly the need for our File Sharing client to discover remote ser-
vices (findServices method); once determined the node offer-
ing the service, the client can simply require the list of shared
files or the content of a given file (sendUnicast and receive
methods).

RAMP operates connectionless, mission-oriented, and mid-
dleware-layer routing: RAMP packets include the ordered set
of IP addresses they must traverse to reach their destinations, in
a Dynamic Source Routing-like way [11]. Thus, intermediary
nodes can dynamically and flexibly forward data among unco-
ordinated IP subnets based on fast packet header evaluation
(similarly to what happens, at a different abstraction layer, in
MPLS-based solutions [12]). In addition, intermediary nodes
can also actively monitor traversing packets, with no additional

communication overhead (e.g., see the Visibility Tuner com-
ponent in the following). Moreover, our middleware-layer rout-
ing better copes with the high dynamicity of spontaneous net-
works, e.g., by permitting to quickly discover and configure
new paths in case of nodes leaving the spontaneous network
and breaking a path under exploitation. Finally, working at the
middleware layer simplifies portability and rapid deployment
over heterogeneous operating systems and nodes, which is cru-
cial for fast industrial deployability.

III. BUILDING A PORTABLE CROSS-OSN MODEL OF INTER-
USER SOCIAL RELATIONSHIP TIGHTNESS

As anticipated in Section I, the wide spread of OSNs and their
ubiquitous pervasive exploitation by final users push for ad-
dressing the open issues related to privacy management, in par-
ticular to regulate access to shared user-generated content. Let
us point out that in our target scenario the proper, easy, and fi-
ne-grained management of users’ privacy is even more im-
portant. In fact, the automatic federation of UCNs related to
different users, only because they are linked by social relation-
ships, potentially enables large amounts of remote users’ acces-
sible contents. Our solution guideline is to categorize social re-
lationships based on the dynamic evaluation of their tightness.
The main idea is that if two users interact very frequently, it is
likely that their relationship is tighter and thus they are willing
to share a wider set of their user-generated contents. The ra-
tionale is that a malicious attacker could even successfully ob-
tain a friendship relationship confirmation impersonating a us-
er’s friend, e.g., based on a fake Facebook account. Therefore,
our middleware solution takes in account not only the identity,
but also the observation of the kind of runtime interaction
among identified entities. In other words, to get access to one
user’s data, the attacker should be able to increase the tightness
of the associated social relationship, thus requiring much more
sophisticated social attacks.

In particular, our solution tunes the runtime enforced visi-
bility of shared resources based on dynamically evaluated
tightness based on inter-user communication patterns (see Sec-
tion IV). Let us note that it achieves a trade-off among the ca-
pability of finely-tuning visibility with per-user granularity and
easily filtering resources in an automatic manner. On the one
hand, users are typically unwilling to perform time-consuming
manual configuration processes: solutions requiring users to
explicitly specify per-user visibility rules are very rarely suc-
cessful in terms of wide adoption and usage. On the other hand,
our solution allows to automatically categorize the tightness of
relationships and apply filtering rules based on this infor-
mation, thus leveraging final users from the burden of manually
tuning visibility. In addition, as better detailed in Section V, we
allow users tuning the algorithm to categorize relationships,
e.g., to manually modify the automatically determined tightness
of (part of) their relationships.

Moreover, since different OSNs typically adopt very differ-
ent communication mechanisms and tools, we support the gen-
eration of per-OSN models taking into consideration the specif-
ic peculiarities of the integrated OSNs. Currently our prototype
integrates (and has been validated) with Facebook and Twitter,
but in this way it can be easily extended to other OSNs. How-
ever, it is not trivial to identify which communication tool(s)

should be monitored to automatically infer relationship tight-
ness. On the one hand, OSNs provide several and heterogene-
ous mechanisms to interact, e.g., Facebook public posts/private
messages and Twitter re-tweet/citations. In addition, the tight-
ness of relationships could be evaluated also by considering
other social metadata and data, e.g., the number of pictures two
users are tagged in together or the amount of shared follow-
er/following users. On the other hand, users may have dramati-
cally different OSN usage patterns, ranging from users writing
posts on friends’ walls on a daily basis to users writing posts
only occasionally but uploading and tagging pictures every
week.

To better understand typical OSN usage patterns and map
them to the tightness of social relationships, we have submitted
a survey to 20 Facebook users (9/11 females/males, about 150
friends per participant) and 10 Twitter users (3/7 fe-
males/males, about 30 followers/followings per participant)
ranging from 18 and 30 years old. Our survey asked partici-
pants to specify the tightness of at least 15/9 of their Face-
book/Twitter relationships choosing among tight, regular, and
loose. Then, we asked their permission to gather data about
their usage of Facebook and Twitter and compared their an-
swers with per-relationship statistical data.

To evaluate which parameters can better enable inferences
on relationship tightness, we have followed two main steps:

1. for each tagged friend of each participant, we have gath-
ered information to understand her interactions, normal-
ized in relation to the participant’s usage pattern;

2. we have fed Weka [13] (a well-known machine learning
software suite) with normalized multi-participant aggre-
gated data and triggered J48/C4.5 [14] (a widely adopted
algorithm generating decision trees based on training sets)
to determine a model for the evaluation of social tightness.

In particular, we have collected social data associated with each
participant and each friend the participant has specified the re-
lationship tightness in the survey. For instance, data gathered
from Facebook are related to the direct messages from the par-
ticipant to her friends (and vice versa), the pictures of the par-
ticipant where her friends are tagged in (and vice versa), shared
links, mutual friends, and common groups; data gathered from
Twitter range from followers and followings shared between
the participant and her friends to re-tweets and direct partici-
pant-friend messages. Note that we have not collected the up-
loaded data, e.g., pictures and the content of posts, but only
their numbers, e.g., how many pictures and posts the partici-
pants have uploaded.

As already pointed out, each parameter has been normal-
ized to take into consideration the typical usage patterns of the
participant and her friends. Only to mention an example, the
number of Facebook common groups has been normalized by
considering the ratio between common groups and the total
amount of groups joined by the participant not including com-
mon ones. By analyzing such normalized values we observed
that there is not a single parameter allowing to clearly evaluate
the tightness of relationships. For instance, users exchanging
many messages are likely to have a tight relationship; however,
exchanging few messages (or no messages at all) does not

mean that the relationship is loose. Based on this consideration,
we have applied the J48/C4.5 algorithm to normalized data
(aggregating information gathered from every participant) to
identify the parameters that permit to better evaluate relation-
ships tightness. In particular, we have identified the following
parameters (in order of relevance):

 Facebook:
o direct messages from participants to friends;
o direct messages from friends to participants;
o pictures of participants where their friends are tagged in;
o posts of participants where their friends are tagged in;
o posts sent to participants by their friends;
o posts of participants where their friends are tagged in;
o posts of friends where participants are tagged in;
o comments of friends to participants’ status;
o comments of friends to participants’ pictures;
o pictures of friends where participants are tagged in;

 Twitter:
o direct messages from participants to friends;
o tweets of participants to friends;
o tweets to participants sent by friends;
o direct messages to participants from friends;
o tweets of participants re-tweeted by friends;
o tweets of friends where participants are mentioned;
o tweets of participants mentioning friends;
o tweets of friends re-tweeted by participants.

Let us stress that in both cases direct messages have very high
priority, reflecting the fact that two users exchanging many di-
rect messages are likely to have a tight relationship. Then, other
parameters at lower priority depend on specific interaction
mechanisms supported by different OSNs. Starting from the
default decision tree based on our survey, RAMP users can
provide their own feedback re-tagging some of their relation-
ships. Then, Weka re-runs the J48/C4.5 algorithm to get a re-
fined decision model better fitting the usage pattern of consid-
ered users (additional details in Section V).

IV. FILTERING MECHANISMS WITH DIFFERENTIATED

GRANULARITY

Our filtering mechanisms tune the differentiated visibility of
services/contents i) based on relationship tightness and ii) tak-
ing advantage of a general-purpose access model to easily map
filters to heterogeneous services. By delving into finer details,
we exploit a service access model consisting of three main
phases: discovery of services, browsing of shared resources,
and actual access to content. Based on this model we provide
three types of filter:

 Discovery Filter (DF), to tune the retrievable set of ser-
vices. This filter allows hiding services to remote users
looking for them, e.g., by dropping RAMP Discovery Ser-
vice packets sent to search the location of RAMP-based
File Sharing or by discarding UPnP/GENA packets search-
ing for DLNA Media Servers. In this case, if a participant
node already knows the location of its needed service, it
can directly interact with it despite DF rules;

 Browsing Filter (BF), to tune the set of shared contents,
e.g., by dropping UPnP/SOAP “browse” packets. In this
case, similarly to DF, if a node already knows the URL of
a given file, it can directly access it despite BF rules;

 Action Filter (AF), to tune the accessibility of a single
shared resource. For instance, it denies/allows to get a giv-
en file via a DLNA Media Server or files with given ex-
tensions via a RAMP-based File Sharing service. Moreo-
ver, AF also allows tuning the access to other services,
e.g., by denying/allowing to invoke UPnP actions such as
“powerOn” of remotely controlled UPnP lights.

Let us note that DF and BF filtering mechanisms can be ap-
plied to either ingress or egress packets, namely packets enter-
ing or leaving remote UCNs respectively, by achieving differ-
entiated granularity of visibility filtering (AF applies to ingress
packets only, to filter the execution of actions). When DF ap-
plies to ingress discovery packets, it allows completely hiding a
type of service, e.g., by dropping discovery packets looking for
File Sharing, or independently from the searched service. On
the contrary, when applied to egress packets, DF allows hiding
specific service replicas offered by given nodes. Considering
the example in Figure 2, Cate’s gateway (GWc) can hide every
DLNA Media Server by dropping every service discovery
packet related to this service (Figure 2-a, left-to-right service
discovery packet); otherwise, it can admit discovery packets
and then selectively forward only egress replies coming from
given devices (Figure 2-b, right-to-left service response from
NAS1/NAS2 dropped/allowed).

Smart TV

Internet

NAS1GWA

Alice's UCN
Cate's UCN

GWC

NAS2

service
discovery

service
response

Smart TV

Internet

NAS1GWA GWC

NAS2

a)

b)

Figure 2. Examples of differentiated discovery granularity.

Similarly to DF, when BF applies to ingress packets, it offers
the coarse-grained capability of dropping browsing requests
sent to a given service, e.g., by preventing a remote user from
getting the list of contents shared by a UPnP DLNA Media
Server. Instead, when applied to egress packets, DF allows
modifying the set of shared contents, e.g., by modifying the list
of shared files sent by a File Sharing service by removing every
file but the ones ending with “.mp3”.

DF, BF, and AF are defined as <filterType> = <filter>
based on the EBNF in Figure 3, allowing the specification of
filtering rules with the granularity that users deem most appro-
priate for their own requirements. In particular, our filtering
rules are based on a whitelist approach, dropping every packet
not specifically allowed by defined rules. While the majority of
users are willing to specify rules easily, e.g., allowing tight

friends browsing a given DLNA Media Server despite the ex-
ploited OSN, some users may desire to define finer-grained
rules, e.g., allowing only a given Facebook friend to access a
File Sharing service. In any case, note that while expert users
can directly specify rules based on the proposed EBNF, most
mass-market users are expected to use a GUI to easily map re-
lationships with permissions simply by selecting them from
drop-down menus.

<filterType> ::= <packetFilter>_<socialRel>
<packetFilter> ::= DF | BF | AF
<socialRel> ::= FacebookFriend_<rel> | TwitterFriend_<rel> |
GenericSocial_<rel> | Generic
<rel> ::= <relationshipLevel> | <friendId>
<relationshipLevel> ::= tight | regular | loose

<filter> ::= <ruleDiscoveryList> | <ruleBrowseList> | <rule-
ActionList>

<ruleDiscoveryList> ::= <scope> (, <device>)*
<device> ::= <deviceId> [<scope> (, <service>)*]
<service> ::= <visibility><serviceId>
<visibility> ::= + | -
<scope> ::= * | /

<ruleBrowseList> ::= <scope> (, <deviceService>)*
<deviceService> ::= <deviceId>[<scope> (, <serviceBrowse>)*]
<serviceBrowse> ::= <serviceId> <regExp>

<ruleActionList> ::= <scope> (, <deviceAction>)*
<deviceAction> ::= <deviceId>[<scope> (, <serviceAction>)*]
<serviceAction> ::= <serviceId>[<scope> (, <action>)*]
<action> ::= <visibility><actionId>

Figure 3. The EBNF grammar adopted for our filtering rules.

To clearly and practically present our filtering grammar, we
provide some simple filter examples with differentiated granu-
larities. Figure 4 provides the most permissive filter exploiting
the “Generic” relationship. In particular, it specifies that remote
users can freely discover services, browse content, and perform
actions (‘*’ parameter). However, there are some exceptions
specifically defined for the service File Sharing (FS) offered by
the node with identifier “1051”: in this case, it is possible to
browse only csv and txt files and only to get files, while it is
not allowed to put files on the server.

DF_Generic = *
BF_Generic = *, 1051 [/, FS .*?\.(csv|txt)$]
AF_Generic = *, 1051 [/,FS [/, +get]]

Figure 4. Example of generic rules.

To enable permissions based on relationship tightness (inde-
pendently of the integrated OSN), it is possible to modify rules
adding tight, regular, or loose at the end of the rule name (see
Figure 5).

DF_GenericSocial_loose = *
BF_GenericSocial_tight = *, 1051 [/, FS .*?\.(csv|txt)$]
AF_GenericSocial_regular = *, 1051 [/, FS[/, +get]]

Figure 5. Example of rules related to relationship tightness.

To achieve finer-grained visibility, it is possible to specify dif-
ferent rules for specific OSN relationships, e.g., specializing
the previous rules (see Figure 6).

DF_FacebookFriend_loose = *
BF_FacebookFriend_tight = *, 1051 [/, FS .*?\.(csv|txt)$]
AF_FacebookFriend_regular = *, 1051 [/, FS[/, +get]]

Figure 6. Example of rules related to relationship tightness and OSN.

Furthermore, it is possible to specify rules for a given remote
user: the example of Figure 7 specifies that the Facebook friend

with id 5592 can discover only the UPnP Switch Power service
offered by the UPnP device with id 62872bd2 and invoke every
supported action, while she cannot find, browse, or access any
other service.

DF_FacebookFriend_5592 = /, 62872bd2 [/, +SwitchPower]
BF_FacebookFriend_5592 = /
AF_FacebookFriend_5592 = /, 62872bd2 [/, SwitchPower[*]]

Figure 7. Example of rules related to OSN identity.

Finally, let us stress that users can activate the two previous
examples of rules at the same time. Our filtering solution ap-
plies rules from the most specific to the most general one, thus
allowing to exploit coarse-grained rules to define the default
behavior and finer-grained rules as exceptions specifically writ-
ten for given OSNs, relationships, or friends.

V. DESIGN AND IMPLEMENTATION INSIGHTS

Our middleware solution is based on the two main compo-
nents depicted in Figure 8:

 Tightness Evaluator, in charge of gathering social data
and metadata from OSNs and of evaluating the tightness
of social relationships;

 Visibility Tuner, in charge of managing and applying fil-
ter rules at runtime to differentiate resource visibility by
actively monitoring RAMP traversing packets.

Tightness
Evaluator

Visibility
Tuner

OSNN

OSN2

OSN1 social data

relationship
tightness

RAMP
Packet

Dispatcher

packet from
previous node

packet to
next node

packet
monitoring

Web
GUI

Web
GUI

Figure 8. The proposed architecture for social-aware differentiated visibility.

Let us note that both Tightness Evaluator and Visibility Tuner
provide a Web GUI allowing users to customize the middle-
ware behavior to better fit their specific requirements. For in-
stance, users can set the tightness of some of their friends to
adapt the tightness model based on their specific OSN usage
patterns rather than exploiting our default model. In addition,
they can activate already available rules (and eventually define
new rules) to show/hide resources to specific OSN friends or
categories. It is also worth noting that Visibility Tuner actively
monitors traversing packets at provisioning time while Tight-
ness Evaluator runs in background when activated by users.

A. Tightness Evaluator

Tightness Evaluator is based on three primary modules: Data
Collector, gathering and normalizing information from OSNs,
Decision Tree Generator, exploiting collected data to create a
decision tree based on our default model for social relation-
ships, and Model Customizer, allowing users to improve our
default model by specifying the tightness of (part of) their rela-
tionships.

By delving into finer details, Data Collector interacts with
OSNs to gather users’ data and stores them to support Decision
Tree Generator with suitable information. Given that OSNs
typically offer heterogeneous mechanisms to access their data,
we have implemented different instances of Data Collector for
Facebook and Twitter based on their specific sets of APIs. For
instance, to gather the list of Facebook friends we exploit the
Facebook Query Language (FQL) query

String query = "SELECT uid2 " +
"FROM friend " +
"WHERE uid1 = me()";

and then invoke

List<FacebookUser> friends = fbClient.executeQuery(query,
FacebookUser.class);

while, to gather the list of Twitter followers, we exploit the
Twitter APIs

IDs ids = twitter.getFollowersIDs(userId, -1);

by specifying the id of the user we are interested in and the
pagination criterion to split the retrieved list.

Decision Tree Generator takes advantage of data gathered
by Data Collector to build a decision tree based on J48/C4.5.
Since this classification algorithm is based on automatically
generated decision trees, it could be affected by the well-known
underfitting and overfitting problems. To avoid these issues, we
have tuned J48/C4.5 attributes to prune the decision tree to
achieve a general model, not specifically tailored on the given
training set, while providing sufficient accuracy. In particular,
we have set the J48/C4.5 algorithm to prune the tree via a post-
pruning method that discards leaves with confidence factor
lower than 0.35. Moreover, considering that some categories
may include only a few friends, we have set the per-leave min-
imum number of friends to 2; in this way, there are always at
least two friends for each path (online-pruning). Tuning these
parameters, we have achieved a model accuracy of 83% for the
experimental data collected so far.

Figure 9 shows the Twitter decision tree model based on
the survey presented in Section III (for the sake of clarity we
omit the Facebook decision tree). To better explain how the
decision tree works, consider a friendship with sentMessag-
esRate greater than 0.045 and receivedMessagesRate equal to
0 (see Figure 9). In this case the relationship is evaluated as
regular, reflecting the intuitive rule that if two users exchange
private messages their relationship is not loose.

sentMessagesRate <= 0.045
| sentTweetsOnReceivedRate <= 0.007
| | sentTweetsOnTotalSentRate <= 0.047
| | | commonFollowingRate <= 0.144
| | | | mentionTweetsRate <= 0.083
| | | | | commonFollowersRate <= 0.098: LOOSE
| | | | | commonFollowersRate > 0.098: REGULAR
| | | | mentionTweetsRate > 0.083: REGULAR
| | | commonFollowingRate > 0.144: REGULAR
| | sentTweetsOnTotalSentRate > 0.047: REGULAR
| sentTweetsOnReceivedRate > 0.007: REGULAR
sentMessagesRate > 0.045
| receivedMessagesRate <= 0: REGULAR
| receivedMessagesRate > 0: TIGHT

Figure 9. Default Twitter decision tree.

Finally, Model Customizer allows modifying the decision

tree by taking into consideration the OSN usage pattern of each
user. In other words, users can tune the decision tree model in
order to better fit their behavior on OSNs, instead of relying on
the default model based on average usage. It is worth noting
that in this way not only reclassified relationships change, but
also the model, thus actually personalizing it in relation to the
specific usage pattern of users. In this manner novel relation-
ships are evaluated based on the new customized model instead
of the default one. For instance, Figure 10 shows a slightly per-
sonalized decision tree: in this case to be a regular friend sent-
MessagesRate should be greater than 0.053 and receivedMes-
sagesRate lower than or equal to 0.012.

sentMessagesRate <= 0.053
| sentTweetsOnReceivedRate <= 0.021
| | sentTweetsOnTotalSentRate <= 0.031
| | | commonFollowingRate <= 0.389
| | | | mentionTweetsRate <= 0.025
| | | | | commonFollowersRate <= 0.361: LOOSE
| | | | | commonFollowersRate > 0.3618: REGULAR
| | | | mentionTweetsRate > 0.025: REGULAR
| | | commonFollowingRate > 0.389: REGULAR
| | sentTweetsOnTotalSentRate > 0.031: REGULAR
| sentTweetsOnReceivedRate > 0.021: REGULAR
sentMessagesRate > 0.053
| receivedMessagesRate <= 0.012: REGULAR
| receivedMessagesRate > 0.012: TIGHT

Figure 10. Customized Twitter decision tree.

B. Visibility Tuner

Visibility Tuner is based on three primary components: Filter
Repository, Filter Manager, and Filter Enforcer. Filter Repos-
itory stores Java objects implementing actual filters, config-
ured by users based on the rules described in Section IV. For
each RAMP-based service, it is possible to provide a different
filter, by specifying its behavior for the discovery, browsing,
and action phases. Filter Manager allows adding/removing
filters and de/activating them, even at provisioning time. To
this purpose, it reads a configuration file to retrieve the Java
classes implementing the filters, without any specific user in-
tervention. Filter Enforcer performs filtering actions at
runtime: it monitors ingress/egress packets and applies filters
loaded and activated by Filter Manager. If filtering rules allow
packets to enter/leaving a user’s UCN, Filter Enforcer regular-
ly dispatches them, otherwise it appropriately modifies their
content or drops them.

To better understand how Filter Enforcer works, consider
the following example. The packet
FS GET nodeId=1051 op=filelist

coming from a Facebook regular friend requires the file list
provided by the RAMP-based File Sharing service offered by
the RAMP node 1051. The Filter Enforcer is configured with
the rules
DF_FacebookFriend_regular = *
BF_FacebookFriend_regular = *, 1051 [/, FS .*?\.(csv|txt)$]
AF_FacebookFriend_regular = *, 1051 [/, FS[/, +get]]

and the File Sharing service provides the files below:
notes.txt
track01.mp3
accounting.csv

Filter Enforcer applies the BF rule for regular Facebook

friends, enabling the visibility of only csv/txt files while hid-
ing mp3 ones. Moreover, it allows the dynamic discovery of
the File Sharing service and getting any file, but not adding
new files.

VI. PERFORMANCE EVALUATION

We have validated our prototype performing several tests to
quantitatively evaluate the performance of the tightness evalu-
ator and of our filtering mechanisms. In particular, the section
reports about the performance results achieved on top of a Win
7 Pro desktop PC with a Dual-Core processor 2.0 GHz and 4
GB RAM for the primary middleware features originally pre-
sented in this paper, i.e., i) to collect social data from OSNs,
ii) to evaluate the tightness of social relationships, and iii) to
apply our filtering solution to ingress/egress packets.

A. Retrieving and updating social data

To evaluate the tightness of relationships based on up-to-date
user’s behavior, our solution gathers and maintains social data
only within a given time window. We consider a default time
window of three months (tunable at runtime). The data updat-
ing process can be split into three different phases:

 User, collecting and updating user’s social data;
 Friend List, collecting and updating user’s friend list;
 Friend Data, collecting and updating social data and

metadata of user’s friends.

For the sake of briefness, here we report about results related
to Facebook only; note that Twitter maintains and provides
fewer social information and thus it is much less time-
consuming to collect its data. Figure 11 shows, in semi-
logarithmic scale, the time required to process User, Friend
List, and Friend Data while varying the amount of friends.

1

10

100

1000

10000

100 150 200 250 300 350 400 450 500

P
e
r‐
p
h
as
e
 U
p
d
at
in
g
Ti
m
e
 (
s)

Relationships

User
Friend List
Friend Data

Figure 11. Performance of the OSN data gathering process.

Of course the required time also depends on how and how
much the user and her friends employ Facebook, e.g., the fre-
quency with which they upload new posts and pictures. In any
case, Figure 11 demonstrates that the Friend Data phase great-
ly influences the total time and grows almost linearly with the
amount of Facebook friends, e.g., by requiring more than
17/54 minutes to retrieve social data of 150/450 friends.

B. Classifying the tightness of social relationships

We have also evaluated the time required to generate decision
trees based on the above collected data. On the one hand, we
have run Weka while varying the size of the training set, i.e.,

the amount of social relationships manually classified to gen-
erate the decision tree. Table I shows a slight dependency on
the training set size due to the increased amount of data
J48/C4.5 has to consider, ranging from 851ms with a training
set of 10 relationships to 861ms for a training set of 50 rela-
tionships. In any case, the achieved performance demonstrates
that the size of the training set does not considerably lower fi-
nal performance indicators. On the other hand, Figure 12
shows that the time needed to classify relationships linearly
grows with the amount of friends, since the classification sys-
tem has to separately evaluate each relationship.

TABLE I. PERFORMANCE OF THE BUILDING MODEL PROCESS.

Training set size 10 20 30 40 50

Building time (ms) 851 857 856 858 861

0

500

1000

1500

2000

2500

3000

3500

4000

100 200 300 400 500

Ti
m
e
re
q
u
ir
ed

 t
o
 c
la
ss
if
y
(m

s)

Amount of friends
Figure 12. Performance of the classification process.

C. Packet Filters

To quantitatively evaluate the efficiency of our packet filter
mechanisms, we have emulated a federation of 200 Facebook
users, in particular, for the sake of evaluating the time required
to filter packets in relation to the complexity of rules, the
amount of rules, and the rate of packets to be checked. Based
on our evaluation, we have verified that the amount and com-
plexity of active rules do not affect the efficiency of our
mechanisms. On the opposite, we have identified that the effi-
ciency of our solution depends on the rate of arrival packets to
be filtered. In particular, we have stress-tested our middleware
prototype by focusing on the browse phase, considered the
most challenging one since it imposes to parse the payload of
packets and to check shared contents visible by other users.

Overall, the achieved results demonstrate that our imple-
mentation can efficiently filter packets, by exhibiting accepta-
ble latencies up to the notable rate of 1000 packets per second.
By delving into finer details, Figure 13 shows the average re-
sponse time imposed by the filtering mechanism for ingress
browse request packets (53 bytes for File Sharing browse
packets, 52 bytes for UPnP ones). The achieved performance
exponentially degrades in relation to ingress packet arrival
rate. Packet filtering related to the File Sharing service impos-
es more time because there is the need to parse the whole
packet content; instead, UPnP packet filtering has only to
check a single field corresponding to the requested object id
(already pre-parsed by our UPnP RAMP proxy).
Finally, Figure 14 shows the overhead for processing
“browse” egress packets (responses to “browse” requests) of

the RAMP-based File Sharing service, packet size of 60 bytes
with a list of four files. The measured times are higher in
comparison with ingress “browse” packets, since in this case
the packet filter has to parse and modify the whole response
content to eventually delete the name of resources a user may
want to hide. In any case, the requested time grows almost lin-
early in relation to the packet rate, even if at higher rates the
standard deviation grows considerably.

0

2

4

6

8

10

12

14

0 500 1000 1500 2000

A
ve
ra
ge
 F
il
te
ri
n
g
T
im

e
(s
)

Packet Rate (packets/s)

File Sharing

UPnP

Figure 13. Average response time for ingress “browse” packet filtering.

0

2

4

6

8

10

12

14

16

0 500 1000 1500 2000

A
vr
ag
e
Fi
lt
er
in
g
Ti
m
e
(s
)

Packet Rate (packets/s)
Figure 14. Average response time for the filtering of File Sharing egress

“browse” packets.

VII. RELATED WORK

Collecting data of inter-user interactions to infer their relation-
ships has been an active research field even before the wide
spread and commercial success of OSNs. For instance, [15]
proposes to exploit information available on Web home pages
to get inter-user similarities based on interests and to gather re-
lationships based on available hyperlinks toward other home
pages; similarly, [16] exploits data available on blogs, by tak-
ing advantage of their content-intensive nature. Instead, [17]
exploits the C4.5 algorithm to retrieve relationship strength
among conference participants based on coauthoring.

More recently, the availability of huge amounts of social
data and metadata voluntarily uploaded on OSNs has allowed
more articulated solutions [18-20]. [21] proposes a latent varia-
ble model applied to LinkedIn data to infer the strength of so-
cial relationships mainly based on profile similarities, based on
the primary guidelines that the more similar two people are, the
stronger their relationship tends to be. [22] exploits the results
of a survey similar to ours to identify predictive variables, i.e.,
variables depending on relationship strength, and then models
social tightness by linearly combining them.

OSNs have been also exploited to improve resource provi-

sioning with specific objectives. For instance, [23] exploits in-
ter-user social relationships gathered on OSNs to optimize con-
tent delivery in peer-to-peer networks, e.g., by taking into con-
sideration social contacts/interests when allocating flows, man-
aging network topology, and scheduling packet transmission.
Instead, [24] exploits trusted social relationships to improve
privacy and security in peer-to-peer networks, e.g., by prioritiz-
ing paths with nodes by users who are socially tied. Moreover,
[25] proposes to exploit high-level sharing policies and the
content of uploaded resources to automatically suggest poten-
tially safe friends. Finally, to the best of our knowledge, our
middleware is the first to originally apply dynamically evaluat-
ed social tightness to automatically filter user-generated con-
tent visibility in home-to-home scenarios, with the primary
goal of enabling simple and rapid decisions on resource visibil-
ity (eventually tunable with full expressive power), typically
suitable for mass-market users.

VIII. CONCLUSIONS

The paper presents the design, implementation, and evaluation
of our novel middleware prototype to filter visibility of home-
to-home shared resources based on dynamically evaluated
tightness of social relationships. A key aspect of our approach
is the capability of defining visibility rules in a portable cross-
OSN way, independently of the actual type of social relation-
ships linking two users. The achieved performance results
demonstrate the feasibility of our approach, showing that our
per-packet filtering solution can process up to 1000 legacy
UPnP browse packets per second while our mechanisms to
gather OSN data and build decision trees well fit the target ap-
plication scenario.

The encouraging results achieved so far are stimulating our
further research activities along two main directions. On the
one hand, we are developing more sophisticated analytical
tools based on principal components analysis to better investi-
gate how the tightness of social relationships can be inferred
from and are influenced by OSN usage patterns. On the other
hand, we are developing a GUI to facilitate the retrieval of
shared resources and the definition of ad-hoc filtering rules.

ACKNOWLEDGMENTS
Partially supported by POR FESR Emilia-Romagna 2007-2013.

REFERENCES
[1] G. Davis, “Facebook Ireland Ltd, Report of Re-Audit”,

http://dataprotection.ie/documents/press/Facebook_Ireland_Audit_Revie
w_Report_21_Sept_2012.pdf, September 2012 (last visited on July 26th,
2013)

[2] I. Ion, N. Sachdeva, P. Kumaraguru, S. Čapkun, “Home is Safer than the
Cloud! Privacy Concerns for Consumer Cloud Storage”, 7th Symposium
on Usable Privacy and Security (SOUPS '11), Pittsburgh, PA, USA, July
2011.

[3] S. Buchegger, D. Schiöberg, Le Hung Vu, A. Datta, “PeerSoN: P2P So-
cial Networking - Early Experiences and Insights”, in Proceedings of
SocialNets 2009, The 2nd Workshop on Social Network Systems, Nu-
ernberg, Germany, March 2009.

[4] Lo-Yao Yeh, Yu-Lun Huang, A.D. Joseph, S.W. Shieh, Woei-Jiunn
Tsaur, "A Batch-Authenticated and Key Agreement Framework for P2P-
Based Online Social Networks", IEEE Trans on Vehicular Technology,
vol.61, no.4, pp.1907-1924, May 2012.

[5] P. Bellavista, C. Giannelli, L. Iannario, L.-W. Goix, C. Venezia, “Peer-
to-peer Content Sharing Based on Social Identities and Relationships”,
submitted for publication, available as technical report at
http://lia.deis.unibo.it/Staff/CarloGiannelli/socialsharing.pdf

[6] P. Bellavista, P. Gallo, C. Giannelli, G. Toniolo, A. Zoccola, “Discover-
ing and Accessing Peer-to-peer Services in UPnP-based Federated Do-
motic Islands”, IEEE Trans. on Consumer Electronics, vol. 58, mo. 3,
pp. 810-818, August 2012.

[7] L.S. Ferreira, M.D. De Amorim, L. Iannone, L. Berlemann, L.M. Cor-
reia, "Opportunistic Management of Spontaneous and Heterogeneous
Wireless Mesh Networks", IEEE Wireless Comm., vol.17, no.2, pp.41-
46, April 2010.

[8] P. Bellavista, A. Corradi, C. Giannelli, “Middleware for Differentiated
Quality in Spontaneous Networks”, IEEE Pervasive Computing, vol. 11,
no. 3, pp. 64-75, March 2012.

[9] P. Bellavista, A. Corradi, C. Giannelli, "The Real Ad-hoc Multi-hop
Peer-to-peer (RAMP) Middleware: an Easy-to-use Support for Sponta-
neous Networking", 15th IEEE Symp. on Computers and Communica-
tions (ISCC'10), Riccione, Italy, June 2010.

[10] P. Bellavista, A. Corradi, C. Giannelli, “Differentiated Management
Strategies for Multi-hop Multi-Path Heterogeneous Connectivity in Mo-
bile Environments”, IEEE Trans. on Network and Service Management,
Vol. 8, No. 3, pp. 190-204, Sept. 2011.

[11] D. Johnson, Y. Hu, D. Maltz, "The Dynamic Source Routing Protocol
(DSR) for Mobile Ad Hoc Networks for IPv4",
http://tools.ietf.org/html/rfc4728, Feb. 2007.

[12] E. Rosen, A. Viswanathan, R. Callon, "Multiprotocol Label Switching
Architecture", IETF, RFC 3031, Jan. 2001.

[13] “Weka 3: Data Mining Software in Java”, http://www.cs.waikato.ac.nz/
ml/weka/ (last accesed on July 26th, 2013).

[14] J.R. Quinlan, “C4.5: Programs for Machine Learning”, Machine Learn-
ing, 1993.

[15] L.A. Adamic, E. Adar, “Friends and neighbors on the Web”, Social
Networks, vol. 25, no. 3, pp. 211-230, July 2003.

[16] L. Fan, B. Li, "Blog-based online social relationship extraction", 8th Int.
Conf. on Cognitive Informatics (ICCI '09), pp. 457-463, Hong Kong,
June 2009.

[17] Y. Matsuo, J. Mori, M. Hamasaki, T. Nishimura, H. T., K. Hasida, M.
Ishizuka, “POLYPHONET: An advanced social network extraction sys-
tem from the Web”, Web Semantics: Science, Services and Agents on
the World Wide Web, vol. 5, no.4, pp. 262-278, December 2007.

[18] A. Mislove, B. Viswanath, K.P. Gummadi, P. Druschel, “You are who
you know: inferring user profiles in online social networks”, third ACM
international conference on Web search and data mining (WSDM ’10),
pp. 251-260, New York, USA, February 2010.

[19] M. Forestier, J. Velcin, D. Zighed, "Extracting Social Networks to Un-
derstand Interaction", Int. Conf. on Advances in Social Networks Analy-
sis and Mining (ASONAM), Kaohsiung, Taiwan, pp. 213,219, July
2011.

[20] I. Kahanda, J. Neville, “Using Transactional Information to Predict Link
Strength in Online Social Networks”, third Int. AAAI Conf. on Weblogs
and Social Media (ICWSM ’09), pp. 74-81, San Jose, USA, May 2009.

[21] R. Xiang, J. Neville, M. Rogati, “Modeling relationship strength in
online social networks”, 19th Int. Conf. on World Wide Web, pp. 981-
990, Raleigh, USA, April 2010.

[22] E. Gilbert, K. Karahalios, “Predicting tie strength with social media”,
SIGCHI Conf. on Human Factors in Computing Systems (CHI ’09), pp.
211-220, Boston, USA, April 2009.

[23] J. Chakareski, P. Frossard, "Context-Adaptive Information Flow Alloca-
tion and Media Delivery in Online Social Networks", IEEE J. Selected
Topics in Signal Processing, vol.4, no.4, pp.732-745, Aug. 2010.

[24] L.A. Cutillo, R. Molva, T. Strufe, "Safebook: A privacy-preserving
online social network leveraging on real-life trust", IEEE Comm. Maga-
zine, vol.47, no.12, pp.94-101, Dec. 2009

[25] M. Jakob, Z. Moler, M. Pechoucek, R. Vaculin, "Content-Based Privacy
Management on the Social Web", Int. Conf. on Web Intelligence and In-
telligent Agent Technology (WI-IAT), vol. 3, pp. 277,280, Lyon,
France, August 2011.

