
Coupling Transparency and Visibility: a Translucent
Middleware Approach for Positioning System

Integration and Management (PoSIM)

Paolo Bellavista, Antonio Corradi, Carlo Giannelli
Dip. Elettronica, Informatica e Sistemistica - Università di Bologna

Viale Risorgimento, 2 - 40136 Bologna - ITALY
Phone: +39-051-2093001; Fax: +39-051-2093073
{pbellavista, acorradi, cgiannelli}@deis.unibo.it

Abstract—The diffusion of wireless terminals with multiple
communication interfaces and the proliferation of heterogene-
ous positioning techniques opens new possibilities for Location
Based Services (LBSs), even if potentially complicating their
development. In particular, LBSs can significantly benefit from
middleware supports to uniformly access the set of positioning
systems available at their wireless clients and to dynamically
choose the most suitable one depending on applica-
tion/execution context, also by fusing concurrent positioning
data from multiple sources. The paper presents our PoSIM
middleware for the integrated and synergic access/control of
heterogeneous positioning systems in a highly flexible way.
PoSIM provides LBSs with two differentiated levels of visibil-
ity for positioning management: a transparent way based on
high-level context-based policies, and a fully-aware access to
advanced functions/configurations, mediated and uniformed
by the middleware independently of the underlying positioning
solution. In particular, the paper mainly concentrates on the
description of the PoSIM architecture and of its API, by point-
ing out our primary design and implementation choices.

Keywords: Mobile Computing, Positioning, Middleware,
System Management, System Integration.

I. INTRODUCTION
The growing availability of powerful mobile devices

with relatively high wireless bandwidth, e.g., via UMTS,
IEEE 802.11, and Bluetooth 2.0 connectivity, is going to
leverage the widespread diffusion of Location Based Ser-
vices (LBSs). LBSs can provide service contents depending
on the current position of served users, on the mutual loca-
tion of clients and accessed server resources, and on the mu-
tual position of users in a group [1]. To enable LBSs, posi-
tioning techniques are crucial. Several research activities
have deeply worked on evaluating mechanisms and tech-
nologies for positioning: some solutions have been specifi-
cally designed for determining location, e.g., the well known
Global Positioning System (GPS); other proposals try to es-
timate positioning information by monitoring characteristics
of general-purpose communication channels, such as the
IEEE 802.11-based Ekahau [2]. For a more exhaustive posi-
tioning system survey please refer to [3, 4].

Currently available positioning solutions greatly differ on
capabilities and provided facilities. For instance, they di-
verge in:
• the representation model of the provided location in-

formation. That model could be either physical (loca-
tion information is provided as a longitude, latitude, and
altitude triple), or symbolic (e.g., room X in building
Y), or both;

• the applicable deployment environment. For instance,
GPS can work only outdoor, Ekahau primarily indoor;

• accuracy and precision of the positioning information.
Accuracy is defined as the location data error range (10
meters for GPS), while precision is the error range con-
fidence (95% for GPS);

• power consumption, which typically depends on loca-
tion update frequency;

• user privacy, e.g., maximum for GPS, limited and de-
pendent on the deployment environment for Ekahau. In
fact, GPS determines location in a completely decen-
tralized and autonomous manner. On the contrary, in
Ekahau-based positioning, clients have to disclose their
locations, to some extent and at a certain granularity, to
be capable of communications (clients must associate to
an AP for communication purposes);

• and additional supported features, which can be pecu-
liar of specific positioning systems. For instance, some
positioning solutions can provide location data as a
probability distribution function.

That heterogeneity among the available positioning systems,
together with the fact that current wireless clients tend to
simultaneously host several wireless technologies useful for
positioning (e.g., terminals with Wi-Fi and/or Bluetooth
connectivity and/or equipped with GPS), motivate the need
for novel middleware solutions capable of integrating the
available positioning techniques, of controlling them in a
synergic way, and of dynamically selecting the most suit-
able positioning solution depending on execution context.
First of all, that middleware should allow to seamlessly
switch from a positioning system to another depending on

availability, e.g., GPS outdoor and Ekahau indoor. Then, it
should suggest to exploit, at any time, the positioning tech-
nique which best fits user preferences, application require-
ments, and device resource constraints. For instance, the po-
sitioning system with lower power consumption in the case
of priority given to battery preservation, or the one with
greater accuracy and precision, or the one with most fre-
quent updates, or the one providing either physical or sym-
bolic location information. Moreover, when several posi-
tioning systems can concurrently work, the middleware
could perform fusion operations on location data, e.g., to
increase accuracy and/or confidence. For all these purposes,
there is the need to make also low-level characteristics of
positioning systems easily accessible to the upper layers
(middleware level and/or application level), thus enabling
application-specific control of positioning techniques, pos-
sibly by avoiding to complicate LBS development and de-
ployment.

By taking into account the above motivations, we have
designed and implemented the Positioning System Integra-
tion and Management (PoSIM) middleware. PoSIM primar-
ily focuses on three aspects. First of all, it is capable of inte-
grating positioning systems at service provisioning time in a
plug-in fashion, by exploiting their possibly synergic capa-
bilities and by actively controlling their features. Secondly,
PoSIM allows positioning systems to flexibly expose their
control/configuration features and location information at
runtime, without requiring static knowledge of positioning-
specific characteristics. Third, it can perform location data
fusion depending on applicable context, e.g., application-
specific requirements about accuracy or client requirements
about device battery consumption.

In addition, PoSIM enables differentiated visibility lev-
els to flexibly answer all possible application requirements
stemming from different LBS deployment scenarios. On the
one hand, PoSIM enables LBSs to access and control inte-
grated positioning in a transparent way at a high level of ab-
straction. In fact, LBSs may simply specify the behavior po-
sitioning systems must comply with via declarative policies;
PoSIM is in charge of actually and transparently enforcing
the selected policies. On the other hand, PoSIM allows
LBSs to have full visibility of the characteristics of the un-
derlying positioning systems via a PoSIM-mediated simpli-
fied access to them. In this case, PoSIM provides LBSs with
a uniformed API, independently of the specific positioning
solution, that permits to access/configure all the available
localization systems homogeneously and aggregately. We
call translucent the original PoSIM approach that supports
LBSs with both transparent and visible integrated access to
available positioning solutions.

After a brief positioning of the PoSIM proposal with re-
gards to the main literature in the field, the paper presents
the primary design guidelines behind the original translucent
architecture of the PoSIM middleware. Then, the paper de-
scribes the main choices followed in the implementation and
deployment of the PoSIM components. Conclusive remarks
and directions of on-going research end the paper.

II. RELATED WORK
Several research activities have recently addressed the

area of dynamically fusing positioning information from dif-
ferent sources [5, 6]. Most solutions propose transparent ap-
proaches that hide applications from positioning complexity,
but do not support any application-specific form of control
on the positioning techniques currently available at a node.

Only a few proposals have just started to delineate cross-
layer supports that provide application-level visibility of
low-level details and control features of available position-
ing techniques [7, 8]. However, [7] only claims the need for
cross-layer middleware solutions to smartly select the most
suitable positioning system at runtime. [8], instead, supports
the control of positioning systems in a hard-coded and not
flexible manner. In addition, to achieve the visibility of data
and control features of a specific positioning system, [8] re-
quires its full static knowledge, thus significantly increasing
the LBS development complexity.

The JSR-179 API [9], also known as Location API for
J2ME, represents a notable result of standardization effort
for Java-based LBSs on mobile phones. In particular, JSR-
179 provides a standardized API to perform coarse-grained
integration and control of positioning systems. For a more
detailed related work and a thorough comparison of the
functionality offered by the JSR-179 and the PoSIM APIs,
please refer to [10].

PoSIM considers the aforementioned contributions and
answers similar issues by greatly improving the dynamicity,
flexibility, and extendibility of the support for positioning
integration and management. To the best of our knowledge,
no support solution in the literature addresses the challenge
of cross-layer integrated control of available positioning
systems by considering runtime application-level require-
ments in a flexible and extensible way and at dynamically
differentiated levels of visibility.

III. THE POSIM ARCHITECTURE
PoSIM provides LBS developers with integrated man-

agement of heterogeneous positioning systems by adopting
a translucent approach. Thanks to PoSIM intermediation,
simple LBSs can interact transparently with positioning sys-
tems perceived as a unique, multi-behavior service. In this
case, LBSs can control positioning systems easily, by just
specifying the required behaviors via declarative policies or
by simply selecting the policies to enforce among the pre-
defined ones, e.g., to give priority to low energy consump-
tion. Smart LBSs, i.e., applications willing to have direct
visibility and to manage peculiar data/features of positioning
systems, can interact in a middleware-mediated but fully
aware fashion: they can have a PoSIM-based uniform access
to all the characteristics of a specific positioning system,
e.g., to limit the accuracy of Ekahau-based positioning to
reduce its network overhead.

Positioning
System

PSW

Positioning
System

PSW

Positioning
System

PSW

Data
Manager A

pplications
Policy

Manager

P
oS

IM
 A

P
I

transparent
visible

P
ositioning S

ystem
Access Facility

Positioning
System

PSW
Positioning

System

PSW
Positioning

System

PSW

Positioning
System

PSW
Positioning

System

PSW
Positioning

System

PSW

Positioning
System

PSW
Positioning

System

PSW
Positioning

System

PSW

Data
Manager A

pplications
Policy

Manager
Policy

Manager

P
oS

IM
 A

P
I

transparent
visible

P
oS

IM
 A

P
I

transparent
visible

P
ositioning S

ystem
Access Facility

Figure 1. PoSIM components (white arrows represent data flows, coloured arrows control flows).

Figure 1 depicts our PoSIM middleware architecture. To

interact with positioning systems in a transparent manner,
simple LBSs can exploit the Policy Manager (PM) and Data
Manager (DM) APIs to respectively control positioning sys-
tem behavior and get their location information. To interact
in a visible and more flexible manner, smart LBSs can ex-
ploit the Positioning System Access Facility (PSAF) to ac-
cess the Positioning System Wrappers (PSWs) for the cur-
rently available and integrated positioning systems.

About the control and data arrows in Figure 1, let us an-
ticipate that PM can control positioning systems but does
not provide any location data, while DM exposes location
information according to dynamically configurable differen-
tiated modes. PSAF, instead, provides LBS components
with both control capabilities and positioning data. Never-
theless, PoSIM appears to the application level as a middle-
ware component offering a single and flexible API, thus
simplifying its usage and potentially leveraging its adoption.

PoSIM does not assume the adoption of any particular or
pre-defined common ontology to be used by all the inte-
grated underlying positioning systems to uniformly repre-
sent their location data and control features. PoSIM distin-
guishes only between features and info. Features describe
positioning system characteristics and capabilities, possibly
with settable values and useful for the control/configuration
of positioning systems, e.g., power consumption or ensured
privacy level. Info is location-related data, e.g., actual posi-
tioning information and its accuracy, not modifiable from
outside the positioning systems. Info is the only data pro-
vided to simple LBSs while smart LBSs have visibility of
both features and infos.

IV. POSIM COMPONENTS: DESIGN AND
IMPLEMENTATION INSIGHTS

As briefly stated in the previous section, the main PoSIM
components are PM, DM, PSAF, and PSW. In the follow-
ing, the paper presents the main design and implementation
guidelines for each of these components, together with an
overview of their offered APIs. For additional details about
the implementation of PoSIM components and their API
specification, please refer to [11].

A. Policy Manager
The Policy Manager (PM) is the PoSIM component re-

sponsible for transparently enforcing policies about posi-
tioning system integration and management. In particular,
the PM API allows simple LBSs to ask for pre-defined be-
haviors implemented as declarative policies, without any
knowledge of how the currently available positioning sys-
tems are actually exploited. For example, a PoSIM-enforced
policy could turn off positioning systems with relatively
high energy consumption if that does not endanger applica-
tion-specific requirements about precision and accuracy.
Figure 2 depicts an example of lowPowerConsumption pol-
icy that switches off a currently available positioning system
if its power consumption is greater than 8 and its accuracy is
below 5 (rapid notes about the mapping between
power/accuracy values in the policy and their counterparts
in the integrated positioning systems are in the following).

name:lowPowerConsumption
condition:
 Feature(name:Power, value: 8) op:greater
 Info(name:Accuracy, value:5) op:lower
action:
 Feature(name:State, value:off)

Figure 2. The lowPowerConsumption policy.

Figure 3 depicts the PM architecture. The Policy Control-
ler (PC) i) provides the capability to insert/delete and
de/activate policies, ii) interacts with PSAF to get up-to-date
info/feature values related to currently enforced policies,
namely relevant data, iii) requests the Policy Engine (PE) to
perform policy enforcement, i.e., to check for policy condi-
tion satisfaction and possibly to trigger policy operations.

Delving into finer design/implementation details, the
PoSIM PE exploits Jess, a rule engine based on the Rete al-
gorithm [12, 13]. PC transforms new policies, described as
Java classes, in Jess rules and, at their activation, provides
PE with them. The Jess knowledge base includes only the
info and features that appear in at least one active policy
condition, that is only info and features relevant for active
policies. In that way, PC only retrieves the needed monitor-

ing indicators from the underlying positioning systems, thus
limiting the middleware overhead.

insert

deactivate

Policy
Engine

insert/
delete rules

assert facts

actions

Policy
Controller

PSAF

activate

delete

insert

deactivate

Policy
Engine

insert/
delete rules

assert facts

actions

Policy
Controller

PSAF

activate

delete

Figure 3. The PoSIM Policy Manager.

Currently, PE enforces policies by following the standard
Jess “depth” (age-based) strategy, i.e., if more than one ac-
tive policy is triggered, it performs the enforcement of the
most recently activated one, and then enforces the other
ones. We are working on extending PE to assign different
priorities to policies and to consider those priorities when
determining the order with which to enforce policies among
the triggered ones.

B. Data Manager
The Data Manager (DM) works to offer an aggregated

view of positioning information to the application level. In
particular, DM provides simple PoSIM-based LBSs with the
info produced by the different integrated positioning sys-
tems as an aggregately single XML document, whose tags
are exploited to specify the semantic of the provided con-
tent. Simple LBSs can specify when and which positioning
information they are interested in via the DM APIs: location
retrieval is possible either on request, or specifying a time
period, or via event notification. In particular, LBSs can
simply define the conditions to trigger location data deliv-
ery. For instance, the pre-defined atChanges condition trig-
gers location notification only when current and previous
physical location differ of more than a specified threshold.

In addition, LBSs may request DM to filter positioning
data. For instance, the pre-defined highAccuracy filter
automatically discards location information with accuracy
below a given threshold. Note that the proper exploitation of
filtering rules permits to reduce the network overhead due to
non-relevant changes of location data. Triggering events and
filtering rules are implemented as Java classes, which can be
easily sub-classed to specify specialized triggers and filters.

Delving into finer details, the Data Builder (DB) sub-
component collects info from the currently exploited posi-
tioning systems and possibly aggregates them with context
information. Data Disclosure (DD) offers an appropriate
API to specify how LBS is willing to get data. In particular,
onDemand(listener) immediately provides the already
available XML-based document with positioning data, pe-
riodical(interval, listener) installs a periodical deliv-
ery process every interval milliseconds, addE-

vent(event,listener) registers a specific event to trigger

the XML-based document delivery. Moreover, DM also
provides the addFilter(filter,listener) method to reg-
ister new filters.

In other words, fed by DB monitoring information, DD
delivers the XML document with positioning data to every
registered listener whose delivery period is expired or trig-
gered by an associated event applies. The delivered XML-
based document is the result of filtering the raw positioning
data with the filters provided by the interested listeners. Let
us observe that each method above in the DM API allows to
specify a listener; that increases the flexibility of our mid-
dleware solution if compared with other recently emerging
proposals for positioning integration [10].

onDemand
periodical
addEvent

Data
Disclosure

aggregated
data

Data Builder
locationcontext

filters &
trigger
events

location

PSAF

context
Context
source

addFilter

onDemand
periodical
addEvent

Data
Disclosure

aggregated
data

Data Builder
locationcontext

filters &
trigger
events

location

PSAF

context
Context
source

addFilter

Figure 4. Data Manager.

Finally, expert users, such as PoSIM administrators, can
develop and deploy new policies, new triggering events, and
new filtering rules. In that way, the PoSIM behavior can be
specialized and extended with impact on neither its imple-
mentation nor the application logic code. Anyway, simple
LBSs and novel developers can simply work by selecting
among the existing set of most common policies, events,
and filters. For a detailed description of pre-defined policies,
triggering events, and filters included in PoSIM, please refer
to [11].

C. Positioning System Access Facility
Smart LBSs and PM/DM can directly control the inte-

grated positioning systems by exploiting the lower level API
of the Positioning System Access Facility (PSAF). PSAF
supports APIs to dynamically handle the registra-
tion/cancellation and to retrieve/control info/features of all
the currently available positioning systems. The only re-
quirement is that positioning systems provide their
info/features via a specified interface; that interface is ob-
tained by wrapping the actual positioning system compo-
nents with PoSIM Positioning System Wrappers (PSWs).
PSAF exploits Java introspection to dynamically determine
and access the set of info/features actually implemented by
the underlying positioning systems that are currently avail-

able in its deployment environment.

Cancel

Register

Query Control

Positioning
System

Wrapper

Positioning
System

Wrapper

Positioning System
Access Facility

Pos
Sys
Set

Cancel

Register

Query ControlQuery Control

Positioning
System

Wrapper

Positioning
System

Wrapper

Positioning
System

Wrapper

Positioning
System

Wrapper

Positioning System
Access Facility

Pos
Sys
Set

Figure 5. Positioning System Access Facility.

In particular, the PSAF API allows:
1. to dynamically register/cancel a (PSW-compliant) posi-

tioning system in order to insert/delete it from the avail-
able positioning system set;

2. to interact with registered positioning systems via the
Query/Control interface.

The PSAF Query/Control interface permits to interact
with registered positioning systems in an aggregated man-
ner. In particular, the Query interface consists of the follow-
ing methods:
• getInfos(posSysSet) / getFeatures(posSysSet),

which returns the set of available info/features of the
specified set of positioning systems;

• getInfo(posSysSet,name) / getFeature(posSysSet,
name), which returns the value of a specific info/feature
of the specified set of positioning systems;

• getAvailable(), which returns the list of the currently
available positioning systems.

The Control interface offers the method:
• setFeature(posSysSet, name, value), which

changes the value of the specified feature for the speci-
fied set of positioning systems.

Both smart LBS components and PoSIM middleware
components can invoke the Query/Control methods; the
Register/Cancel interface can be accessed only by PoSIM
administrators. Let us stress that higher layers are allowed to
interact with integrated positioning systems only via PSAF,
thus guaranteeing controlled and system-safe accesses to
low-layer positioning components, independently of their
specific technique and implementation peculiarities.

D. Positioning System Wrapper
As already pointed out, the Positioning System Wrapper

(PSW) is the crucial middleware component to hide posi-
tioning heterogeneity. It offers a common API, independent
of the specific positioning system and its implementation
details, by providing info/features compliant to a common
pre-defined ontology for positioning-related data. For ex-
ample, the PSW getAccuracy() method could provide loca-
tion accuracy specified as an integer value in the [0, 9]
range. Any specific PSW component interacts with its

wrapped positioning system, retrieves the associated accu-
racy value by exploiting positioning-specific awareness and
syntax, and transforms it accordingly to the adopted ontol-
ogy, e.g., transforming a “high accuracy” string return value
in the correspondent integer. The ontology is shared among
the PoSIM components and permits to specify policies, trig-
gers, and filters independently of the positioning implemen-
tation details.

Delving into finer details, PSW offers:
• the getX() method for every feature provided by the

wrapped positioning system, where X is the name of the
feature;

• the setX(value) method for every modifiable feature,
where value is the new value of the feature;

• the infoX() method for every location-related informa-
tion provided by the wrapped positioning system, where
X is the info name.

PSAF exploits Java reflection to correctly map its
getX()/setX()/infoX() methods to the corresponding (sets
of) lower-level invocations in the wrapped implementations
of currently available positioning systems.

getX
setX

Positioning
System

Wrapper

infoX
getX
setX

Positioning
System

Wrapper

infoX

Figure 6. Positioning System Wrapper.

V. CONCLUSIONS
The widespread diffusion of several heterogeneous posi-

tioning systems pushes towards the adoption of their inte-
gration to dynamically take advantage of their peculiar ca-
pabilities, also in a synergic way. Current middleware solu-
tions for the integration of positioning systems lacks in dy-
namicity and flexibility: for instance, they typically do not
allow to integrate newly introduced positioning systems at
service provisioning time. Moreover, they tend to hide spe-
cific characteristics and underlying implementation details,
which are crucial for smart LBSs to have the needed fine-
grained control of currently available positioning tech-
niques. The paper proposes the original PoSIM middleware
based on our translucent approach: the middleware permits
to control integrated positioning systems both in a transpar-
ent and non-transparent way, respectively fitting simple and
smart LBS requirements.

The encouraging results already obtained in the PoSIM
project are stimulating further related research activities. We
are extending the middleware openness by including an ad-
ditional wrapper for our original Bluetooth-based position-
ing system (currently the PoSIM prototype includes wrap-
pers for GPS and Ekahau). Moreover, we are extending the

set of PoSIM-supported criteria, filter rules, and triggering
events, in order to fit all the personalization requirements of
most common LBSs by simply requesting LBS developers
to select which integration/control strategy should be ap-
plied among the pre-defined ones.

ACKNOWLEDGMENTS
Work supported by the FIRB WEB-MINDS Project of the
Italian Ministry of University and Research and by the Stra-
tegic IS-MANET Project of the Italian Research Council.

REFERENCES
[1] G. Chen, D. Kotz, "A survey of context-aware mobile computing

research", Dartmouth College Technical Report TR2000-381,
http://www.cs.dartmouth.edu/reports/

[2] http://www.ekahau.com
[3] J. Hightower, G. Borriello, “Location systems for ubiquitous

computing”, Computer, Vol. 34, No. 8, Aug. 2001.
[4] J. Hightower, G. Borriello, "Location sensing techniques", UW CSE

Technical Report, 2001.

[5] A. Ranganathan, J. Al-Muhtadi, S. Chetan, R. Campbell, M. D.
Mickunas, “MiddleWhere: a middleware for location awareness in
ubiquitous computing applications”, ACM/IFIP/USENIX Int. Conf.
Middleware, 2004.

[6] M. Spanoudakis et al., “Extensible platform for location based
services provisioning”, Int. Conf. Web Information Systems
Engineering Workshops (WISEW), 2003.

[7] D. Graumann, W. Lara, J. Hightower, G. Borriello, “Real-world
implementation of the location stack: the Universal Location
Framework”, IEEE Workshop on Mobile Computing Systems &
Applications (WMCSA), 2003.

[8] J. Agre, D. Akenyemi, L. Ji, R. Masuoka, P. Thakkar, "A layered
architecture for location-based services in wireless ad hoc networks",
IEEE Aerospace Conference, Mar. 2002.

[9] JSR-179, http://www.jcp.org/aboutJava/communityprocess/final/
jsr179/index.html

[10] P. Bellavista, A. Corradi, C. Giannelli: “Enhancing JSR-179 for
Positioning System Integration and Management”, 1st Work. on
Distributed Agent-based Retrieval Tools (DART'06), Pula-Cagliari,
Sardinia, Italy, June 2006.

[11] PoSIM, http://lia.deis.unibo.it/Research/PoSIM
[12] Jess, http://herzberg.ca.sandia.gov/jess/
[13] Charles L. Forgy, “Rete: A Fast Algorithm for the Many Pattern/

Many Object Pattern Match Problem", Artificial Intelligence, Vol. 19,
No. 1, Sept. 1982, pp. 17-37.

