Mobility-Aware Connectivity for Seamless Multimedia Delivery in the Heterogeneous Wireless Internet

DEIS, University of Bologna, V.le Risorgimento n.2, 40136 Bologna Italy {pbellavista, acorradi, cgiannelli}@deis.unibo.it

- Homogeneous Wireless Internet
- Heterogeneous Wireless Internet
 - several communication technologies
 - infrastructure and peer points of access
- Mobility-Aware Connectivity (MAC) middleware: context-aware dynamic handover procedure
 - specific characteristics of points of access:
 exploited technology and infrastructure/peer
 - client node and peer mobility, gathered dynamically and autonomously

The Wireless Internet (WI)

Client node

 node requiring connectivity, e.g., user PDA

Connectors

 nodes **providing** connectivity, e.g., UMTS base station

Handover Procedure

 a client node transparently changes current connector while moving

Evaluation Process

- context gathering: which information are important?
- metric application: which is the most suitable connector?

Homogeneous WI

• One communication interface at a time

- the client node does not change wireless interface

Horizontal handover

origin and destination connectors based on the same wireless technology

■ IEEE 802.11

- connectors are IEEE 802.11 access points
- metric based on Received Signal Strength Indication (RSSI) and Signal to Noise Ratio (SNR)
- metric usually embedded in interface firmware

Heterogeneous WI

Heterogeneous interfaces

 the client node exploits multiple wireless interfaces, even simultaneously

Heterogeneous connectors

- can be **infrastructure** or **peer** nodes
- Vertical handover
 - origin and destination connectors can be based on different wireless technologies and connector types

■ The heterogeneous WI increases client node capabilities:

- heterogeneous connectors provide a **more suitable** connectivity
 - Bluetooth to limit power consumption, IEEE 802.11 to get greater bandwidth
- peer connectors extend connectivity opportunities
 - UMTS link accessed via Bluetooth through a peer connector

Heterogeneous WI: issues

Traditional RSSI/SNR based Evaluation Processes are not enough

- It is required a **novel metric** considering a wide set of information
 - to compare heterogeneous wireless interfaces: bandwidth, power consumption, economic cost
 - from IEEE 802.11 to **Bluetooth** to limit **power consumption**
 - from UMTS to free IEEE 802.11 hotspot to limit economic cost
 - to **consider connectors** peculiarities
 - peer connectors are less reliable, since may abruptly interrupt the connectivity, particularly when client node and peer connector move
- An evaluation process based on context knowledge, i.e., client node and candidate connector characteristics

Mobility-Aware Connectivity

- **Mobility-Aware Connectivity** (MAC) middleware
 - evaluation metric specifically designed for heterogeneous WI scenarios
- Important context information
 - connector characteristics
 - wireless technology: IEEE 802.11, Bluetooth, GPRS/UMTS
 - connector type: infrastructure vs. peer
 - client node and peer mobility
 - client node: still vs. motion
 - peer connector: joint vs. transient
- Context information directly available on the client node
 - MAC middleware is autonomous and decentralized

Connectors (1)

Infrastructure-based connectors

- e.g., IEEE 802.11 access point and UMTS base station
- always **reliable** and **fixed**
- Peer-based connectors
 - e.g., IEEE 802.11 ad-hoc and Bluetooth
 - reliable and **unreliable**
 - fixed and **mobile**
 - joint and transient

Connectors (2)

- **Transient** peer connector
 - e.g., a mobile node in the same sidewalk but with opposite direction
 - not suitable for connectivity since has a high probability of becoming unavailable
- Joint peer connector
 - e.g., PDA connector in the same train wagon
 - suitable for connectivity since offers greater durability

MAC Context Gathering (1)

Static context

nominal bandwidth, energy consumption, coverage range, and user requirements

- **Dynamic** context
 - **CMob** to evaluate mobile node mobility degree [0,1]
 - **Joint** to evaluate peer connector relative mobility degree [0,1]
 - both inferred monitoring connector Received Signal Strength Indication (RSSI) variability

Connector type	RSSI variability	Mobility state
fixed	almost <u>constant</u>	still client node
	greatly variable	moving client node
mobile	almost <u>constant</u>	joint mobile connector
	greatly variable	transient mobile connector

MAC Context Gathering (2)

Discrete Fourier Transform (DFT) applied twice to

- low pass filter RSSI fluctuations due to signal noise
- estimate CMob and Joint

Adaptive monitoring to reduce costs

- research or motion: aggressive monitoring to find a connector as soon as possible
 - frequent monitoring of nearby connectors
- connected and still: lazy monitoring to understand if relevant events happen
 - frequent monitoring of the current connector and occasional monitoring of other connectors

MAC Metric Application (1)

- Current MAC metric:
 - enduring connections as the primary objective in heterogeneous WI scenarios
 - minimize number of handover procedures
 - other requirements as secondary goals
 - minimize power consumption and maximize available bandwidth
- ConnectorValue = EnduranceValue + QualityValue
 - EnduranceValue: expected connector durability
 - QualityValue: expected quality in terms of bandwidth and energy consumption

Connectort type	EnduranceValue	QualityValue
Fixed	CMob · Range	(1 - CMob) · (α ·Bandwidth + β ·Energy)
Mobile	$(1 - Joint) \cdot Range$	<i>Joint</i> \cdot (α · <i>Bandwidth</i> + β · <i>Energy</i>)

Examples:

- **mobile** client node (CMob \approx 1) or **transient** peer connector (Joint \approx 0)
 - not easy to provide enduring connections → primarily consider connector Range to maximize connection durability
- still client node (CMob ≈ 0) or joint peer connector (Joint ≈ 1)
 - enduring connections easily provided \rightarrow consider additional requirements, e.g., **bandwidth** and power **consumption** in relation to **user requirements** α and β

MAC Metric Application (2)

Home-Office-Home mobility model

client node still in well served locations

- limited/medium range infrastructure connectors available, e.g.,
 IEEE 802.11 access points or Bluetooth fixed peer connectors
- client node mobile in poorly served locations
 - large range infrastructure connectors more suitable to increase connection durability, e.g., UMTS base stations
 - when available even joint peer connector may be suitable, e.g., Bluetooth joint peer connectors

Client node state	Wireless interface	Connector type
Still	Bluetooth ≈ 802.11 >> UMTS	fixed connector >> joint peer
Motion	$802.11 \approx UMTS >>$ Bluetooth	infrastructure \approx joint peer >> transient peer

(\approx equivalent, > better, >> much better)

Conclusions & Ongoing Work

- Mobility-Aware Connectivity (MAC) middleware adaptively considers opportunities heterogeneous WI scenarios provide
- MAC proposes a novel Evaluation Process considering
 - different wireless technologies, e.g., Bluetooth and IEEE 802.11
 - several connector types, e.g., infrastructure and peer
 - a novel more expressive context information, i.e., client node and peer mobility
- Future work:
 - CMob and Joint estimation based on Bluetooth
 - double-layered metric
 - the bottom layer considering O.S. requirements (power consumption)
 - the top layer considering application requirements (bandwidth)

Any Question?

- Acknowledgements:
 - Work supported by the MIUR PRIN MOMA and the CNR Strategic IS-MANET Projects
- Web references for software and additional documents:
 - http://lia.deis.unibo.it/Research/MAC/
 - http://lia.deis.unibo.it/Staff/CarloGiannelli/

Handover Procedure

Evaluation Process

- **context gathering**: which information are important?
- metric application: which is the most suitable connector?
- Continuity Management
 - trigger: when actually performing an handover?
 - switcher: how keeping connections alive?

RSSI Gathering

- Wrapper
 - homogeneous access to wireless interfaces
- Network Interface Provider
 - **aggregated** access to wireless interfaces
 - **plug-in** wireless interfaces registration

