

Dipartimento di Elettronica, Informatica e Sistemistica Università degli Studi di Bologna {pbellavista, acorradi, cgiannelli}@deis.unibo.it

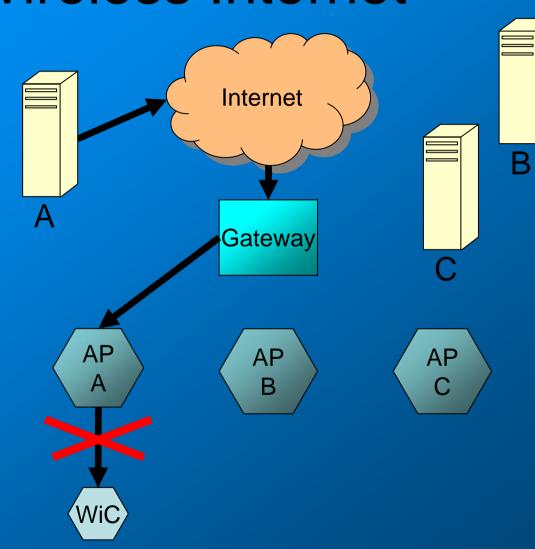
Mobility Prediction for Mobile Agent-based Service Continuity in the Wireless Internet

Paolo Bellavista, Antonio Corradi, Carlo Giannelli

Agenda

- Wireless Internet
- Middleware for service tailoring
- Mobility Prediction
 - RSSI based algorithm
 - Position based algorithm
- Experimental results

Location dependent / aware services

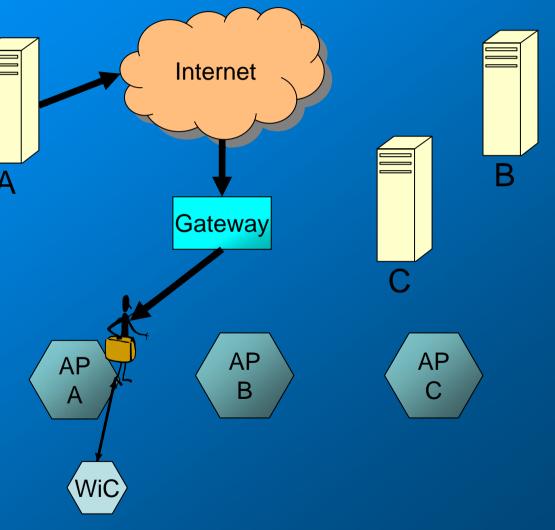

 Wireless technologies make possible to develop location dependent / aware services

New challenges due to:

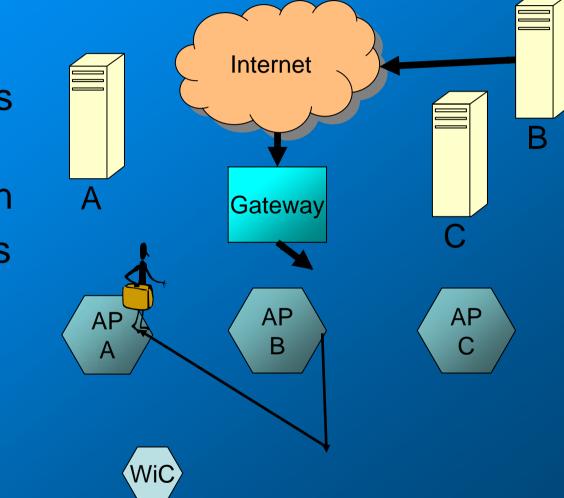
- necessity of additional information, i.e. wireless client position
- heavy hardware / software client heterogeneity

The Wireless Internet

- limited bandwidth
- limited hardware
- limited battery life

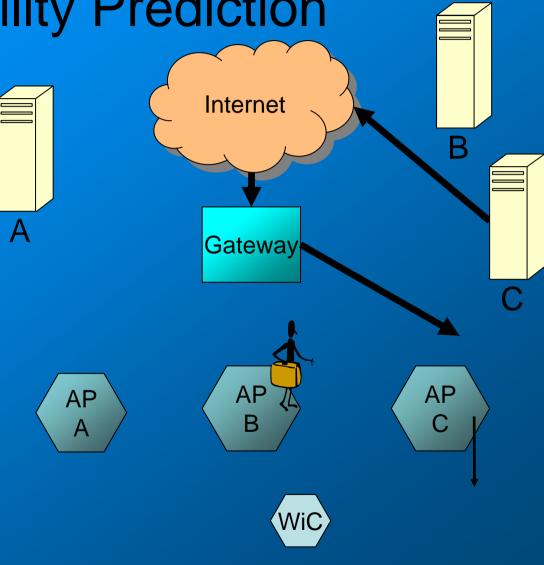


A new layer


- Proxies tailor services to WiC software / hardware capabilities and bandwidth availability
- Service development complexity reduced by a middleware solution

The Wireless Internet + Proxy

 Mobile agent based proxy tailors services A to WiC software / hardware capabilities and bandwidth availability

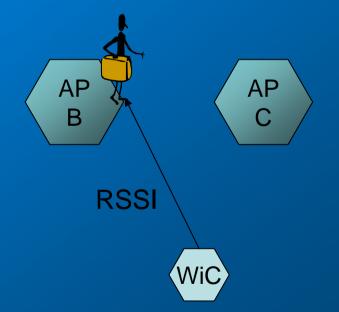

WiC handover

- 1) WiC handovers
- 2) WiC triggers proxy migration
- 3) Proxy prepares WiC service
- 4) Proxy supplies service to WiC

The Wireless Internet + Proxy + Mobility Prediction

- To provide a faster
 response,
 proxy must
 prepare
 service
 before WiC
 handover
- Mobility prediction!

Mobility prediction: RSSI vs. Position

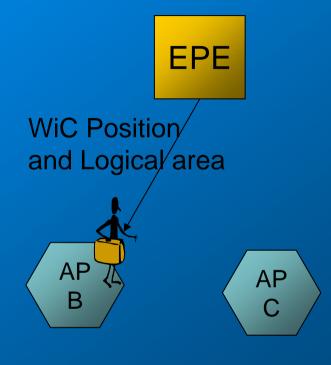

We want to predict when a client change AP and which is its next AP:

- visible AP RSSI monitoring / prediction
- client position estimation / prediction and knowledge of AP deployment and coverage area

RSSI – Grey Model

$$pr(i) = \left(r_1(1) - \frac{u}{a}\right)e^{-ak} + \frac{u}{a}$$

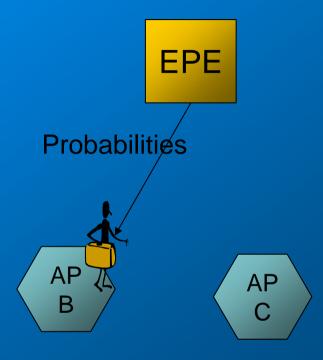
- 1. a client stub achieves visible AP RSSI
- 2. client stub sends data to proxy
- 3. proxy exploits RSSI-GM to predict visible AP RSSI
- 4. proxy performs mobility prediction



Ekahau Positioning Engine (EPE)

- WiC position estimation through EPE
- EPE performs positioning comparing actual and pre-recorded RSSI
- Monitored area eventually divided on configurable logical areas
- For each tracked client, EPE supplies position estimation and probabilities WiC is located in logical areas

Ekahau Distance – Grey Model


- 1) proxy obtains from EPE WiC position and logical area map
- 2) proxy exploits ED-GM to predict distance between WiC and logical areas
- 3) proxy performs mobility prediction

Ekahau Cell Probability – Grey Model

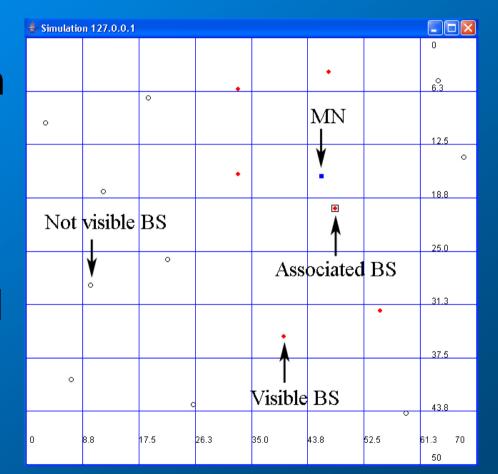
- proxy obtains from EPE WiC probabilities for each AP
- proxy exploits ECP-GM to predict probability for each AP
- 3) proxy performs mobility prediction

Performance indicators

• effectiveness *E1%* =

$$\left(1-\frac{NFSP}{NR}\right)*100$$

NFSP number of time proxy is not yet ready after a WiC handover *NR* number of WiC handovers


$$\left(\frac{USP}{NM}\right)$$
*100

USP number of proxies eventually used by the WiCs NM number of migrated proxies

• advance time AT

Simulated environment

- WiC speed between
 0.2 and 2.5 m/s
- Handover hysteresis threshold at 0, 1, and 2 dB

Experimental results (1)

Straight path trajectory

 RSSI-GM outperforms both EPE predictors

	Effectiveness			Efficiency			Advance Time (s)		
Threshold (db)	0	1	2	0	1	2	0	1	2
RSSI-GM	79	91	94	80	74	74	2.9	4.3	5.3
ECP-GM	9	14	19	30	33	37			
ED-GM	21	34	43	40	43	47		0.7	2.5

Experimental results (2)

 Gaussian random trajectory

 RSSI-GM outperforms both EPE predictors

	Effectiveness			Efficiency			Advance Time (s)		
Threshold (db)	0	1	2	0	1	2	0	1	2
RSSI-GM	75	91	93	78	76	72	2.8	4.1	4.8
ECP-GM	10	13	20	34	34	38			
ED-GM	22	33	37	40	44	43		0.8	1.9

Conclusions & Ongoing work

- Supporting provisioning of personalized services without interruptions in case of handovers
 - proactive migration of middleware components
- Our proposed solution RSSI-GM implies
 - limited overhead
 - simple lightweight solutions better perform than complex approaches
- Service continuity for the dynamic tailoring of Videoon-Demand streams

 Image: Service continuity for the dynamic tailoring of Video
 - adaptive buffering

Any question?

Software and documents about proposed predictors are available on the Web: http://lia.deis.unibo.it/Research/SOMA/MobilityPrediction/

21/10/2004